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Abstract
Recently, we have witnessed the breakthroughs of meta-learning for few-shot learning scenario. Data augmentation
is essential for meta-learning, particularly in situations where data is extremely scarce. However, existing text data
augmentation methods can not ensure the diversity and quality of the generated data, which leads to sub-optimal
performance. Inspired by the recent success of large language models (LLMs) which demonstrate improved
language comprehension abilities, we propose a Meta-learning framework with Progressive Data Augmentation
(PDAMeta) for few-shot text classification, which contains a two-stage data augmentation strategy. First, the
prompt-based data augmentation enriches the diversity of the training instances from a global perspective. Second,
the attention-based data augmentation further improves the data quality from a local perspective. Last, we propose a
dual-stream contrastive meta-learning strategy to learn discriminative text representations from both original and
augmented instances. Extensive experiments conducted on four public few-shot text classification datasets show that
PDAMeta significantly outperforms several state-of-the-art models and shows better robustness.
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1. INTRODUCTION

The effectiveness of natural language processing
(NLP) models heavily relies on the quality and
quantity of the training data. The challenge of train-
ing data insufficiency is especially prominent in few-
shot learning (FSL) scenarios, where the model
trained on the source domain data is expected to
generalize from only a few examples to the tar-
get domain. Existing FSL methods have shown
promising results by overcoming this challenge in
various tasks, which mainly focus on improving the
learning and generalization capability of the model
via meta-learning (Yin, 2020; Lee et al., 2022a) or
prompt-based methods (Lester et al., 2021; Han
et al., 2022; Wang et al., 2022). However, the per-
formance of all these methods is still intrinsically
limited by the data quality and quantity in both the
source and target domains.

To mitigate the challenge of training data insuf-
ficiency, various text data augmentation methods
are widely used and work well together with other
FSL methods in NLP (Wei and Zou, 2019; Ku-
mar et al., 2019; Sun et al., 2021). Traditional
text data augmentation methods are usually model-
agnostic and rely on direct operations on the train-
ing samples, such as synonym replacement, ran-
dom deletion, and random insertion (Feng et al.).
However, all these methods only make local or
word-level changes in the samples, and they can
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not generate sufficient and effective training data.
Given the exemplar sentence si = “Argentina won
the world cup, thanks to the great football player
Messi." in Fig. 1(a), random deletion masks the
useless stop-word “the" but such operation makes
no semantic changes, synonym replacement is
another commonly used data augmentation tech-
nique but it heavily relies on the size and quality
of hand-crafted synonym lexicons. In comparison,
we prefer to make local changes based on auto-
matic selection of the prominent words. Thus, an
attention-based data augmentation method is pro-
posed, which achieves better text representation
via carefully designed attention mechanisms.

More recent studies explore the possibilities of
language models, and tray to generate reliable
training samples for more effective data augmen-
tation, including back translation (Xie et al., 2020),
seq2seq generation (Yoo et al., 2020; Zhang et al.,
2020) and word vector interpolation in the latent
space (Jindal et al., 2020; Bayer et al., 2023). All
these methods make changes in the training data
from the global or sentence-level perspective, how-
ever they are still limited in the accuracy and di-
versity of the generated training data. Recently,
the advent of large language model (LLM) such as
the GPT family (Yoo et al., 2021; Dai et al., 2023)
bring new opportunities for generating text samples
based on carefully designed prompting and signif-
icantly alleviate the burden of human annotators.
In Fig.1 (b), back translation can generate simi-
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Figure 1: Comparison among different data augmentation strategies. (a) illustrates the word-level data
augmentation from local perspective. (b) illustrates the sentence-level data augmentation from global
perspective. (c) illustrates our progressive data augmentation.

lar samples but still lack of syntax and vocabulary
changes, while seq2seq generation easily results
in syntax redundancy or errors. In comparison,
prompt-based data augmentation has been vali-
dated effectiveness in alleviating the issue of data
scarcity, which can capture the semantics from
global perspective and generate sufficient similar
samples with well-designed prompting.

Intuitively, neither word-level nor sentence-level
data augmentation method alone can overcome
such data challenges in the few-shot learning sce-
nario well. Different from previous work, we pro-
pose a novel progressive data augmentation strat-
egy, which contains a two-stage process. First,
the prompt-based data augmentation method gen-
erates sufficient training samples with prompting
from a global perspective. Second, an attention-
based data augmentation method further changes
the training samples from a local perspective. We
have demonstrated our strategy in Fig. 1(c), where
the quantity and quality of training samples (i.e.,
positive and negative sample) can be enhanced
step by step. The generated instances will finally
be used for learning discriminative text representa-
tion.

In this paper, we propose a novel Meta-learning
framework with Progressive Data Augmentation
(PDAMeta) for few-shot text classification, which
overcomes the challenge of data scarcity by a pro-
gressive data augmentation method, and learns
better discriminative representations via a dual-
stream contrastive meta-learning method. In sum-
mary, we make the contributions in three-folds:

• We propose a progressive data augmentation
strategy for meta-learning, which first uses
a prompt-based data augmentation method
to generate sufficient training samples from
a global perspective, and then uses a well-
designed attention-based data augmentation

method to improve the data quality from a local
perspective.

• We propose a novel dual-stream contrastive
meta-learning method, which can learn bet-
ter discriminative text representations from
both the original samples and the augmented
samples by supervised and unsupervised con-
trastive learning techniques.

• Extensive experiments conducted on four pub-
lic few-shot text classification datasets vali-
date that our PDAMeta meta-learning frame-
work outperforms comparative methods signif-
icantly and achieves better robustness. All the
resources will be publicly available.

2. METHODOLOGY

2.1. Problem Formulation

The meta-learning paradigm of few-shot text classi-
fication aims to learn a prior meta-knowledge over
hypothesis from a sample of meta-training tasks for
fast adaptation on meta-testing tasks. Formally, let
Ctrain and Ctest denote the disjoint set of training
classes and test classes, i.e., they have no over-
lapping classes. In the meta-training process, we
sample N classes (i.e., N -way) from Ctrain. Then,
we randomly sample K examples (i.e., K-shot) for
each class as the support set S = {si}N×K

i=1 and L
examples as the query set Q = {qj}N×L

j=1 , where
S ∩ Q = ∅. All the examples from the remaining
classes are called source pool (Bao et al., 2020)
and denoted as O. Notation si = (xi, yi) denotes
the ith instance in S, qj = (xj , yj) denotes the jth
instance in Q, x and y represent text and label, re-
spectively. In the meta-training procedure, we use
S to learn a base-learner, then we use Q to eval-
uate and update the base-learner by optimizing a
meta-learner F (Φ), which is parameterized by a
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Figure 2: The Framework of PDAMeta. (a) The overall meta-learning skeleton integrated with progressive
data augmentation and dual-stream contrastive meta-learning. pτ

qo represents the predictions of query
set Qτ from vanilla base-learner with optimal parameters θτ∗o , and pτ

q+ represents those from augmented
base-learner with optimal parameters θτ∗+ . (b) The details for the attention-based data augmentation.

global parameter set Φ. The procedure above is
also called a training episode or task τ , which will
be repeated multiple times (Han et al., 2021). The
optimal global meta-parameters Φ∗ can be finally
used for fast adaption to the test classes Ctest (Lee
et al., 2022b).

2.2. Prompt-based Data Augmentation

In this work, we first use ChatGPT (Ouyang et al.,
2022), a popular LLM tool to conduct data augmen-
tation1. Compared to previous data augmentation
methods, ChatGPT is more suitable for data aug-
mentation for three reasons (Dai et al., 2023):

• ChatGPT is pre-trained on large-scale cor-
pora, so it has a broader semantic expression
space for generating more diverse data.

• The supervised fine-tuning stage of ChatGPT
introduces numerous manual annotations, the
language generated by ChatGPT is more in
line with human expression habits.

1Our method can be easily adaptive to other LLMs.

• Reinforcement learning stage of ChatGPT can
compare the advantages and disadvantages
of different expressions and ensure it to gen-
erate more informative and impartial data.

Our prompt-based data augmentation is used in
two ways. On one hand, we augment the support
set and query set for discriminative text representa-
tion with supervised learning. On the other hand, to
prevent training overfitting, we augment unlabeled
data in the source pool for learning more robust
text representations with unsupervised learning.

Specifically, we use ChatGPT to augment both
the labeled and unlabeled data, and we design
the prompts in a single-turn dialogue (Dai et al.,
2023). For augmenting the labeled data, the ex-
emplar prompt template is “Please rephrase the
following text and keep it in its original category
{category}. The text is {text}”. The slots {text}
and {category} can be instantiated with specific
text and corresponding category. For augmenting
the unlabeled data, the prompt can be “Please
rephrase the following text. The text is {text}”.
More exemplar prompts have been displayed in
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Fig. 1(c). In this work, we combine the original
data and the ChatGPT augmented data into the
enhanced support and query sets, which are then
fed into our text representation learning module.

In practical scenario, direct application of Chat-
GPT or other LLMs for data augmentation is still
problematic, because it highly depends on the se-
lection of specific LLMs and the design of prompts.
In addition, the generated instances may be very
similar. For better generalization, we will consider
making automatic changes of local words with the
help of attention mechanisms.

2.3. Attention-based Data Augmentation

Compared with previous data augmentation meth-
ods (Sun et al., 2021; Ni et al., 2021), our attention-
based data augmentation contributes in two ways:
(1) The attention-based data augmentation is the
successor to the first-step prompt-based augmen-
tation, and focuses on selection of prominent words
for masking. (2) Our data augmentation opera-
tion is applied on both support set and query set,
meanwhile reduces their distribution difference via
interactive attention mechanisms.

Text Encoder. In the support stage, the input
xi = [wi1, ...wit..., wi|xi|] is a text and |xi| is the
text length. We transform each xi into a sequence
of hidden states {hit} via a pre-trained language
model BERT (Devlin et al., 2019). Afterwards, we
use attention mechanism to select most important
words to obtain informative text representation. We
denote the text encoder in Fig. 2 (b) as Encoders.
The attention weight αs

it ∈ (0, 1) of the word wit in
any text xi can be formulated as below:

αs
it =

exp(uT
itUw)∑|xi|

k=1 exp(u
T
ikUw)

uit = tanh(Wwhit + bw)

(1)

where Ww, bw and Uw are learnable model pa-
rameters and exp(·) is an exponential function. The
final text representation ri is the weighted summa-
tion of all the hidden states {hit} can be formulated
as: ri =

∑
t∈[1,|xi|] α

s
ithit.

Considering the symmetrical characteristics
of the augmentation during support and query
phases, we mainly elaborate the operations for
support phase here. In the query stage, we re-
place the subscript i with j for the corresponding
calculations in support stage. We obtain the atten-
tion weight αq

jt ∈ (0, 1) for each word in the text xj .
Then, we can obtain the sentence representation
rj of the input xj from text encoder Encoderq.

Attention From Query to Support. As shown
in Fig. 1(b), random deletion is problematic for

data augmentation. Intuitively, the prominent words
should be paid more attention because of higher
attention values, while the non-prominent words
usually have lower attention values (Moon et al.,
2021). The attention weight αs

it in Formula 1 obvi-
ously provides prior guidance for word selection.

In addition, we aim to mitigate the distribution dif-
ference between the support and query instances,
which contributes to meta-knowledge transferring.
Specifically, we use the query representation r̄q
to guide the selection of prominent words in the
support set. The attention weight αqs

i can be for-
mulated as below:

αqs
it =

exp(ūT
itr̄q)∑|xi|

k=1 exp(ū
T
ikr̄q)

ūit = tanh(W̄whit + b̄w)

r̄q = AvgPooling({rj})

(2)

where W̄w and b̄w are learnable model parame-
ters. r̄q is the averaged representation of all the
samples in the query set Q.

Finally, we combine the influence of both atten-
tion weight αs

it and αqs
it and obtain the final attention

weight ᾱs
it =

1
2 (α

s
it+αqs

it ) for guiding word masking.
Specifically, we aim to generate positive instance
x+
i and negative instance x−

i with the guidance
of attention weight ᾱs

it, and build triplets (xi, x+
i ,

x−
i ). Negative instance x−

i is generated by mask-
ing the words with the highest attention weights.
Positive instance x+

i is generated by masking the
words with top-k lowest attention weight. However,
directly sampling words from a discrete distribution
is a non-differentiable operation and makes the
standard back-propagation invalid. Thus, we use
Gumbel-Softmax (Gu et al., 2018; Paulus et al.,
2020) trick to approximate the discrete operation.
The probability distribution for the wit being se-
lected in a single Gumbel-Softmax sampling step
is:

mit =
exp(log(ᾱs

it) + git)/κg∑|xi|
j=1 exp(log(ᾱ

s
ij) + gij)/κg

(3)

where gumbel noise git = −log(−log(uit)) and
uit ∼ Uniform(0, 1), κg is a temperature hyper-
parameter. In the backward pass we simply use
the continuous value, thus the error signal is able
to back-propagate. In the forward propagation, we
discretize the continuous probability vector sam-
pled from the Gumbel-Softmax distribution into a
one-hot vector zi, where

zit =

{
1 mit = argmaxjmij ,
0 otherwise.

(4)

If zit = 1, the word wit will be masked by a special
token [MASK]. We repeat the operation until p per-
cent of words in one instance are masked, which
produces the negative instance x−

i . To generate
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positive instance x+
i , we mask the words with low-

est attention values via a revered attention weight
(1− ᾱs

it)/
∑|xi|

t=1(1− ᾱs
it).

Attention From Support to Query. Symmetri-
cally, we use the representation r̄s of the support
set to select prominent words in the query set. The
attention weight αsq

j for each word wj can be ob-
tained. r̄s is the averaged representation of all the
samples in the support set. We combine the in-
fluence of both attention weights αq

jt and αsq
jt , and

obtain the attention weight ᾱq
jt =

1
2 (α

q
jt + αsq

jt ) for
guiding word masking.

Contrastive Text Representation. In order to
learn discriminative text representations between
similar classes, we implement two types of con-
trastive constraints. Specifically, there are Ns

b =
N ×K for original support set and Nq

b = N ×L for
original query set. ri is the representation vector of
instance xi, r+i and r−i are representation vectors
of the samples x+

i and x−
i from the attention-based

augmentation.
The first contrastive learning is to ensure the

effectiveness of the masking strategy, by forcing
the masked positive sample more close to original
sample then masked negative sample. By combing
all the triplets of {(ri, r+i , r

−
i )} from the progressive

data augmentation into one task batch with Nb =
2N × (K+L) samples, we can obtain the following
margin-based ranking loss:

Lb =
1

Nb

Nb∑
i=1

max(0,∆+d(ri, r
+
i )−d(ri, r

−
i )) (5)

where ∆ is a margin value, d(ri, rj) = ∥ri − rj∥2
denotes the distance between the representations.

The second contrastive learning is to build a
more comprehensive constraint across different
samples in each batch for better discriminative text
representation learning. Different from the sim-
ple dropout augmentation in SIMCSE (Gao et al.,
2021), we use the progressive data augmentation
to form the positive counterpart. We group the
pairs of (ri, r+i ) from the progressive data augmen-
tation for both support and query with that of the Nu

unlabeled data to form a batch with Nbu = Nb+Nu

samples. The representation ri for unlabeled data
is encoded by BERT, and the positive counterpart
r+i is ChatGPT-augmented ri. Finally, a normal-
ized temperature-scaled loss is used as below:

Lu =
−1

Nbu

Nbu∑
i=1

log
exp(

δ(ri,r
+
i )

κc
)∑Nbu

j=1 (exp(
δ(ri,rj)

κc
) + exp(

δ(ri,r
+
j )

κc
))

(6)
where notation κc is a temperature hyper-
parameter, δ(ri, rj) is the cosine similarity score
between the representation ri and rj .

Finally, we combine all the contrastive objectives
for samples as the merged local constraints for
learning a better representation:

Lrc = Lb + Lu (7)

2.4. Dual-stream Contrastive
Meta-learning

Meta-learning aims to learn prior meta-knowledge
across tasks to achieve fast adaptation to the spe-
cific task. We propose an innovative dual-stream
contrastive learning as a global constraint, which
force the meta-learner to capture better latent meta-
knowledge. The vanilla meta-learner updates the
original base-learner (trained on original support
set), while the augmented meta-learner updates
another base-learner (trained on augmented sup-
port set) based on the augmented query set in
the outer-loop optimization. Specifically, we con-
duct the contrastive procedure between the outputs
from original and augmented meta-learner for the
query set respectively.

As shown in Fig. 2, we define Sτ and Qτ are orig-
inal support and query samples of task τ , while the
samples for Sτ

+ and Qτ
+ are the positive instances

augmented by our proposed progressive data aug-
mentation. In our PDAMeta, we train two different
meta-functions FΦo and FΦ+, where FΦo(S

τ ) rep-
resents that the inner-loop update is based on the
original support set Sτ and FΦ+(S

τ
+) represents

the one based on the progressively augmented
support set Sτ

+. Then, we use Qτ and Qτ
+ to evalu-

ate the corresponding optimal task-specific param-
eters θτ∗o and θτ∗+ , respectively.

Our objective is to train a classifier capable of ac-
quiring meta-knowledge from the support set. This
enables the classifier to rapidly assimilate knowl-
edge from a small number of annotations when
tasked with classifying previously unseen classes.
Inspired by previous optimization-based methods,
we also adopt the ridge regression to fit the labeled
support set (Bertinetto et al., 2018; Bao et al., 2020;
Han et al., 2021). It admits a closed-form solution
that enables end-to-end differentiation through the
model with proper regularization. During query
training phase, suppose yτ

q is the ground-truth la-
bels of Qτ . Finally, we can utilize the cross-entropy
as loss function for the outer-loop optimization ob-
jective of N -way classification. Let the prediction
vectors for Qτ from θτ∗o denoted as pτ

qo, and that
from θτ∗+ denoted as pτ

q+. The cross-entropy loss
objective calculated from pτ

qo can be written as:

Lceo = − 1

Nq
b

Nq
b∑

i=1

N∑
j=1

yτij log p
τ
ijo (8)

where yτij is the jth label of yτi . The subscript j in
pτijo represents the probability that the outputs pτqi
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DataSet train/val/test classes examples vocab size

HuffPost 20/5/16 36,900 8218
Amazon 10/5/9 24,000 17062
Reuters 15/5/11 620 2234
20News 8/5/7 18,820 32137

Table 1: Statistics of the four benchmark datasets.

been predicted to be the jth label. The definition
of the classification loss objective Lce+ calculated
from pτ

q+ resembles that of Lceo by replacing the
tail subscript o into +. The combined cross-entropy
loss objective is Lce = Lceo + Lce+.

Then we implement the meta-aspect contrastive
loss objective and force the pτ

q+ more closely to
yτ
q than pτ

qo:

Lmc =
1

Nq
b

N
q
b∑

i=1

max(0,∆+ d(yτ
q ,p

τ
q+)− d(yτ

q ,p
τ
qo))

(9)
Finally, we combine all the loss objective from

different parts into the final objective function:

Lall = Lce + βLrc + γLmc (10)

where β ∈ (0, 1) and γ ∈ (0, 1) are hyper-
parameters for the weights of loss Lrc and Lmc

respectively. Since the dual-stream contrastive
meta-learning applies additional constraint during
learning the meta-knowledge across the support
and query training phases, a better robustness can
be achieved from the progressive augmentations.

3. EXPERIMENTS AND RESULTS

3.1. Datasets

To evaluate our PDAMeta for few-shot text clas-
sification, we conduct experiments on four public
datasets, including HuffPost, Amazon, Reuters and
20News, which are widely used in FSL tasks (Bao
et al., 2020; Han et al., 2021; Hou et al., 2022).
The statistics of the datasets are given in Tab. 1.

3.2. Experimental Settings

We evaluate our models based on typical 5-way 5-
shot and 5-way 10-shot text classification settings
with L = K. We perform 100 episodes in each
meta-training epoch with the early stopping at a
maximum tolerance of 20 epochs without perfor-
mance growth. We evaluate the performance on
1,000 episodes for meta-test. We run each exper-
imental setting for 5 times over different random
seeds and report the averaged performance. We
use commonly used pre-trained language model
bert-base-uncased as the basic text encoder for a
fair comparison with the previous state-of-the-art
method (Hou et al., 2022). However, our method is

Figure 3: Accuracy (%) performance comparisons
of models with different augmentation methods for
the first-step of the progressive data augmentation.

extensible and bert-base-uncased can be easily re-
placed with stronger pre-trained language models.
All hyper-parameters are selected using greedy
search on the validation set. The temperature fac-
tor κc for contrastive learning is set 0.1, and the
temperature factor κg for Gumbel-Softmax is ini-
tialized to 10 and decreases during training using
loss annealing strategy. The mask percent p is set
to 15. The loss weights β and γ are all set to 0.2.
Margin value ∆ is set to 1. Unlabeled data number
Nu is 2 times that of the labeled set. Parameters
are optimized using Adam at the learning rate of
1e-5. Our programs are implemented by Pytorch
and run on a server configured with a Tesla A100
GPU. We use the OpenAI’s GPT-3.5-Turbo API to
implement the ChatGPT experiments.

3.3. Performance on Few-Shot Learning

We compare our PDAMeta with several few-shot
text classification models: 1) MAML is a typi-
cal optimization-based method which learns eas-
ily adaptable model parameters through gradi-
ent descent (Finn et al., 2017); 2) PN is a typ-
ical metric-based method striving to learn effec-
tive distance measurements (Snell et al., 2017);
3) R2D2 explores the feasibility of incorporating
fast solvers with closed-form solutions as the base
learning component for meta-learning (Bertinetto
et al., 2018); 4) HATT extends the prototypical
networks by incorporating a hybrid attention mech-
anism (Gao et al., 2019); 5) Induction Networks
introduces dynamic routing algorithm to learn class-
aspect representation (Geng et al., 2019); 6) Rela-
tion Networks simultaneously learns an embed-
ding and a deep non-linear distance metric (Sung
et al., 2018); 7) DS-FSL aims to extract more trans-
ferable features by mapping distribution signatures
to attention scores (Bao et al., 2020); 8) MLADA in-
troduces an adversarial domain adaptation network
in meta-training episodes to extract domain invari-
ant features and improve the adaptability of meta-
learner in new tasks (Han et al., 2021); 9) Con-
trastNet tries to learn discriminative text represen-
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Model HuffPost Amazon Reuters 20News Average

shot-5 shot-10 shot-5 shot-10 shot-5 shot-10 shot-5 shot-10 shot-5 shot-10

MAML 49.3 50.8 47.1 49.5 62.9 64.1 43.7 46.0 50.8 52.6
PN 41.3 42.9 52.1 54.4 66.9 68.7 45.3 46.9 51.4 53.2

R2D2 41.4 43.5 53.1 54.9 65.6 66.8 78.6 79.7 59.7 61.2
HATT 56.3 58.5 66.0 67.4 56.2 58.4 55.1 56.9 58.4 60.3

Induction Networks 49.1 50.4 41.3 42.1 67.9 69.2 33.3 34.7 47.9 49.1
Relation Networks 53.8 55.2 64.5 66.1 63.2 65.0 45.7 46.8 56.8 58.3

DS-FSL 63.5 64.8 81.1 82.9 96.0 97.2 68.3 69.8 77.2 78.7
MLADA 64.9 68.2 86.0 86.1 96.7 97.7 77.8 83.7 81.4 84.0

ContrastNet 65.3 70.7 85.2 85.7 95.3 96.6 81.6 83.9 81.9 84.2
ChatGPT 71.5 72.5 81.5 83.4 94.3 97.1 77.3 81.1 81.2 83.5
P-Tuning 65.8 68.4 79.1 82.6 96.7 97.8 71.5 76.2 78.3 81.4

MetaPrompting 76.3 78.3 85.5 87.3 97.2 97.7 76.6 78.2 83.9 85.4

PDAMeta 70.3 72.8 87.2 89.4 98.5 98.9 83.1 84.5 84.8 86.4

Table 2: Comparison among different few-shot text classification models. We run all experiments for 5
times and achieve the t-test result with t ≤ 0.005.

tation by contrast the mean embeddings across
different tasks (Chen et al., 2022); 10) ChatGPT
is directly used for few-shot classification, with the
prompt designed using in context learning tem-
plate; 11) P-Tuning is a prompt-based method
that uses masked language model to convert tar-
get tasks into cloze problems (Liu et al., 2021);
12) MetaPrompting employs optimization based
meta-learning algorithm to find adaptive initializa-
tion for soft-prompt methods with pre-trained lan-
guage models (Hou et al., 2022).

From Tab. 2, we can find that the averaged ac-
curacy of our PDAMeta outperforms all baselines.
Compared to methods such as R2D2, DS-FSL
and MLADA with relatively weak text encoder, the
BERT encoder in PDAMeta can learn better se-
mantic representation. Compared with P-Tuning
and ChatGPT using prompt-based methods for
direct text classification, the carefully designed
meta-learning framework and task-specific fine-
tuning of PDAMeta improves the performance. Our
method also outperforms ContrastNet owing to the
novel progressive data augmentation overcomes
the data challenge from both local and global per-
spectives with the help of LLM, as well as the novel
dual-stream contrastive strategy. The multi-aspect
contrastive constraints enhanced by prompt-based
augmentation also help learning a better represen-
tation and meta-knowledge, and make our method
outperforms MetaPrompting.

3.4. First-step Augmentation
Comparisons

To further demonstrate the effectiveness of the first-
step prompt-based augmentation, we compared
the performances for models which replace the
first-step prompt-based augmentation into other
augmentation methods. In Fig. 3 we compared
four typical data augmentation methods with Chat-
GPT: 1) EDA is easy data augmentation which
adopts random deletion (Wei and Zou, 2019);

2) PERTURB applies both additive and multiplica-
tive perturbation in feature space for data augmen-
tation (Kumar et al., 2019); 3) Use Back-translation
method; 4) EXTRA trains an auto-encoder to in-
crease the variability for instances, resulting in a
more robust model (DeVries and Taylor, 2017); The
averaged performance across four datasets show
that the prompt-based augmentation outperforms
all other augmentation methods for the first-step of
the progressive augmentation methods.

3.5. Robustness Analysis

To validate the robustness of the models, we in-
tentionally modify the data distribution of support
and query set in meta-learning. We first cluster
each class into 2 subcategories for the original N
classes using the K-means method. It is supposed
that although these two subcategories belong to
the same major class, there are still distinct dif-
ferences in semantic distribution between them.
While preparing an episode for robustness valida-
tion, the K instances of support and L instances
of query are sampled from different subcategories
for each major class.

The performances of datasets with the sampling
strategy with intentionally designed shift for differ-
ent models are show in Shift columns at Tab. 3.
Comparing with the Original columns where we
use randomly sampling from all N classes for sup-
port and query, we can see that all models de-
crease for Shift columns. It is because that the
distribution for support and query are more dif-
ferent, it is more hard for model to learn transfer
knowledge and cause the decrease. However, our
PDAMeta model has the least decrease percent-
age, and outperforms state-of-the-art models by a
large margin. Note that we run the experiments
5 times with different clustering and sampling and
report the averaged performances, and achieve
the t-test result with t ≤ 0.005.
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Model Original Shift Decrease

shot-5 shot-10 shot-5 shot-10 shot-5 shot-10

MLADA 81.4 84.0 78.0 80.1 ↓ 4.2 ↓ 4.6
ContrastNet 81.9 84.2 78.9 81.2 ↓ 3.7 ↓ 3.6

MetaPrompting 83.9 85.4 80.7 82.7 ↓ 3.8 ↓ 3.2
PDAMeta 84.8 86.4 83.5 84.9 ↓ 1.5 ↓ 1.7

Table 3: Robustness study among different models. The “Decrease” columns represent the mean
decrease percentage (%) of averaged accuracy for models under the distribution shift settings compared
to that under the original settings.

Model HuffPost Amazon Reuters 20News Average

shot-5 shot-10 shot-5 shot-10 shot-5 shot-10 shot-5 shot-10 shot-5 shot-10

w/o prompt-based augmentation 65.6 68.6 86.4 86.6 96.9 98.0 77.9 83.9 81.7 84.3
w/o distribution alignment attention 69.3 71.6 86.9 87.6 97.5 98.0 81.9 83.9 83.9 85.3

w/o Lrc&Lmc 63.6 66.6 84.2 84.1 94.5 95.6 75.4 81.2 79.5 81.9
w/o Lu 68.8 71.4 85.8 87.5 96.2 97.4 80.3 83.2 82.8 84.9
w/o Lrc 66.4 68.4 84.9 86.2 95.6 95.9 79.8 81.7 81.7 83.1
w/o Lmc 67.3 69.6 86.4 87.6 97.5 98.0 80.9 83.9 83.0 84.8

PDAMeta 70.3 72.8 87.2 89.4 98.5 98.9 83.1 84.5 84.8 86.4

Table 4: Ablation Study for the PDAMeta model. Here w/o means without the component.

3.6. Ablation Study

We implement several variants for ablation study
for PDAMeta. The results are shown in Tab. 4.
The first line labeled as “w/o prompt-based aug-
mentation ” means that we use a simple dropout
instead of the ChatGPT for the first-step augmen-
tation. The second line labeled as “w/o distribu-
tion alignment attention” means that we remove
the attention αqs

i and αsq
j . For the following lines,

we validate the effect for different contrastive con-
straints by removing them in turn. Finally, we add
all the aforementioned components for the entire
PDAMeta model. It can be found that the progres-
sive augmentation and dual-stream contrast plays
a positive role for the performance respectively.
The key component distribution alignment also im-
proves the performance during the augmentation.

3.7. Case Study

To better understand the usefulness of our pro-
gressive data augmentation, we show two cases in
Fig. 4. Case 1 shows a positive effect for the distri-
bution alignment which use the support set distribu-
tion to guide the prominence detection for a query
instance. It can be seen that without using dis-
tribution alignment, words “singing” and “dancing”
have the highest attention weights. It eventually led
to the mistaken prediction from the ground-truth
“Parents” into “Entertainment”. By considering the
distribution shift, the word "toddler" become the
prominent one and help making a correct predic-
tion. Case 2 also demonstrates an effective atten-
tion modification by using distribution alignment,

but in an opposite direction from query to support.
The category-independent words “movie”, “poster ”
and “dramatic” for “Parents” are modified into “tod-
dler ”, “Dad’s” and “bedtime”, which obviously pull
the model’s prediction to the right direction.

4. RELATED WORK

Meta-learning pursues the goal of fast adapting
to new classes/domains/tasks given the experi-
ence of multiple learning episodes with rich an-
notations. Existing work on meta-learning can be
divided into three categories: optimization-based,
metric-based and model-based (Hospedales et al.,
2022). MAML is a typical optimization-based
method based on learning easily adaptable model
parameters through gradient descent (Finn et al.,
2017). Prototypical Networks (Snell et al., 2017)
and R2D2 (Bertinetto et al., 2018) are typical
metric-based methods and they strive to learn
effective distance measurements. Model-based
methods such as MANN (Chavan et al., 2022) aim
at establishing models for fast learning, which is ei-
ther archived by model’s internal design or with the
help of another meta-model. Nevertheless, meta-
learning still suffers from low robustness problem
due to the limited data in few-shot settings.
Robust representation learning is significant for
the application of meta-learning. A typical solution
strategy for robust representation learning is data
augmentation. Contrastive learning is a recently
popular method for robust representation learn-
ing (Falcon and Cho, 2020). Self-supervised con-
trastive learning methods such as SIMCSE (Gao
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Figure 4: Case study for the progressive data augmentation in Huffpost dataset. The darker the color, the
more important the word is. We consider the influence of query (support) on support (query).

et al., 2021) make a global comparison among the
input instance, augmented positive instance and in-
batch negatives for improving the uniformity of the
representation space. ContrastNet (Chen et al.,
2022) is a representative work in meta-learning
by contrasting the averaged representation across
different tasks, and achieves good results in FSL
tasks. However, all these works resort to simple
and inadequate augmentation methods.

5. Conclusion

In this paper, we propose a PDAMeta meta-
learning framework for the few-shot text classifica-
tion. We first propose a progressive data augmen-
tation method which overcomes the challenge of
data from both local and global perspectives. In ad-
dition, we propose a novel dual-stream contrastive
meta-learning method to learn better discrimina-
tive representations. In the future, we will apply
PDAMeta to more few-shot tasks.
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