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Abstract
The questionnaire is a professional research methodology used for both qualitative and quantitative analysis
of human opinions, preferences, attitudes, and behaviors. However, designing and evaluating questionnaires
demands significant effort due to their intricate and complex structure. Questionnaires entail a series of questions
that must conform to intricate constraints involving the questions, options, and overall structure. Specifically,
the questions should be relevant and specific to the given research topic and intent. The options should be
tailored to the questions, ensuring they are mutually exclusive, completed, and ordered sensibly. Moreover, the
sequence of questions should follow a logical order, grouping similar topics together. As a result, automatically
generating questionnaires presents a significant challenge and this area has received limited attention primarily due
to the scarcity of high-quality datasets. To address these issues, we present Qsnail, the first dataset specifically
constructed for the questionnaire generation task, which comprises 13,168 human-written questionnaires gathered
from online platforms. We further conduct experiments on Qsnail, and the results reveal that retrieval models and
traditional generative models do not fully align with the given research topic and intents. Large language models,
while more closely related to the research topic and intents, exhibit significant limitations in terms of diversity and
specificity. Despite enhancements through the chain-of-thought prompt and finetuning, questionnaires generated by
language models still fall short of human-written questionnaires. Therefore, questionnaire generation is challenging
and needs to be further explored. The dataset is available at: https://github.com/LeiyanGithub/qsnail.
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1. Introduction

The questionnaire serves as a professional re-
search tool designed for gathering data on hu-
man opinions, attitudes, preferences, and behav-
iors (Dyer et al., 1976; Hammarberg et al., 2016).
Typically, when given a specific research topic and
intents, a questionnaire is designed to gather infor-
mation from respondents. The research topic and
intents are the ideas about what kind of information
wants to be collected. Surpassing the limitations
of a single voting question, questionnaires consist
of sequential questions, enabling comprehensive
qualitative and quantitative analyses, thereby fos-
tering more profound and convincing conclusions
or suggestions (Ponto, 2015). Consequently, they
are extensively utilized in diverse domains such as
education, healthcare, government, and psychol-
ogy (Artino Jr et al., 2014).

Questionnaire design is a systematic process
involving background research, question formula-
tion, option configuration, sequence adjustment,
pre-testing, and other multiple stages (Krosnick,
2018). This process demands significant domain
knowledge and cognitive effort, requiring multiple
human efforts and time. Pre-trained language
models (PLMs) based on Transformers (Vaswani
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et al., 2017) have achieved great success on text
generation tasks, including creative writing, ques-
tion answering (Xu et al., 2023; Deng et al., 2023),
and dialogue generation (Zhou et al., 2023; Yang
et al., 2023; Ouyang et al., 2022; Chowdhery et al.,
2022). Especially, ChatGPT (Ouyang et al., 2022)
can generate high-quality content following user in-
structions, which makes generating usable ques-
tionnaires possible. This leads us to question how
well these models perform in generating question-
naires.

To date, unlike previous sequential question
generation works that aim at resolving the coref-
erence alignment, the sequential questions in the
questionnaire focus much on inherent constraints
that can be classified into questions, options, and
overall aspects, as depicted in Figure 1. The in-
dividual question should be (1) Relevant to the
Topic and Intents: the questions must serve the
research targets. The question “Snacks in home-
town” is not related to the topic “Changes in my
hometown”, so it should be removed. (2) Specific
for the Topic and Intents (Chiang et al., 2015; Lee,
2006): abstract questions are often vague and pro-
vide limited useful information. The question, “Has
your hometown changed?”, is ambiguous in terms
of time scale and perspective, making it difficult to
judge whether to answer “yes” or “no”. The op-
tions of the question must be (1) Matched with

https://github.com/LeiyanGithub/qsnail
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the question: option A (rapid economic develop-
ment) of question 3 in Figure 1 does not match the
environmental change aspect of the question. (2)
Mutually exclusive, complete, and orderly (Taylor-
Powell and Marshall, 1998): for instance question
4 in Figure 1, the inclusion of age 46 in both op-
tions C (41–50) and D (45–60) violates the prin-
ciple of exclusivity. Additionally, the absence of
any option related to ages exceeding 60 violates
the requirement for completeness. Furthermore,
the presence of unsorted options, such as option
E (<18), adds difficulty in identifying the appropri-
ate choice. The order of sequential questions
should be (1) Logical: from objective to subjective
to keep a better logical flow. For instance, question
5.2 in Figure 1 should be placed before question
5.1 since it requires individuals who have returned
to their hometown to discuss any alterations that
have taken place there. (2) grouping similar topics
together (Taherdoost, 2022): for example in the
last part in Figure 1, questions 6.1 and 6.2 both
address changes in hometown transportation and
should therefore be arranged together. Similarly,
questions 6.3 and 6.4, which focus on environmen-
tal changes, should be grouped similarly. Consid-
ering the above constraints, automatic generation
of questionnaires is a crucial yet challenging task.
Until now, this area has received limited attention
mainly due to the lack of high-quality datasets.

To emphasize the aforementioned challenges,
we introduce the Qsnail dataset, a questionnaire
collection established through a comprehensive
process involving web crawling, data filtering, and
intent reconstruction. Specifically, we first col-
lect the dataset by web crawling questionnaires
from the Wenjuanxing and Tencent Wenjuan on-
line form-filling platforms. Subsequently, we elimi-
nate unqualified and duplicate data using keyword-
based and md5 filtering mechanisms. We fur-
ther ascertain the research intentions by leverag-
ing the ChatGPT model to analyze the question-
naire content. As a result, Qsnail contains 13,168
high-quality human-written questionnaires, includ-
ing approximately 184,854 question-option pairs
and spanning 11 distinct application domains.

Moreover, it is worth noting that conventional
text generation metrics are insufficient for evalu-
ating this novel task. Consequently, we propose
novel automatic and human evaluation metrics
adapted to this task. Furthermore, we conduct
comprehensive experiments to analyze the perfor-
mance of both retrieval and generative models in
this task. Our findings reveal that retrieval models
often exhibit deviations from the research topic and
intents, while traditional generative models face
challenges in producing coherent and usable ques-
tionnaires, even after finetuning. Large language
models, like ChatGPT, ChatGLM-6B, and Vicuna-

Topic! "#$%&'() Questionnaire on changes in hometown
Intents!
1.*+,-./012$%3456 Understand the perception of changes in living standards among hometown residents
2. 789:;"#3<=$%>?6 Exploring the main areas of changes in hometown
3.*+@ABCDBEFGHI$%&'6 Learning about changes in transportation, architecture, and environment

QuestionsConstrainsStructure

1. !"#$%&'()*+,
A.-./ B. 012 C. 34 D. 5678
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2. Has your hometown changed? A. Yes.  B. No
Specific for Topic &
Intents

3. !"#$>?@A/BC&'A/"DE,
A.FGHIJK B.LMNOPQR C. SPQTUV

3. Which aspects of the environment have been improved in your hometown?
A. Rapid economic development B. Fresher air quality C. Clearer and tastier water

Matched to Question

OPTIONS
4. !"WX<,(What's your age?)
A. 18~30    B. 31~40    C. 41~50    D. 45~60 E.Y18 F.Z60
A.Y18 B. 18~30    C. 31~40    D. 41~50    E. 51~60 F.Z60
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\ Complete
] Orderly

5.1. !^_#$"9:`;,
5.1. Do you think your hometown has changed a lot?

5.2. !abWcd#$;,
5.2. Have you been back to your hometown in the past two years?

Logical between
Questions

OVERALL
6.1. !^_#$efghijkDElmno,
6.2. !^_pqgrsjkDElmno,
6.1. How much do you think the construction of roads and bridges has improved?
6.2. How much do you think the bus and subway construction has improved?

6.3.!^_#$"LMNODElmno,
6.4. !^_tuSNODE`;,
6.3. How do you think the air quality in your hometown has improved?
6.4. How do you think the quality of tap water has improved?

Grouping Questions

Objective Question First

Subjective Question Later

Transportation Related Questions

Environment Related Questions

👍
👎

Figure 1: An example of intricate constraints in the
questionnaire on the research topic: changes in
hometown. The top is about the research topic and
intents of the questionnaire, while the left side is
about questions, options, and overall constraints.

7B, although highly relevant to the topic and in-
tentions, display significant gaps in terms of diver-
sity, specificity, rationality, order, and background
when compared to human-level performance. To
alleviate the aforementioned shortcomings, we ex-
plore an outline-first prompt method and finetun-
ing models, which yield improvements in specificity
and rationality. Nevertheless, there remains a sub-
stantial disparity with humans in terms of diversity
and specificity. Consequently, the task of ques-
tionnaire generation proves to be challenging and
warrants further investigation. Our contributions in-
clude:

• Formalizing the questionnaire generation as a
sequential question generation task and point-
ing out its challenges.

• Proposing a new questionnaire generation
dataset, e.g. Qsnail, to involve more re-
searchers focusing on this problem.

• To thoroughly assess the effectiveness of var-
ious models in this task, furthermore, ex-
plore two distinct approaches: the outline-first
prompt and the model fine-tuning.

2. Qsnail Dataset

The first phase entails setting a benchmark for the
questionnaire generation task. Therefore, within
this section, we provide detailed insights into the
formulation of the questionnaire generation task,
outline the process of dataset collection, and per-
form further analyses.
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2.1. Task Formulation
Questionnaires consist of a series of intercon-
nected questions designed to fulfill the specific
research intents. The fundamental challenge in
crafting questionnaires lies in the transformation
of these research intents into a set of precise
and targeted questions. Typically, the input in-
cludes a research topic denoted as T and a re-
search intent represented as I. The research in-
tent, in turn, encompasses various sub-targets,
denoted as i1, i2, · · · , ip, described in natural lan-
guage, where the value of p corresponds to the
number of sub-targets. A research topic is a par-
ticular concept or event the researcher wants to
explore. The research intent outlines the precise
information the researcher seeks to collect from
respondents through the questionnaire. Notably,
the design of questionnaires can vary significantly
for the same research topic depending on the dis-
tinct research intents. To illustrate, when examin-
ing a broad research topic like “food preferences”,
if the research objectives are general public, the
aim is to gain insights into individuals’ food pref-
erences, their underlying motivations for liking or
disliking specific foods, and relevant influencing
factors. Conversely, when the research objec-
tive is centered on exploring the perspectives of
chefs and food critics, the intent shifts to com-
prehending their unique motivations and criteria
for assessing food. Different research intents re-
sult in distinct questionnaires for the same topic.
Consequently, a more detailed description of the
research intents becomes crucial. Hence, the
questionnaire generation task involves providing
the research topic T and intents I as the inputs,
which then generates a sequence of questions
Q1, Q2, ..., Qm, where m denotes the total number
of questions. Questions within the questionnaire
can be divided into open-ended or closed-ended
questions. Qi = {qi} is open-ended question and
Qi = {qi, o1, o2, · · · , oni} is closed-ended question
where additional options oj are attached, and ni

denotes the number of options. Each individual
question, along with its options, and the order of
sequential questions must adhere to satisfy the
constraints mentioned in Section 1.

2.2. Data Collection
To ensure the acquisition of high-quality question-
naire data, our initial step involves crawling ques-
tionnaire data from two sources: Wenjuanxing 1

and Tencent Wenjuan 2 platforms. However, due
to the presence of numerous non-questionnaire
forms and duplicated data, we implement a filtering

1https://www.wjx.cn/
2https://wj.qq.com/

mechanism utilizing keywords and MD5 hashing.
Additionally, we employ the questionnaire contents
to extract and reconstruct the underlying research
intents. Details are provided below.

Web Crawling. Wenjuanxing and Tencent
Wenjuan are extensively utilized for various pur-
poses, including survey research, exam admin-
istration, and online voting. These tools serve
to fulfill the data collection and statistical analy-
sis requirements of diverse user groups, encom-
passing government agencies, educational institu-
tions, and others. Consequently, we construct a
dataset containing human-written questionnaires
spanning various research domains. Initially, we
crawl approximately 30,000 random instances.

Data Filtering. The aforementioned platforms
not only facilitate the creation of questionnaires but
also provide other form-creation functions, includ-
ing exam forms. However, this diversity in form
types introduces noise into the collected data. To
address this issue, we implement a two-step post-
processing approach to extract clean data.

(1) Keywords Filtering. These platforms contain
a considerable amount of non-survey forms, mak-
ing it challenging to isolate pure questionnaires.
Typically, questionnaires are distinguished by titles
containing keywords such as “questionnaire”, “sur-
vey”, or “investigation”, Therefore, to ensure stan-
dardized questionnaire data, we apply strict key-
word filtering. Furthermore, we remove any data
containing personal private information during the
filtering process. It is also important to note that the
data is publicly available so they already undergo
privacy and security audits by the platforms.

(2) MD5-based Filtering. We also notice a signif-
icant presence of directly copied duplicate ques-
tionnaires. To preserve data diversity, we imple-
ment an MD5-based filter to eliminate duplicates.

Ultimately, we acquire 13,168 questionnaires,
comprising a total of 184,854 question-option
pairs. Each questionnaire comprises a title, a se-
ries of sequential questions, and their correspond-
ing options. To guarantee data quality and privacy
safety, we conduct a random sampling of 100 data
examples for manual review, identifying only 5 in-
stances that do not meet our criteria.

Intent Reconstruction. The data retrieved
from the online questionnaire website includes
only the title and the corresponding questionnaire
content. The creation of a specific questionnaire
related to the research topic is unfeasible in the
absence of explicit research intents. A description
of the research intents is crucial. Typically, the
research intent comes from the designer’s initial
thoughts before crafting it. Unfortunately, reach-
ing out to the designers for clarification is often not
possible. Another aspect that can shed light on the
research intent is the sequence of questions and

https://www.wjx.cn/
https://wj.qq.com/
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Table 1: Comparison of Qsnail with other selected
question generation datasets.

Non-factoid Logical Grouping Options Scale

SQuAD (Rajpurkar et al., 2018) 7 7 7 7 230K
LearningQ (Chen et al., 2018) 7 3 7 7 230K
CoQA (Reddy et al., 2019) 7 3 7 7 127K
QuAC (Choi et al., 2018) 3 3 7 7 100K
RACE (Lai et al., 2017) 7 7 7 3 97K
MCTest (Richardson et al., 2013) 7 7 7 3 7K
Qsnail 3 3 3 3 13K

options in the questionnaire. Thus, we can con-
clude the research intent from the questionnaire
content. However, manual annotation of this infor-
mation is labor-intensive and time-consuming. Re-
cent studies have utilized ChatGPT for various la-
beling tasks (Gilardi et al., 2023; Törnberg, 2023).
Consequently, we employ ChatGPT to generate
research intents based on specific question-option
pairs, limiting the output to no more than five sub-
targets for practicality. To ensure the reliability
of these generated research intents, we randomly
select 50 cases and engage three graduate stu-
dents to perform manual evaluations. Our eval-
uation criteria consist of three key aspects: rele-
vance, recall, and abstraction. Relevance ensures
that the model-generated research intents align
with the original question-options pairs while avoid-
ing unmentioned intents. Recall aims to encom-
pass as many questions from the original question-
naire as possible, and abstraction requires that the
research intent can condense multiple questions.
Relevance, recall, and abstraction are scored on
a scale of 1 to 5, where 1 represents extremely
poor, and 5 indicates extremely good. Human eval-
uation of the research intents scores 4.94 for rel-
evance, 4.32 for recall, and 4.36 for abstraction.
This demonstrates that the model-generated re-
search intents closely align with our expectations
in terms of relevance. However, they achieve ac-
ceptable levels of recall and abstraction. It is im-
portant to highlight that the recall and abstraction
metrics can be influenced by the number of ques-
tions within the questionnaire. With an abundance
of questions, even for humans, condensing all sur-
vey intents into a limited number of sentences be-
comes challenging. Conversely, when the ques-
tionnaire contains only a few questions, each ques-
tion aligns with a specific survey intent, potentially
affecting abstraction metrics adversely.

2.3. Data Analysis
Comparisons with Existing Datasets. Most of
the existing datasets used for question genera-
tion, as outlined in Table 1, primarily emphasize
the creation of fact-based questions. For exam-
ple, the questions within the SQuAD dataset are
constructed by crowdsourced individuals with the
primary aim of extracting factual information from

Table 2: Statistics on Qsnail dataset. Count: the
number of questionnaires; Len: average count
of words per questionnaire/question/choice; Num:
average number per questionnaire/question;

Questionnaire Title Question Choice
Count Len Len Num Len Num Len

13168 596.5 15.8 14.2 20.4 4.4 5.1
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Figure 2: Visualization of Qsnail data statistics.

source documents. Nevertheless, these datasets
are not well-suited for the specific task of creating
questionnaires. This unsuitability arises from two
fundamental factors. Firstly, questionnaires con-
sist of subjective inquiries, as opposed to the ob-
jective nature of the questions in these datasets.
Secondly, questions in questionnaires feature a
complex structure with intricate constraints. The
complexity of questionnaires becomes particularly
evident in the case of sequential questions, each
of which may be accompanied by numerous re-
sponse options. Furthermore, these intricate
constraints encompass various aspects, including
questions, options, and overall levels. Conse-
quently, Qsnail holds substantial promise for ad-
vancing research in the domain of automatic ques-
tion generation.

Question Analysis. An examination of the Qs-
nail dataset reveals the following statistics: on av-
erage, there are approximately 15 questions for
each questionnaire, as detailed in Table 2. To
delve further into this, Figure 2a illustrates the dis-
tribution of questionnaires based on the number of
questions they contain. The dataset offers a sub-
stantial number of questions within each question-
naire, making it well-suited for the purpose of se-
quential question generation.

Option Analysis. In regard to individual ques-
tions within the questionnaires, the average num-
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ber of options is more than four. Figure 2b pro-
vides a visual representation of the distribution of
questions categorized by the number of available
choices. Notably, the majority of questions offer
2 – 7 options. The dataset provide adequate data
to search for rational options generation.

Domain Diversity. The questionnaires in the
dataset are grouped into 11 distinct application do-
mains, encompassing areas like education, health,
and internet. Figure 2c provides an overview
of the distribution of instances across these do-
mains. Notably, each domain contains more than
100 samples, with education dominating the land-
scape, likely due to the prevalence of surveys
among highly literate college students. Further-
more, Figure 2d outlines the distribution of in-
stances across various research targets. The do-
mains and survey purposes in the dataset are di-
verse, allowing for a comprehensive test of the ef-
fectiveness of questionnaire generation task.

3. Experiments

This section is dedicated to evaluating the perfor-
mance of various models in questionnaire genera-
tion and answering four research questions.

3.1. Research Questions
In the context of the questionnaire generation task,
we formulate four distinct research questions:

RQ1: How consistent are automatic and human
evaluation metrics?

RQ2: How do traditional retrieval models and
generative models perform on the questionnaire
generation task?

RQ3: How do large language models (LLMs)
perform on the questionnaire generation task?

RQ4: Can the outline-first prompt and fine-
tuning approaches improve the performance?

3.2. Baseline Models
Here, we summarize all the models implemented
for experiments:

Retrieval and Generative Models. We em-
ploy the well-known BM25 model (Robertson et al.,
2009), a sparse retrieval function, to retrieve per-
tinent questionnaires from the training dataset
based on the research topic and intents. The top-1
result is selected as the final questionnaire.

Chinese-GPT2 (Radford et al., 2019), a decoder-
only generative model, is utilized. We finetune
the model and employ a comparative decoding
approach to generate sequential question-option
pairs, with the research topic and intents as input.
The experiments are conducted using PyTorch on
8 NVIDIA V100 GPUs.

Large Language Models. We utilize Chat-
GPT (OpenAI, 2023), a commercial LLM trained by
reinforcement learning from human feedback, pro-
vided by the OpenAI API3. Additionally, we lever-
age Vicuna (Chiang et al., 2023), an open-source
LLM obtained by finetuning LLaMA on ShareGPT,
with Vicuna-7B as the backbone model. Another
baseline model, ChatGLM (Zeng et al., 2023), an
open-source Chinese-English bilingual model, is
employed with ChatGLM2-6B. We finetune lan-
guage models (Vicuna-7B and ChatGLM-6B) with
ZeRO-2 to distribute the model across 2 NVIDIA
A100 (80G) GPUs. We set the learning rate, batch
size, and maximum context length to 2×10−5, 128,
and 2048, respectively. All models are trained for
3 epochs.

3.3. Evaluation Metrics

In light of the constraints in questionnaire gener-
ation, we have developed comprehensive auto-
matic and human evaluation metrics at the ques-
tion, option, and overall levels. Given that model-
generated contexts are often lengthy and not eas-
ily evaluated at a fine-grained level, manual extrac-
tion proves to be costly. In contrast, ChatGPT of-
fers an excellent and cost-effective solution for in-
formation extraction (Wei et al., 2023; Jethani et al.,
2023). With the assistance of ChatGPT, we suc-
cessfully split questions and options from the ques-
tionnaire. The final manual check confirms that
the extracted content is consistent with the original
content, satisfying the requirements.

3.3.1. Automatic Evaluations

Regarding the quality of questionnaire generation,
we measured various representative indicators at
the question level, option level, and overall level.

Question-level. The quality of questions
hinges on their relevance and specificity. To
evaluate relevance, we measure the similarity be-
tween questions and the research topic and intent,
both at the word and semantic levels. For word-
level comparison, we use Rouge-L (Lin, 2004),
and for semantic-level comparison, we compute
the cosine similarity. We utilize Sentence-
Transformers (Reimers and Gurevych, 2019) for
sentence-level embeddings, specifically the model
symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli4,
trained for zero-shot and few-shot text classifica-
tion. Given research topic T , research intents
I, and sequential questions qi, the similarity is
calculated as follows:

3https://openai.com/api/
4https://huggingface.co/symanto/sn-xlm-roberta-

base-snli-mnli-anli-xnli
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Cohen-sem =

m∑
i=1

sim (T ◦ I, qi) .

In terms of specificity, we gauge it by examining
word-level and semantic-level repetition between
questions. The degree of repetition reflects the de-
gree of specificity, and we calculate word-level rep-
etition using the proportion of duplicate n-gram in
generated sequential questions:

Rep-n = (1− |unique n-gram (q1 ◦ q2 · · · ◦ qm)|
|total n-gram (q1 ◦ q2 · · · ◦ qm)|

),

where q1 ◦ q2 . . . ◦ qm represents the sequence
of all questions, m is the total number of ques-
tions in the questionnaire. We group the input text
into words based on the number of tokens, with
each word consisting of n tokens (n ∈ {2, 3, 4}).
unique n-gram refers to words obtained after re-
moving duplicates from all n-gram . Rep-n ranges
from 0 (no repeating n-gram ) to 1.0 (maximum
repetition). In addition, higher values of the Diver-
sity (Su et al., 2022; Li et al., 2022) indicate lower
repetition. At the semantic level, we introduce Rep-
sem to measure semantic repetition in questions.
Similar to BertScore (Zhang et al., 2019), for each
question, we select the most similar question and
determine if it is a duplicate:

Rep-sem =

∑m
i=2 I [maxj≤i−1 Sim (qi, qj) > α]

|m|
,

I[·] is an indicator function that yields a value of
1 only when the similarity between two questions
exceeds a certain threshold (α = 0.95), and then
the two questions are deemed to be duplicated.

Option-level The quality of options necessitates
rationality, including relevance to the question, mu-
tual exclusivity, completeness, and proper order.
However, these aspects are challenging to assess
through automated metrics. Similar to the rele-
vance calculation for questions and research in-
tents, we evaluate the relevance between options
using Cohen-sem equation previously shown. The
overlap between options and questions is almost
nonexistent, so we do not consider word-level met-
rics.

Overall-level The sequence of questions
should be well-ordered and align with the re-
search intents. While the former cannot be
measured through automated evaluation metrics,
the latter is evaluated using BLEU-n (Papineni
et al., 2002) to compute n-gram matching scores
between the generated text and human-written
text. The greater the similarity between the
generated questionnaire and the human-written
text, the closer it aligns with the requirements.

3.3.2. Human Evaluations

In this study, we randomly sample 50 cases from
the test set and engage three graduate annota-
tors. Each annotator is presented with responses
from various sources, including BM25, GPT-2,
ChatGPT, ChatGLM-6B, Vicuna-7B, and a human
source. These responses are intentionally shuf-
fled to ensure anonymity. The annotators are
asked to rate the questionnaires from the following
six aspects:

Relevance. This dimension assesses the align-
ment of the questions with the research goals.
Questions that strongly align with the research
goals are deemed valuable, while those unrelated
to the research goals should be excluded. The rel-
evance indicator for a questionnaire is higher when
a larger proportion of questions is pertinent to the
research topic and intent. We map the ratio to the
interval 1 to 5.

Specificity (Lietz, 2010; Martin, 2006). This as-
pect evaluates the extent to which questions in the
questionnaire are specific. The primary function of
a questionnaire is to transform broad research top-
ics and intentions into precise, unambiguous ques-
tions. High specificity is achieved when a signifi-
cant portion of the questions is detailed and spe-
cific. We map the ratio to the interval 1 to 5.

Rationality. This dimension examines the per-
centage of questions with logical and reasonable
options. The options should align with the ques-
tions and adhere to constraints like mutual exclu-
sive, complete, and logical. A higher proportion of
questions with rational options results in a higher
rationality indicator for the questionnaire. We map
the ratio to the interval 1 to 5.

Order (Taherdoost, 2022). This dimension eval-
uates the logical flow and coherence of the ques-
tion order in the questionnaire. Various guidelines
are considered, such as transitioning from objec-
tive to subjective, from general to specific ques-
tions, or grouping similar questions together. A
score of 1 indicates a very disorganized and dis-
tracting order, while 5 signifies a well-organized
and logical sequence of questions.

Background. This dimension emphasizes the
inclusion of background research questions, such
as age and gender, which are crucial for maintain-
ing the credibility of statistical data. Background
questions serve as filters to exclude individuals
who do not meet the study’s requirements and can
be used in data analysis. The adequacy of back-
ground questions contributes to a higher indicator.
A score of 1 is assigned if there are almost no back-
ground questions, and 5 indicates the presence of
comprehensive background questions.

Acceptance Rate. Finally, we introduce an
overarching metric to represent the overall qual-
ity of the questionnaire. This metric assesses
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Table 3: Automatic evaluation results of models with different inputs on the Qsnail dataset. ↑ means
higher is better and ↓ means lower is better. ‘T’ denotes the research topic, ‘I’ denotes the research
intents, ‘O’ denotes the additional generated outline, and ‘Finetune’ denotes models that are fine-tuning
on datasets. Bold indicates the best results for the corresponding metric in all models except humans.

Model Method Question Option Overall
Rouge-L ↑ Cohen-sem ↑ Rep-2 / 3 / 4 ↓ Rep-sem ↓ Diversity ↑ Cohen-sem ↑ BLEU-1 / 2 / 4 ↑

Human - 8.54 34.54 26.69 / 12.92 / 7.28 8.62 59.19 25.75 100.0 / 100.0 / 100.0
BM25 T+I 5.33 20.81 32.58 / 19.25 / 13.78 7.58 46.93 20.89 31.19 / 19.89 / 10.24
GPT-2 Finetune 6.28 28.05 50.00 / 39.30 / 32.85 23.80 20.38 16.99 19.85 / 11.47 / 4.31

Vicuna-7B

T 8.74 39.71 74.41 / 68.76 / 64.20 38.99 2.86 20.86 22.08 / 12.39 / 4.57
T+I 9.07 38.51 63.82 / 55.79 / 49.85 26.13 8.02 19.70 28.39 / 18.06 / 8.32
T+I+O 9.39 38.30 63.87 / 55.40 / 49.12 20.81 8.19 33.82 29.26 / 18.59 / 8.33
Finetune 7.16 26.65 77.77 / 73.31 / 70.25 38.19 1.76 22.21 19.36 / 12.63 / 6.32

ChatGLM-6B

T 7.20 38.39 46.53 / 35.29 / 28.73 13.14 24.65 26.20 31.90 / 18.33 / 6.62
T+I 8.67 38.91 46.54 / 34.66 / 27.25 9.66 25.41 24.42 36.48 / 23.43 / 10.73
T+I+O 8.45 37.13 47.27 / 35.96 / 28.51 11.33 24.14 23.75 33.23 / 20.68 / 9.01
Finetune 7.29 32.34 45.53 / 33.15 / 26.09 10.37 26.91 18.85 34.61 / 22.64 / 11.09

ChatGPT
T 8.84 46.13 55.04 / 44.85 / 37.50 10.60 15.49 18.55 31.19 / 19.89 / 10.24
T+I 11.99 43.19 39.41 / 27.99 / 20.56 13.21 34.66 20.43 29.25 / 19.90 / 9.82
T+I+O 9.33 40.50 42.31 / 30.17 / 22.55 7.88 31.20 22.80 36.74 / 23.91 / 10.71

Table 4: Human evaluation results of language models on Qsnail dataset. ‘T’ denotes the research topic,
‘I’ denotes the research intents, ‘O’ denotes the additional generated outline, and ‘Finetune’ denotes
models that are fine-tuning on datasets. Bold indicates the best results for the corresponding metric in
all models except humans.

Model Method Relevance↑ Specifity↑ Rationality↑ Order↑ Background↑ Accept Rate↑

Human - 4.92 4.94 4.96 4.94 4.56 0.90
BM25 T+I 1.88 4.52 4.48 4.52 4.04 0.08
GPT-2 Finetune 1.62 1.68 1.54 1.52 1.84 0.00

Vicuna-7B
T 3.40 2.58 2.68 2.68 1.06 0.08
T+I 4.24 3.38 3.36 3.56 1.40 0.20
T+I+O 4.30 3.62 2.66 3.78 2.08 0.18
Finetune 1.98 2.04 2.00 1.98 2.28 0.02

ChatGLM-6B
T 3.48 3.32 2.88 3.08 2.52 0.10
T+I 4.32 3.78 3.32 3.62 2.88 0.14
T+I+O 4.28 3.76 3.28 3.68 3.34 0.20
Finetune 4.10 3.86 3.64 3.60 3.50 0.50

ChatGPT
T 3.88 3.58 3.34 3.40 2.08 0.18
T+I 4.14 3.46 3.42 3.48 2.36 0.20
T+I+O 4.66 4.12 3.80 3.82 4.18 0.52

whether users are willing to adopt the question-
naire based on the research topic and intentions.
A rating of 1 indicates a willingness to accept the
questionnaire, while 0 signifies an unwillingness to
accept it.

3.4. Experimental Results
We conduct experimental verification for the afore-
mentioned raised questions.

RQ1 - Consistency of automatic and human
evaluations: As depicted in Table 3, at ques-
tions level, Rouge-L and Cohen-sem within auto-
matic metrics align closely with ‘Relevance’ in hu-
man evaluations. They consistently measure the
degree of relevance of questions with respect to
the research topic and intents. Similarly, Rep-n,
Rep-sem, and diversity in automatic metrics, along
with ‘Specifity’ in human evaluations consistently
reflect whether the questions are specific to the
research topic and intents. However, when shift-
ing to the options level, Cohen-sem within auto-

matic metrics can only partially measure the sim-
ilarity between options to the question, necessi-
tating a supplementary evaluation of ‘rationality’
assessment in the manual evaluation considering
the intrinsic constraints, including mutually exclu-
sive, complete, and orderly. At the overall level,
the automatic evaluation metric BLEU-n coarsely
measures the consistency between the generated
questionnaire and the reference. To compre-
hensively evaluate the arrangement of sequential
questions, additional aspects such as ‘order’ and
‘background’ in manual evaluations should be con-
sidered. To sum up, although automatic indica-
tors may not fully encapsulate questionnaire qual-
ity, they still exhibit a strong correlation with human
evaluations, thus serving as a valuable reference.

RQ2 - Traditional models performance: Re-
trieval models have limitations when handling new
topics, while traditional generative models face
challenges in producing coherent and usable ques-
tionnaires, even after finetuning. As depicted in
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Table 3, BM25 excels in scoring highly on as-
pects related to form structure (e.g. Rep-n, Rep-
sem, and Diversity), owing to its retrieval of human-
crafted questionnaires characterized by high self-
consistency. However, it receives significantly
lower scores in terms of relevance to research
topics and intents, as indicated by Rouge-L and
Cohen-sem. Traditional generative model, like
GPT-2, even after finetuning, gets notably low
scores in terms of relevance, specificity, and diver-
sity in both automatic and manual evaluation met-
rics (see Table 3 and Table 4), with obvious defi-
ciencies in terms of readability and usability. The
small parameter size and insufficient pre-training
data make it difficult for GPT-2 to accomplish such
a complex questionnaire generation task.

RQ3 - Large language models performance:
LLMs excel in terms of relevance but still lag sig-
nificantly behind humans when it comes to diver-
sity, specificity, rationality, and order. Most LLMs,
including the standard ‘T+I’ version of Vicuna-7B,
ChatGLM-6B, and ChatGPT, exhibit competitive
performance with humans when it comes to rele-
vance, as indicated by metrics such as Rouge-L
and Cohen-sem in Table 3, and the Relevance
in Table 4. However, even the best LLMs reveal
substantial disparities when compared to humans
in other metrics, for example, question diversity
34.66 vs. 59.19 and rationality 3.80 vs. 4.96. Nev-
ertheless, it is worth noting that LLMs consistently
generate questionnaires with a structured format
that remains relevant to users’ needs, mainly at-
tributable to their pretraining on an extensive and
diverse corpus.

RQ4 - Explore further improvements: To
address the above issues, we introduce two ap-
proaches to enhance performance. The first in-
volves a chain-of-though prompt method known as
“outline-first”, mirroring the human writing process
by firstly crafting an outline and then specific con-
tent. The second is to finetune models on Qsnail.
The outline-first prompt significantly improves the
performance of ChatGPT (e.g. Rep-n, Rep-sem,
Diversity, Specificity, and Background) but not ev-
ident in ChatGLM-6B as well as Vicuna-7B, it’s
worth noting that outlines incorporate only the cor-
responding questions without associated options,
which significantly decrease on ‘Rationality’, par-
ticularly for Vicuna-7B. In addition, comparing ‘T’,
‘T+I+O’ and ’T+I’ versions of models, we can see
that the more information the input contains, the
better the performance is. (see Table 4). Finetun-
ing models on Qsnail has proved to be beneficial
for ChatGLM-6B on ‘Specificity’ and ‘Background’,
thanks to the infusion of an extensive domain-
specific knowledge. In contrast, Vicuna-7B, not
specifically trained for the Chinese corpus, exhibits
a heavily increase in repetitions after finetuning,

leading to a deterioration in the quality.

4. Related Work

Traditional Question Generation has been ap-
plied in various significant scenarios, including
question answering (Zhu et al., 2021; ?), machine
reading comprehension, and automated conversa-
tions. Traditional question generation was tackled
by rule-based methods (Hussein et al., 2014; Labu-
tov et al., 2015), e.g., filling handcrafted templates
under certain transformation rules. With the emer-
gence of data-driven learning approaches, neu-
ral networks (NN) have gradually taken the main-
stream. Du et al. (2017) pioneer neural network-
based approaches by adopting the Seq2seq ar-
chitecture. Many ideas are proposed since then
to make it more powerful. Furthermore, en-
hancing the Seq2seq model into more compli-
cated structures using adversarial training, and
reinforcement learning has also gained much at-
tention (Yao et al., 2018; Kumar et al., 2018).
In addition to unstructured question generation
types, there are also structured question genera-
tion, include knowledge-based (Song and Zhao,
2016; Liang et al., 2023; Guo et al., 2022; Liang
et al., 2023) and table-based (Chemmengath et al.,
2021). There are also some works performing
traditional question generation under certain con-
straints, e.g., controlling the topic (Ding et al.,
2023) and difficulty of questions (Hu et al., 2018;
Gao et al., 2018).

Sequential Question Generation is challeng-
ing and is regarded as a conversational QG task.
Existing sequential question generation models
mainly focused on modeling complex context de-
pendencies and frequently occurred coreference
between questions. Therefore, sequential ques-
tion generation is more challenging than stan-
dalone question generation. Gao et al. (2019)
achieve the best performance that generates se-
quential questions via coreference alignment and
conversation flow modeling. Chai and Wan (2020)
design an answer-aware attention mechanism and
generate questions in a semi-autoregressive way
to capture context dependencies.

Unlike sequential question generation in dia-
logues, sequential questions in questionnaires not
only contain coreference but also intrinsic con-
straints, including questions, options, and overall
levels. The interconnected constraints make this
task more challenging and raise curiosity about
how different models perform on this task.

5. Conclusion and Future Work

We introduce Qsnail, the first dataset designed
for questionnaire generation, a sequential ques-
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tion generation task, encompassing a wide array
of intricate constraints related to questions, op-
tions, and overall structure. This comprehensive
dataset comprises 13,000 questionnaires and ap-
proximately 184,000 question-option pairs. Exten-
sive evaluations involving models like ChatGPT
have consistently underscored the challenges in-
herent in generating questionnaires, highlighting
the need for substantial future investigation. With
the introduction of Qsnail, we aim to inspire further
inquiry, fostering a renewed focus on the creation
of professional questionnaires.

6. Ethical Considerations

In our work, we use existing LLMs to generate
questionnaires, so we have the same concerns as
other text generation. For example, there is a risk
of generating toxic or biased language. To assess
and improve the performance of our questionnaire
generation, this paper introduces a novel question-
naire dataset obtained through web crawling. This
dataset may contain individuals’ personal names,
but we have implemented a filtering mechanism
using a keywords filtering mechanism to exclude
data containing such private information. This ap-
proach ensures the preservation of privacy.
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