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Abstract
In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but
do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose
a challenging interactive reference game that requires two players to coordinate on vision and language observations.
The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players’
assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves
a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of
human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort
when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there
is still room for improvement—which invites further research in the direction of cost-sharing in collaborative interactions.

Keywords: vision-and-language, reinforcement learning, multi-agent

1. Introduction

Recent advances in natural language processing
have led to language model-based systems that,
at least at first sight, seem to do a good job at
creating natural dialogue behaviour. However, the
conversations with these models are often still very
verbose (lengthy responses) and brittle (necessity
to wait for response completion). In contrast, Clark
and Wilkes-Gibbs (1986) observed that humans
in a collaborative situation used the language as
a coordination device (joint action; Clark (1996))
and that an adaption process takes place which
is driven by effort reduction. In their experiments,
a director instructed a listener to put cards with
figures on them in a specific order without seeing
the listener’s cards. The observation was that the
average number of speaking turns taken by the
director per figure drastically reduced over the trials
while the success outcomes stayed high. Thus, the
later trials did not just lead to the desired outcome
but were also more efficient.

Now, imagine a situation as sketched in Figure 1.
An instruction giver guides a follower towards a
piece that must be taken on a virtual board, but
there are various other pieces which might distract
the follower. A strategy for the guide could be to use
short phrases and perform remote control (Guide
A). The main effort stays with the guide, which has
to provide accurate navigation instructions while
the follower executes them without incurring any
own planning effort costs. Another extreme would
be a strategy (Guide B) where the guide initiates
the interaction with a very detailed instruction and
then stays silent. This puts most of the cognitive
load on the follower’s side which might now hesi-

Figure 1: A guide and a follower observe the board
with the pieces and the follower’s gripper (the black
dot). An optimal trajectory of actions for the follower
would be: up (U), up, right (R), and take (T). The
best strategy for the guide lies assumably in the
middle (M) of the extremes (A/B) where the guide
refers to a piece initially with l0 and stays silent at
until confirming the follower’s choice with lT . This
strategy shares the cost for success between both.

tate or actually take the wrong piece after all. The
best strategy presumably lies in the middle (Guide
M) where the guide – after having seen different
boards previously and having interacted with the
follower multiple times – initiates the interaction
with a longer phrase but provides useful feedback
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when necessary. While all these strategies can be
successful, the latter is the one that shares the cost
of success the best between the partners. Such
capabilities would be essential for future assisting
agents to take a helpful part in society someday.

However, we notice that current research on lan-
guage and vision coordination problems seems
to neglect (a) the notion of required effort for the
production and delivery of instructions and (b) the
incremental aspects of the interaction. In vision
and language navigation (Chevalier-Boisvert et al.,
2019; Nguyen and III, 2019; Fried et al., 2018) a fol-
lower receives at each time step a (possibly lengthy)
instruction that contains all relevant information. In
interactive sub-goal generation, a planning model
comes up with a goal formulation in “no-time” (a
single step) (Chane-Sane et al., 2021; Sun et al.,
2023; Lee and Kim, 2023). And in multi-agent
environments, agents typically coordinate without
using natural language at all (Bard et al., 2020;
Samvelyan et al., 2019; Pan et al., 2022).

Can neural agents agree on a cooperative strat-
egy that shares the cost of success more equally?
In this work, we put the incremental aspect of the
language and vision coordination problem to the
fore again and weight an agent’s actions by its as-
sumed effort and time costs. Thus, agents have
to trade off the production of costly but informative
actions with the overall outcome of the game. To
study neural agent capabilities under this constraint

• we propose a challenging reference game
where two players have to coordinate on the
selection of a piece among various distractors
while the actual target piece is only known to
one of them (the guide) and only the other can
perform the selection (the follower),

• establish a strong baseline performance with
heuristic partners that implement insights from
the analysis of human-human interactions

• and show that neural partners in a multi-agent
setting indeed strive towards an presumably
more human-like strategy when effort matters.

2. A Game for Evaluating and
Learning Collaborative Multi-Agent

Policies

We propose a Collaborative Game of Referential
and Interactive language with Pentomino pieces
(CoGRIP) to evaluate and learn neural policies for
the aspect of cost sharing a multi-agent setting. In
CoGRIP two players are forced to work together
because of their asymmetry in knowledge and skill.
A guide uses language utterances to instruct a fol-
lower to select a puzzle piece (Pentomino; Golomb
(1996)). The guide can provide utterances but can-
not move the gripper. The follower can move the

Figure 2: An example from Zarrieß et al. (2016)
who found that a reference game leads to diverse
language production on the guide’s side. To study
the aspects of cost sharing in such a collaborative
interaction with neural agents, we propose CoGRIP
along with a generator for virtual boards that eases
the application of data-driven learning methods.

gripper but is not allowed to provide an utterance.
Zarrieß et al. (2016) found that such a setting leads
to diverse language production on the guide’s side.
For example, there are references with delayed po-
sitional descriptions like “then you take the green
W ... top right“, detailed references like “the green
object that looks like a T top left in the corner“, di-
rectional reinforcements like “more to the left” and
confirmations like “exactly”. We virtualize this set-
ting as shown in Figure 2 for better control and to
apply neural learning algorithms in a multi-agent
setting. And we frame this as a game where both
players receive a score after playing that represents
their success and the effort spent for completion.
Next, we explain the details of the game, its scoring
and the prepared instances.

Actions. Formally, the guide’s action space AG
spans all possible utterances of length L that are
possible given the vocabulary V (in English) and
includes an action for silence. Likewise the fol-
lower’s action space AF contains an action for hes-
itation (wait) and actions for movements (left,
right, up, down) as well as an action to take.
A board is internally represented as a grid of M×M
tiles and the gripper can only move one tile at a
time step. The gripper can move over pieces, but
is not allowed to leave the boundaries of the board.
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Effort. The efforts of the players represent the
costs for success. We approximate the efforts
based on the empirical observations from Zarrieß
et al. (2016). The transcripts of the experiments
suggest to group the guide’s utterances into five
categories to which we attach an effort estimate to
each of the categories as follows:

EG =

T∑
t=1


0, if at ∈ {silence}
1.0, if at ∈ {confirm,decline}
2.0, if at ∈ {directive}
3.0, if at ∈ {reference}

(1)
so that EG represents the guide’s effort in an

episode with T steps. These action-based costs
follow the assumed cognitive load for producing the
according utterances: Here, staying silent (only
watching) is the zero baseline. A confirm (“yes
this way”) carries the similar meaning (of detecting
an action towards the goal) with the additional func-
tion of re-assuring the follower to act correctly by
the cost of producing a short phrase. A decline
phrase (“not this piece”) signals the contradiction
between the guides predicted action and the fol-
lower ones with the prospect of a follower’s cor-
rection or if not, it buys time to produce a more de-
manding instruction. Such an instruction could be a
directive (“go left/right/up/down”, “take”) which
requires the comparison between the gripper’s po-
sition and the target piece. Or even comparing all
pieces with each other to produce a reference
(“take the green W”) which is reflected with the high-
est effort cost. For the follower we approximate the
effort EF with

EF =

T∑
t=1


0, if at ∈ {wait}
2.0, if at ∈ {movement}
3.0, if at ∈ {take}

(2)

based on the assumed energy costs for perform-
ing the action (physically), i.e., lifting an object is
harder than moving on a plane.

Score. We measure the quality of an episode
of the game with a scoring function that follows
the reward formulation of Chevalier-Boisvert et al.
(2019)

S(x) = 1− 0.9 ∗ (x/Tmax) (3)

where Tmax is a hyper-parameter that determines
the maximal number of possible time steps in an
episode of the game. Now, the quality score of an
episode is given by the required time steps T to
reach a terminal state STime = S(T ), the joint effort
score SEffort and the overall outcome of the game
SOutcome which is +1 when the correct piece or a

penalty of −1 if the wrong or no piece has been
taken at all, so that:

SGame = (STime + SEffort)/2 + SOutcome (4)

where SEffort = (S(EG) + S(EF))/2. Given this
formulation, the players have to to be active (not just
wait until Tmax is reached), achieve the goal (receive
SOutcome = +1) and reduce their individual efforts
(stay mostly silent or wait when the utterance
is not understood) to reach the highest score. Thus
the score ranges from about −2 (high effort, long
and failure) to +2 (low effort, quick and successful).

Game Instance. An instance of the reference
game is defined by the size of the board, a target
piece and numerous distractor pieces. The appear-
ance and position of the pieces is derived from
symbolic piece representations: a tuple of shape
(7), color (6), and position area (9). We use 315
(7 · 6 · 9 minus a holdout) of these symbolic pieces
to create game instances and split them into distinct
sets, so that the target pieces for the testing tasks
differ from the ones seen during training (they might
share color and shape but are, for example, posi-
tioned elsewhere). We provide 1750 training, 210
validation, and 245 testing instances of the task for
three board sizes (12, 21, 27). On these boards, a
piece occupies five adjacent tiles and is not allowed
to overlap with another one.

Evaluation. We quantify the performance on the
task for a particular pair of follower and guide by
letting them play all test game instances (where the
follower always starts in the center of a map). We
compute the achieved scores for these N testing
episodes and average them to constitute the mean
task score (mTS) for a pair of guide and follower.
Furthermore, we are interested in the mean suc-
cess rate (mSR) as the number of episodes where
the correct piece was selected

mSR =
1

N

N∑
i=1

si where si =

{
1, for correct piece
0, otherwise

(5)
as well as the mean episode length (mEPL) as

the number of time steps needed to take a piece
(with the upper bound Tmax) and the mean joint
effort spent by the pair at each time step (mJE)

mJE =
1

N

N∑
i=1

(EGi
+ EFi

)/2

Ti
(6)

which ranges from 0 to 3 (from the guide is always
silent and the follower always waits to the guide
utters a reference and follower performs take at
each time step in an episode).
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Figure 3: The general information and decision-making flow during an episode of the reference game.
The guide observes a constant textual target piece descriptor ltgt, the partial view pt and a peripheral
overview gt of the scene. Given this, the guide chooses to produce a language action at which could
mean “silence”, a word, a phrase or a sentence that gets translated into an utterance lt. The follower
receives the utterance lt, the partial view pt and a peripheral overview ft. Given this, the follower performs
an action at that results into waiting, a movement (which changes the visual state) or an attempt to take a
piece. The game ends when any piece is taken or the maximal number of time-steps Tmax is reached.

3. Learning Neural Policies for
Sharing the Cost of Success

Along with the newly proposed game for cost shar-
ing, we determine baseline performances for neu-
ral policies and heuristic ones (which bootstrap
them). The neural policies are supposed to learn
the means of success in the game solely by play-
ing with the partner. Here, the heuristic policies are
supposed to help them to learn successful behavior
in the reference game. We hypothesize that once
the neural policies have learned how to achieve a
successful outcome in the game (over a period of
many cooperative interactions), a joint effort reduc-
tion takes place to achieve an even better score.

3.1. Problem Formulation
For our study, we methodologically frame this game
as a reinforcement learning problem (Sutton and
Barto, 1998) with sparse rewards. Thus, we treat
the guide and follower from here on as agents that
act in an environment (the game), which exposes
observations to them. At each time-step t, given
an observation ot ∈ O, the guide has to choose
an action at ∈ AG such that the overall resulting
sequence of actions (a0, ..., at, ..., aT ) maximizes
the sparse reward R(oT ) = SGame. Similarly, the
follower has to choose an action at ∈ AF at each
time step to maximize the shared sparse reward.
The follower and guide agents act at the same
time-step but in consecutive order as depicted in
Figure 3. An episode ends when a piece is selected
by the follower or t reaches Tmax so that an episode
does not last forever and the trajectories do not
become infinitely long.

3.2. Observations

Our intuition is that the overall task can be decom-
posed into two sub-tasks: First, the agents should
agree on the area where the target piece is sup-
posed to be located, e.g., the “top right”. Then,
after reaching this area with the follower’s gripper,
the agents have to coordinate to select the correct
piece in that area (as shown in Table 1, as there is
more than one candidate in the majority of cases).

Given these assumptions, we provide the learn-
ing agents with two visual perceptions of the scene:
a lower-resolution peripheral overview (ft or gt) to
agree on the target area by using positional utter-
ances. And a colored higher resolution focus area
(a partial view pt, which is also commonly used
in other vision-based reinforcement learning prob-
lems; (Hu et al., 2023; Chevalier-Boisvert et al.,
2023)) to coordinate about the target piece with
use of its shape and color attributes. The players

Size NPieces Tmax # DTA=0 # DTA≥1
12 4 30 430 / 58 1320 / 187
21 4–8 60 396 / 58 1354 / 187
27 4–16 80 360 / 48 1390 / 197

Table 1: The possible number of pieces (NPieces)
for game instances with boards of the respective
sizes and the maximal number of time steps (Tmax).
Game instances with board size 12 have always 4
pieces. For the other we choose uniform random
from the range of piece amounts. In the majority
of training/testing instances, there is at least one
distractor (# DTA≥1) in the same positional area
as the target piece e.g. both are in the “top right”.
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share the partial view pt of the scene, which is cen-
tered around the gripper location. This can be inter-
preted as a behavior where the guide focuses on
the follower’s “hand”. The overview observations
ft and gt look slightly different for each agent to
account for the knowledge asymmetry. The guide’s
overview gt contains a mask of the target piece, the
gripper position, and the ground-truth target area
in respective channels. At the same time, the fol-
lower’s overview ft channels contain a mask for all
pieces, the gripper position, and the current area,
respectively. Furthermore, the guide receives at
each time step a constant textual description ltgt of
the target piece (e.g., “blue T top right”) while the
follower receives the current utterance lt produced
by the guide (which could be silence).

3.3. Model Architecture
For both guide and follower, we use the same pol-
icy architecture as depicted in Figure 4. While the
architecture is the same, the agents receive slightly
different observations based on their role in the
game (as described above). The observations ot
are first encoded into a 128-dimensional feature
vector x̃t ∈ R. Then, the feature vector x̃t is fed
through an LSTM (Hochreiter and Schmidhuber,
1997) to produce the memory-conditioned feature
vector õt. The LSTM passes a modifiable state
vector ht forward in time (which works as a mem-
ory). With this mechanism the follower could mem-
orize already observed utterances (which allows
the guide to stay silent), and the guide can antici-
pate a direction in which the follower is moving (and
thus avoid repetitive utterance productions).

3.4. Learning Algorithm
We use Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) to learn a parameterized actor-
critic policy π(õt; θ) ∼ at where the actor predicts
a distribution over the action space and the critic
estimates the value of the states. The algorithm
basically maximizes the surrogate objective

L(θ) = Ê
[

πθ(at|st)
πθold(at|st)

Ât

]
= Ê

[
rt(θ)Ât

]
(7)

but clips the ratio rt(θ) if necessary to stabilize
learning. This means when the critic favors the new
state Ât > 0 then the policy update is proportional
to the ratio rt(θ) ∈ [0, 1 + ϵ] which prevents a too
large divergence. And for negative advantages
Ât < 0 the probability distribution over action is
updated in the opposite direction proportional to
the ratio rt(θ) ∈ [1− ϵ,∞] which effectively reverts
the increase in taking the less favorable action.

We use the recurrent PPO implementation
of StableBaselines3-Contrib v2.1.0 (Raffin et al.,

Figure 4: The neural agent’s recurrent model archi-
tecture includes a memory mechanism (LSTM). At
each time-step the observation ot is encoded and
then the resulting embedding x̃t is combined with
a state representation ht−1 of previous time-steps.

2021), because we have the state vector ht that is
passed forward in time as a memory mechanism.
The implementation performs back-propagation
through time until the first step in an episode.

3.5. Neural and Heuristic Policies

Learning cooperative neural agents in this environ-
ment from scratch requires a lot from them: the
agents must learn (a) that the goal is to take a spe-
cific piece and none of the others, (b) the quality
score is higher for strategies with less effort, and
(c) the visual grounding of utterances themselves
(reinforcement signals, references or directives). If
training both agents at the same time from scratch,
they may solve the task by learning a policy that
amounts to a language that is inaccessible to hu-
mans (emergent languages; (Mul et al., 2019; Lowe
et al., 2019)) because the vocabulary items can be
freely associated with actions (meanings) that are
different from what humans understand e.g. “left”
may become (the action) right. Thus, we pair the
learning neural agents with fixed heuristic ones that
represent a proxy for competent speaker behavior.

3.5.1. A Neural Follower (NIF)

The role of the neural follower (NIF) is to take
the piece described by the guide. For this the
follower can perform a move, wait, or take action.
Formally described, the follower receives at each
time-step a vision and language observation
ot = {lt, pt, ft} and has to choose an action at ∈
{wait, left, right, up, down, take},
so that the sequence of actions (a0, ..., at, ..., aT )
maximizes the sparse reward R(oT ) = SGame.

3.5.2. A Heuristic Guide (HIG)

We pair the neural follower with a heuristic guide
behavior (a fixed policy) that has been shown to
lead to collaborative success with humans (Götze
et al., 2022). The heuristic guide always has ac-
cess to the ground-truth symbolic representations
of the pieces on the board and the current gripper
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position. Initially, the guide provides a referring ex-
pression l0 that contains the properties necessary
to distinguish the target, e.g., “Take the piece at the
top right”. Then the guide provides an utterance
li at a time-step t>0 only when the follower is over
a piece or a pre-defined distance/time threshold
R ∈ N has been exceeded (by comparison of the
gripper’s last and current position). This can be
formally described with the following rules:

• wait_thresh → reference or directive(dir)

• dist_thresh → dist_closer or dist_farther

• dist_closer → confirm

• dist_farther → decline or directive(dir)

• over_target → confirm or directive(take)

• over_other → decline or directive(dir)

If none of these rules apply, the guide stays
silent→ silence. Note that the heuristic guide
switches between the alternatives on the produc-
tion side to provide more informative utterances
than simply repeating. The production rules follow
the effort categorization of Section 2. The utterance
realization is based on the following templates:

• silence → <empty string>

• confirm → Yes this [way|<piece>]

• decline → Not this [way|<piece>]

• directive(take) → Take <piece>

• directive(dir) → Go <dir>

• reference → Take the <IA(PO)>

where <piece> resolves to a piece’s color and
shape when the current gripper position is located
over a piece (or otherwise simply piece). The
direction <dir> resolves to the necessary direction
of movement. The reference production follows the
Incremental Algorithm (IA; a cognitive algorithm by
Dale and Reiter (1995)) that receives a preference
over target piece properties (PO).

Here, the heuristic guide is supposed to mimic
the intrinsic preference of humans (van Deemter,
2016). The most preferred property is usually the
type of an object (Rosch and Lloyd, 1978), but in
our visual domain all objects are “pieces” which
makes this attribute uninformative. Although the
shape could be a proxy for the type, the players
would first need to agree on the idea that the pieces
represent characters (“W”, “T” etc.) and to use it
successfully (Goudbeek and Krahmer, 2012). In-
stead the color is likely to be preferred by humans
(Pechmann, 1989). Thus, when the follower’s grip-
per is within the target piece area – meaning that
the target piece is most likely visible – then the
heuristic guide prefers color and shape to discrimi-
nate the target from its distractors. And otherwise,
the guide prefers to mention the target piece’s po-
sition to lead the follower into the target’s position.

3.5.3. A Neural Guide (NIG)

The neural guide has to produce utterances
that help the follower to select the target piece.
More formally, the guide receives at each time
step an observation ot = {ltgt, pt, gt} and has to
choose an action at ∈ {silence, confirm,
decline, left, right, up, down, take,
pcs, psc, cps, csp, spc, scp} such
that the overall resulting sequence of actions
(a0, ..., at, ..., aT ) maximizes the sparse reward
R(oT ) = SGame. The chosen actions are realized
as utterances with the same mechanism that is
used for the heuristic guide to reduce the burden
on action space exploration. Note that the actions
can be grouped into the five effort categories
from Section 2 where directive’s are left,
right, up, down, take and reference’s
are the preferences orders pcs, psc, cps,
csp, spc, scp (c=color, s=shape, p=position).

3.5.4. A Heuristic Follower (HIF)

The heuristic follower to be paired up with the neural
guide should be similarly constrained as the neural
follower (working with a partial view) so that both
neural agents can play together after training with
the heuristic partners. Thus, we took inspiration
from Sun et al. (2023) and implemented a limited
horizon planner that keeps track of and repeatedly
revises a plan with up to 6 actions (the number
of actions that is necessary to reach the diagonal
corner of the partial view). The heuristic follower
always has access to the ground-truth symbolic
representation in the partial view and the current
gripper position.

The actions in the plan are associated with a
probability p(ai) = max(ϕi,L) of being executed
where ϕ ∈ [0, 1] is a discount factor and L ∈ [0, 1] a
lower threshold. This introduces a notion of confi-
dence: either the planned action is executed, or a
wait action occurs (hesitation). Furthermore, this
conceptualizes that a follower becomes increas-
ingly unsure about the continuation of the plan with-
out receiving feedback. If an utterance is received,
then its category is determined, and accordingly,
one of five sub-programs is run to alter or revise
the plan:

• on_silence: the follower executes, with re-
spect to the confidence, the next action in the plan
(if available). If the plan is empty, then the follower
performs the on_reference sub-program.

• on_confirm: the follower sets the confidence
for all actions in the current plan to 1. Then, the
next action or wait is performed.

• on_decline: the follower erases the current
plan and performs wait.
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12x12 21x21 27x27
Pairing mSR mEPL mTS mJE mSR mEPL mTS mJE mSR mEPL mTS mJE
HIF-HIG 1.00 7.16 1.75 1.36 0.99 13.40 1.74 1.33 0.98 17.64 1.73 1.33

R=1 1.00 6.66 1.76 1.46 1.00 13.02 1.76 1.46 1.00 17.66 1.76 1.46
R=4 1.00 7.66 1.74 1.26 0.97 13.78 1.72 1.19 0.95 17.62 1.69 1.20

NIF-HIG 0.50 9.30 0.79 1.46 0.26 26.23 0.10 1.46 0.17 41.24 -0.18 1.48
R=1 0.57 10.42 0.82 1.60 0.29 29.12 0.06 1.62 0.21 44.62 -0.20 1.64
R=4 0.43 8.18 0.75 1.31 0.22 23.33 0.13 1.29 0.13 37.85 -0.16 1.32

HIF-NIG 1.00 5.19 1.79 1.51 0.96 12.22 1.66 1.77 0.90 20.29 1.46 1.84
NIF-PNIG* 0.99 6.15 1.73 1.77 0.95 16.23 1.54 1.90 0.93 23.30 1.47 1.94
PNIF-PNIG 0.96 7.20 1.63 1.71 0.87 19.35 1.33 1.79 0.69 37.27 0.77 1.90

NIF-NIG 0.95 8.04 1.57 1.63 0.73 27.61 0.87 1.77 0.55 47.7 0.34 1.80

Table 2: The performance of the neural and heuristic pairings on the test instances. We measure the mean
success rates (mSR↑), the mean episode length (mEPL↓), the mean task scores (mTS↑) and the mean
joint efforts (mRJE↓). The best values for a board size are in bold. The best neural-neural performance
is underlined. PNIG* was kept frozen during training. PNIF-PNIG evaluated with last checkpoint.

• on_directive: the follower parses the utter-
ances for directions or take. If the directive sug-
gests taking, then the current plan is erased, and
the take action is executed, assuming that this
is the last action to be performed. Otherwise,
the plan is overwritten with actions towards that
direction, and the next action is executed.

• on_reference: the follower updates its internal
target descriptor (color, shape, position) based
on the current utterance (which might be empty
when coming from on_silence). Afterward, the
partial view is scanned for candidate coordinates
based on the target descriptor, e.g., green co-
ordinates given a reference to “Take the green
piece at the top right”. If the descriptor contains
a position that is not yet reached, then moving to-
wards that position is prioritized. Otherwise, if the
positional area is unknown or already reached,
then the shortest path to a candidate coordinate
is established as the new plan. If the follower is
already in the target area but has no information
about shape and color, then a randomly chosen
piece in the view is approached. In other cases,
the follower waits.

3.6. Experimental Setup
We pair the neural agents with the heuristic ones
(HIF(ϕ = 0.99) and HIG(R = {1, 4}) to bootstrap
learning, and for comparison, we also run an ex-
periment where they learn from scratch. We train
each pairing on the 12×12 boards from the training
split with four environments in parallel (batch size)
and 10 million time-steps in total (for a multi-agent
learning this means that each agent trains for 5
million steps). Thus, each board in the training split
is seen at least 190 times. Every 100k steps dur-
ing training, we evaluate the policies against the
validation set. We keep the policies that achieve
the highest mean episode reward based on the
validation runs for later evaluation on the testing

boards. We do this procedure for three different
random seeds (49184, 92999, 98506) and average
the results where applicable.

3.7. Results & Discussion
HIF-HIG is a very strong baseline pairing. The
results in Table 2 show that the HIF-HIG pair
achieves a 100% success rate along with the least
joint effort (1.36) on the 12× 12 test instances and
generalizes to bigger map sizes as well. This very
strong performance is supposedly achievable after
a pairing went through an optimization process as
observed by Clark and Wilkes-Gibbs (1986) which
results in a collaborative strategy where utterances
are mutually understood, properly grounded and
produced in such a way that the individual effort is
reduced without preventing a successful outcome.1
The downside of the heuristic policies is that they
cannot easily adapt to others or improve further.
HIF-NIG pairing exhibits “Guide A” strategy.
Thus we pair a learning agent (neural guide) with
a heuristic follower that can properly ground the
utterances, so that the guide can easier learn to
use the intents in a successful way. And indeed
the HIF-NIG pair achieves a 100% success rate
on 12 × 12 test boards with even less time steps
as the heuristic pair (5.19) resulting in the highest
task score (1.79). We also notice that the HIF-NIG
pair generalizes to other map sizes. We find that
the main reason for this superb performance is that
the learnt strategy puts the most effort single-sided
onto the guide: it provides a movement directive at
almost every time step (see Figure 5). As hypothe-
sised in the introduction, although this strategy is
highly successfully, it does not result in the least
joint effort. And indeed the mean effort is still higher
(1.51) than the one of the heuristic pair (1.36).

1The NIF-HIG pairing does not fulfill this criteria as the
low success rate (50%) indicates that the neural follower
has not properly learned the goal condition of the game.
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NIF-NIG pairings strive towards “Guide M”.
We hypothesized initially that the best strategy
for the guide would be to initially produce a ref-
erence and then intervene only when necessary
(the “M”iddle way of the extremes of producing an
utterance at each time step or only initially). Such
a strategy is presumably reached by an adaption
process between the two collaborators. Since our
heuristic policies cannot adapt to their counterparts
we train also a pairing of learning agents (neu-
ral guides and followers). This NIF-NIG pairing
achieves a remarkable success rate (95%) on the
12 × 12 boards based on a strategy that involves
the whole repertoire of utterances (see Figure 5).
Notably the guide learns to stay silent in almost
10% of the steps which reduces its effort.

Still, the neural policies might converge to a com-
munication protocol that is inaccessible to humans.
Thus, we pair a neural follower (NIF) with the pre-
trained neural guide and keep the guide’s parame-
ters frozen (PNIG*). This guide learnt to produce
the utterances in a way that humans (the heuris-
tic follower) would understand. The results show
that the neural follower successfully adapts to the
“Guide A” strategy: The utterance production is
about the same for HIF-NIG and NIF-PNIG* (see
Figure 5). Consequently, the pair achieves a similar
high success rate (99%) and the shortest episodes
(6.15) among the neural-neural pairings.

Now the communication strategy of the neural-
neural pairing (PNIF-PNIG) is more accessible to
humans, but the joint effort (1.77) is above the one
from the NIF-NIG (1.63). We continue training the
pre-trained agents (using their best checkpoints
as starting points) in a multi-agent fashion another
10M time-steps, so that the neural agents can fur-
ther adapt to each other. We see that the neural
pairings strive towards a strategy that further re-
duces the joint effort while maintaining the high
success rates as shown in Figure 6. The best seed
achieves a mean joint effort of 1.53, which is just
above the heuristics, and the resulting overall mean
efforts (1.71) are lower than before (1.77). The neu-
ral agents that went through the adaption process
conduct a strategy that involves more references
and also more silence (see Figure 5). This indicates
that the neural agents strive towards a “Guide M”
strategy that shares the cost of success better.

Pairing mSR ↑ mEPL ↓ mTS ↑ mJE ↓
HIF-NIGW 1.00 5.71 1.80 1.13

NIF-PNIGW* 1.00 5.93 1.79 1.25
PNIF-PNIGW 0.94 7.84 1.61 1.24

NIF-NIGW 0.84 10.48 1.34 1.23

Table 3: The results for the word-level pairings of
guide and heuristic follower on the test boards of
size 12. The assumed effort per word is here 1.0
(and thus not directly comparable with Table 2).

Figure 5: The relative usage of utterance categories
per time-step for the guide in various pairings.

Figure 6: The (smoothed) training curves for the
PNIF-PNIG pairing show the mean success rate
(dashed lines) stays high and that the mean joint
effort (mJE) reduces further (for 2 of 3 seeds). The
HIF-HIG performance is indicated by the red ticks.

Interactive language learner mimics “Guide A”.
The previously described guides produce refer-
ences by choosing a preference order. This more
abstract prediction level allows the guide to focus
on learning a useful coordination strategy. Nonethe-
less, the follower has to understand the actual real-
ization of the reference to perform its actions. Thus
we additionally investigate, if a neural guide can
learn a useful language production from the inter-
action alone. We convert “intent”-actions to words
and let a neural guide (NIGW) choose actual prop-
erty values (colors, shapes and positions) which
leads to 24 “word”-actions in total. We adjust the
heuristic follower to categorize the words correctly
and assume an effort of 1 for a guide’s action. A
produced word is fed back to the guide in addition to
the other observations. The results in Table 3 show
that the NIGW achieves high success rates. And
a qualitative analysis (e.g. Figure 7) reveals that
these results are based on a “Guide A” strategy.
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Figure 7: An example episode of the PNIF-PNIGW pair on the validation boards after training. The guide
produces a word at each time step to almost “remote control” the follower resulting in a high success rate.

4. Related Work

As an initial study our work connects ideas from
the linguistic interaction field which asks how lan-
guage shapes an interaction of interlocutors (and
vice versa) (Gandolfi et al., 2022) and the vision
and language field where the actions are visually-
grounded (Zhang and Kordjamshidi, 2022; Dainese
et al., 2023). We realize this connection via the
paradigm of reinforcement learning (RL) that intro-
duces a notion of time and allows for incremental
processing (which has been recently studied for
interactive dictation by Li et al. (2023)). We notice
that recent work towards adaptive NLG (Ohashi
and Higashinaka, 2022) and language feedback
(Yan et al., 2023) are not visually grounded or ap-
proaches that involve vision have no (adaptive) in-
teractive feedback (Zhang and Kordjamshidi, 2022;
Dainese et al., 2023) that has to be learnt from
the interaction alone without pre-trained on a pre-
collected dataset. Our work is an attempt to con-
nect the research ideas of these fields.2

Vision and language navigation. The proposed
reference game shares similarities with vision and
language navigation as the follower has to select
(navigate to) a specific piece given an utterance.
Nevertheless, in navigation tasks, there is usually
a lengthy and detailed initial instruction which is
accessible at every time step, and the metrics of
interest are success rate alone (Chevalier-Boisvert
et al., 2019), or additionally episode length (Nguyen
and III, 2019; Fried et al., 2018). We are especially
interested in the behavior under the constraint of an
assumed joint effort and focus on the incremental
aspects of language and vision coordination. In
our setting, the agents are required to perceptually
ground the language to produce a movement (see
also Chevalier-Boisvert et al. (2023) as an exam-
ple of a popular abstract navigation domain) or to
produce a language act (here a verbalized intent to
reduce space complexity) given the vision inputs
at each time-step.

2Source code is publicly available at:
https://github.com/clp-research/
cost-sharing-reference-game

Cooperative multi-agent RL environments.
Multi-player games present a useful environment to
study multi-agent behavior with reinforcement learn-
ing, as there are usually well-defined constraints
and rewards. Though to our knowledge, the com-
munication between agents is usually not done via
language utterances (Bard et al., 2020; Samvelyan
et al., 2019; Pan et al., 2022; Mohanty et al., 2020;
Kurach et al., 2020). The most similar environ-
ment we found is from Mordatch and Abbeel (2018),
which studied cooperative communication where a
listener has to navigate to one of three landmarks.
The target is only known by a speaker that can
not move. The agents learned from a dense re-
ward signal, which is the distance to the ground-
truth landmark. In our game, we only provide a
sparse reward and are interested in the behavior
after learning to be successful.

5. Conclusion & Further Work

In this work, we proposed a new game to study
cooperative multi-agent behavior for cost-sharing,
and we presented neural and heuristic policies for
learning in this environment. We showed that an
off-the-shelf learning algorithm (PPO) with a simple
reward mechanism (sparse) learns policies that are
successful in the game and that continue reducing
an assumed joint effort. Nevertheless, the resulting
agents lack variety in their coordination strategies
(converge to remote control) and still require more
effort than a sensible heuristic pairing. Thus our
reference game provides a useful foundation and
suggests further research in this interesting topic,
so that future neural agents learn more diverse
(human-like) language-based coordination behav-
iors and share the cost of success even better with
their interaction counterparts.
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Limitations

Limits on visual naturalness. We chose this
relatively abstract setting so as to be able to investi-
gate in detail the contribution of each modelling de-
cision. Moving to a more realistic and visually more
complex environment is a necessary, but logically
later, step. Nevertheless, we think our approach
can also be applied to photo-realistic environments
(Ramakrishnan et al., 2021; Kolve et al., 2017).

Limits on the visual variety. The variety of
pieces is limited to 7 different shapes and 6 dif-
ferent colors. Furthermore, the pieces show no
texture but are drawn with a solid color fill. Never-
theless, the visualisations are fast to compute and
despite of their simplicity we observed that such
a setting produces interesting and complex inter-
actions between a follower and a guide. We leave
experimentation on visually even more complex
scenes or scenes with ambiguity for future work.
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A. Appendix

Robot image in Figure 1 adjusted from https:
//commons.wikimedia.org/wiki/File:
Cartoon_Robot.svg. That file was made
available under the Creative Commons CC0 1.0
Universal Public Domain Dedication.

A.1. Observation Details
The environment exposes at each time-step all rel-
evant observations so that any combination of the
policies can be used within the environment. This
means that the neural policy learners use the par-
tial visual observation and the tokenized language
utterance along with the positional mask as follows
(|V | = 54 is the vocabulary size, L = 16 is the
maximum sentence length and M is the map size.)

Neural follower observations:
• RGB_PARTIAL = {pt ∈ N7×7×3

0 |pt ≤ 255}
• POS_FULL_CURRENT = gt ∈ {0, 1}M×M×4

• LANGUAGE = {lt ∈ NL|0 ≤ lt ≤ |V |}
where RGB_PARTIAL is the partial RGB

view around the current gripper position,
POS_FULL_CURRENT contains masks for the
board, the current gripper position, the pieces
on the board and the current positional area and
LANGUAGE contains the last produced utterance.
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Neural guide observations:

• RGB_PARTIAL = {pt ∈ N7×7×3
0 |pt ≤ 255}

• POS_FULL_TARGET = ft ∈ {0, 1}M×M×4

• TARGET_DESC = {ltgt ∈ NL
0 |ltgt ≤ |V |}

where RGB_PARTIAL is the partial RGB
view around the current gripper position,
POS_FULL_CURRENT contains masks for the
board, the current gripper position, the target
piece on the board and the target’s positional
area and TARGET_DESC contains the tokenized
properties of the target. And the heuristic policies
use the symbolic equivalents of the observations
as follows:

Heuristic follower observations:

• SYM_PARTIAL = {Pt ∈ N7×7×3
0 |Pt ≤ 255}

• SYM_AREA = At ∈ {1, ..., 9}

• SYM_POS = {Gt ∈ N2
0|Gt ≤M}

• LANGUAGE = {lt ∈ NL
0 |lt ≤ |V |}

where SYM_PARTIAL is the partial symbolic
view around the current gripper position with the
symbolic colors, shapes and object id channels,
SYM_AREA is the symbolic representation of the
positional area the gripper is currently in, SYM_POS
are the gripper’s current x, y-coordinates and LAN-
GUAGE contains the last produced utterance.

The symbolic representations for the shapes are:
P (2), X (3), T (4), Z (5), W (6), U (7), F(8). The
colors are encoded as: red (2), green (3), blue (4),
yellow (5), brown (6), purple (7). The 0-symbol is
reserved for out-of-world tiles which can occur in
the partial view and peripheral view masks. The 1-
symbol is reserved for an empty tile. The positional
areas are enumerate as: top left (1), top center
(2), top right (3), right center (4), bottom right (5),
bottom center (6), bottom left (7), left center (8),
center (9).

Heuristic guide observations:

• SYM_POS = {Gt ∈ N2
0|Gt ≤M}

where SYM_POS are the gripper’s current x, y-
coordinates. In addition, the heuristic guide re-
ceives the information about the target’s attributes
and position at the start of each episode. The dis-
tances between two coordinates (p1, p2) are calcu-
lated as the euclidean distance.

A.2. Neural Policy Details
The agents encode two streams of visual inputs:
one is the partial visual observation of the scene
in colors (RGB) and the other is an overview of
the scenes that encodes the position of the gripper
on the board and the targeted (or current) posi-
tional area. Each of the vision embeddings is input
to a FiLM layer that conditions the vision inputs
on the target piece descriptor (for the Guide) or
the utterance (for the Follower). These language-
conditioned vision embeddings are then concate-
nated and input to the policy network. All model im-
plementations are done in PyTorch v1.13.0 (Paszke
et al., 2019).

Partial View Encoding. For the encoding of the
partial view we use a CNN with 4 blocks of convo-
lutions, batch norm and relu activations. The first
block applies 32 kernels of size 5 with stride 1 and
padding. This layer is supposed to learn edges and
colors. The second layer applies 64 kernels of size
5 with stride 5 and no padding to shrink the input to
the original spatial dimensions of 7× 7. Then layer
3 and 4 apply 128 kernels of size 3 and padding
each resulting in 128 7×7 feature maps that embed
the high level visual information of the partial view.

Overview Encoding. For the encoding of the
overview we also use a CNN with 4 blocks of con-
volutions, batch norm and relu activations. The
first block applies 32 kernels of size 1 with stride 1
and no padding. This block is supposed to learn
whether the gripper is located in the target area.
The other blocks apply 64, 128, 128 kernels of size
3 with padding respectively resulting in 128 W ×H
feature maps that embed the high-level positional
information of the overview.

Language-conditioning. The language obser-
vations of the agents (the target descriptor for the
Guide and the utterances for the Follower) are em-
bedded to 32-dimensional word vectors and then
encoded with a GRU which has 128 hidden state
dimensions. The last state of the GRU is given
as the language encoding to the FiLM layers: one
layer that conditions the partial view and one layer
that conditions the overview encoding.

Recurrent Policy Network. The two language-
conditioned visual embeddings are added and
passed to an LSTM with 128 hidden dimensions.
The LSTM embeds the observations over time and
can keep track of previous actions. The LSTM’s
last hidden state is then given to the actor-critic
policy network. The actor and the critic are 2-layer
feedforward networks where each layer has 64 pa-
rameters.
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feature_dims 128
normalize_images True
shared_lstm True
enable_critic_lstm False
n_lstm_layers 1
lstm_hidden_size 128
net_arch [ [64,64], [64,64] ]

Table 4: Policy arguments for the the neural agents.

Hyperparameters. We use the RecurrentPPO
implementation from StableBaselines-Contrib
v2.1.0 with the default learning hyper-parameters
and the policy parameters as given in Table 4.

Experiments. We trained the pairings in parallel
on 8 GeForce GTX 1080 Ti (11GB) where each of
them consumed about 4GB of GPU memory. The
training of an individual pairing (and seed) for the
5 million steps took about 1 day.

For the multi-agent training we switched the
agent to be updated after each policy update so
that the training took 10 million steps in total.

A.3. Incremental Algorithm (IA)
Both the neural and heuristic guide employ the In-
cremental Algorithm for referring expression gener-
ation via the selection of a preference order (except
the NIGW which produces the actual words directly).

Algorithm. The Algorithm 1, in the formulation
of (Dale and Reiter, 1995), is supposed to find the
properties that uniquely identify an object among
others given a preference over properties. To ac-
complish this the algorithm is given the property
values P of distractors in M and of a referent r.
Then the algorithm excludes distractors in several
iterations until either M is empty or every property
of r has been tested. During the exclusion process
the algorithm computes the set of distractors that
do not share a given property with the referent and
stores the property in D. These properties in D
are the ones that distinguish the referent from the
others and thus will be returned.

Preference order. The algorithm has a meta-
parameterO, indicating the preference order, which
determines the order in which the properties of the
referent are tested against the distractors. In our
domain, for example, when color is the most pre-
ferred property, the algorithm might return blue, if
this property already excludes all distractors. When
shape is the preferred property and all distractors
do not share the shape T with the referent, T would
be returned. Hence even when the referent and
distractor pieces are the same, different preference
orders might lead to different expressions.

Algorithm 1 The ia on symbolic properties as
based on the formulation by van Deemter (2016)
Require: A set of distractors M , a set of property

values P of a referent r and a linear preference
order O over the property values P

1: D ← ∅
2: for P in O(P) do
3: E ← {m ∈M : ¬P (m)}
4: if E ̸= ∅ then
5: Add P to D
6: Remove E from M
7: return D

Templates. There are 3 expression templates
that are used when only a single property value
of the target piece is returned by the Incremental
Algorithm (ia):

• take the [color] piece
• take the [shape]
• take the piece at [position]

Then there are 3 expression templates that are
selected when two properties are returned:

• take the [color] [shape]
• take the [color] piece at [position]
• take the [shape] at [position]

And finally there is one expression templates that
lists all property values to identify a target piece:

• take the [color] [shape] at [position]

A.4. Task Generation
Symbolic piece splits. For the task generation
we first split the set of the 378 possible symbolic
pieces (a combination of color, shape and posi-
tion) into different subsets, so that training, val-
idation and testing splits do not overlap. This
results into 250/30/35 symbolic pieces for train-
ing/validation/testing respectively (and a holdout
of 63 symbols that we did not use).

Utterance type-oriented sampling. Then we it-
erate through the symbolic pieces in the split and
treat each of them as the target piece once. For the
target piece we sample a set of distractor pieces in
such a way that the IA’s reference production would
lead to one of the templates (from above) once.
This means that per target piece 7 different distrac-
tor sets are sampled which leads to 1750/210/245
tasks for training/validation/testing respectively. For
each task the pieces are put on an initially empty
board starting with the target. And then the other
pieces are tried to be placed. If a piece cannot be
placed on a board without collision, then we choose
another coordinate and try this up to 100 times for
each placement, until all pieces are placed.
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