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Abstract
Training neural models for translating between low-resource languages is challenging due to the scarcity of direct
parallel data between such languages. Pivot-based neural machine translation (NMT) systems overcome data
scarcity by including a high-resource pivot language in the process of translating between low-resource languages.
We propose synthetic pivoting, a novel approach to pivot-based translation in which the pivot sentences are
generated synthetically from both the source and target languages. Synthetic pivot sentences are generated through
sequence-level knowledge distillation, with the aim of changing the structure of pivot sentences to be closer to that of
the source or target languages, thereby reducing pivot translation complexity. We incorporate synthetic pivoting into
two paradigms for pivoting: cascading and direct translation using synthetic source and target sentences. We find
that the performance of pivot-based systems highly depends on the quality of the NMT model used for sentence
regeneration. Furthermore, training back-translation models on these sentences can make the models more robust to
input-side noise. The results show that synthetic data generation improves pivot-based systems translating between
low-resource Southern African languages by up to 5.6 BLEU points after fine-tuning.

Keywords: neural machine translation, pivot-based translation, low-resource translation

1. Introduction

Neural Machine Translation (NMT) is the state-of-
the-art approach for automatic translation, produc-
ing high-quality output text when translating be-
tween high-resource languages (Wu et al., 2016).
However, translation between low-resource lan-
guages is more challenging due to the limited avail-
ability of high-quality parallel corpora between such
languages (Burlot and Yvon, 2018). Moreover, it is
easier to find parallel data between a high-resource
language and a low-resource language than be-
tween two low-resource languages.

Pivot-based NMT approaches for translating be-
tween low-resource languages leverage the avail-
ability of parallel data between a high-resource lan-
guage (the pivot language) and the source and
target low-resource languages, respectively. In
this scenario both low-resource languages have
a reasonable amount of parallel data with the pivot
language, compared to a much smaller amount of
parallel data directly between the low-resource pair.

There are two main ways to make use of the pivot
language (see figure 1). The first is to translate from
the source language to the pivot language, and then
from the pivot language to the target language, us-
ing two separate NMT models (cascading). The
second approach generates synthetic direct trans-
lation sentences by translating the pivot language
sentences to either or both the source and target
languages, and then trains an NMT model for di-
rectly translating from the source to the target us-
ing the synthetic translated data (Park et al., 2017;

Pivot TargetSource

Direct translation
Cascading
Generating synthetic direct translation data
Generating synthetic pivot data (ours)

Figure 1: Pivoting translation paradigms. The ar-
rows indicate the translation process in the case
of direct translation and cascading. The dotted ar-
rows indicate how the training data is generated.

Currey and Heafield, 2019). In both approaches,
some model parameters are used unnecessarily to
learn the word order of the pivot language, which
is not actually necessary for the model to learn cor-
rectly as long the final system can translate from
the source into the target language.

In this paper, we propose Synthetic Pivoting, a
novel approach to pivot-based translation in which
the pivot sentences are generated synthetically
from both the source and target languages. We
investigate different ways of regenerating pivot sen-
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tences with the aim of pushing them towards the
structure (word order) of source and target lan-
guages. Our approach is intended for translation
between related low-resource languages that have
similar linguistic structure, in which intermediate
reordering towards the word order of the pivot lan-
guage is particularly wasteful. We show how chang-
ing the structure of pivot sentences affects the per-
formance of different pivot-based NMT systems.

Our approach consists of two phases. In the
first phase, synthetic pivot sentences are gener-
ated through sequence-level knowledge distillation
from NMT models (§4). These NMT models in-
clude Auto-regressive (AT) and Non-autoregressive
(NAT) models. The sentences generated through
sequence-level knowledge distillation are more
structurally similar to the input-side language than
the original sentences (Zhou et al., 2021). In
the second phase we apply the two standard
paradigms for pivoting: cascading (§5) and gen-
erating synthetic direct translation data §6, while
replacing the original pivot sentences with the re-
generated sentences from the first phase. We refer
to these modified pivot-based approaches as Syn-
thetic Cascading and Synthetic Direct Translation,
respectively.

We evaluate the proposed approaches using
two pairs of closely related low-resource Southern
African languages: Xhosa and Zulu (xho ↔ zul)
from the Nguni Language family, and Sepedi and
Tswana (nso ↔ tsn) from the Sotho-Tswana lan-
guage family. We use English (eng) as pivot lan-
guage in both cases. Results show gains of 0.3
BLEU points on xho ↔ zul and 5.6 BLEU points
on nso ↔ tsn over the bilingual baseline for each
language pair. Additional gains are obtained when
using a multilingual NMT model for cascading or
generating synthetic direct translation data.

2. Background

Sequence-to-sequence models (Bahdanau et al.,
2016; Gehring et al., 2017; Vaswani et al., 2017)
have proven to be effective in the MT task. They uti-
lize the expressiveness of neural networks and the
sequential property of language in training autore-
gressive Neural Machine Translation (NMT) mod-
els, which has became the standard approach for
training MT models. In autoregressive translation
(AT), each token in the target sentence is generated
conditioned on the previous target tokens and the
source sentence.

2.1. Non-Autoregressive Machine
Translation

An alternative approach is non-autoregressive
translation (NAT), where the whole target sentence

is generated simultaneously (Gu et al., 2018; Lee
et al., 2018). The main motivation for NAT was to
improve inference speed over AT which generates
the output one token at a time. In NAT the out-
put tokens are conditionally independent of each
other given the source sentence, which can lead to
inconsistencies in the output sequence. Some re-
cent approaches proposed modified architectures
and the training procedure that increase the depen-
dency between output tokens (Stern et al., 2019;
Ghazvininejad et al., 2019; Gu et al., 2019). How-
ever, due to the complexity of the training data, NAT
models still lag behind AT in terms of translation
quality.

Gu et al. (2018) proposed using sequence-level
knowledge distillation (Kim and Rush, 2016) to train
NAT models using synthetic target sentences gen-
erated from an AT model. These sentences tend to
be simpler than the actual target sentences in terms
of word order and lexical choice. Zhou et al. (2021)
found that when aligning real and synthetic target
sentences to source sentences, synthetic data has
less reordering compared to real data, i.e., their
structure is shifted to some degree towards the
source language. Although the translation quality
of synthetic target sentences might be lower, the
desired effect of reducing structural changes en-
ables training better NAT models. Another side
effect of knowledge distillation is mode reduction:
distilled data tend to contain fewer lexical choices
per source word, which lowers the difficulty of learn-
ing (Ding et al., 2020).

2.2. Pivot-based NMT
Pivot-based NMT approaches enable translating
between two low-resource languages via a high-
resource language (Johnson et al., 2017). When
no direct source-target data is used they are an
instance of zero-shot NMT.

Cascading involves training two separate models,
one for translating from the source language to the
pivot and the other for translating from the pivot to
the target language. The final translation system
is a cascade of the two models. A drawback of
this approach is error propagation (Johnson et al.,
2017), i.e., translation errors made by the source-to-
pivot model are passed to the pivot-to-target model.

The second pivoting paradigm involves gener-
ating a source-target synthetic dataset for train-
ing the source-to-target translation model, instead
of having two decoding stages (source-to-pivot
and pivot-to-target). The synthetic translation
dataset is generated by translating pivot sen-
tences to source/target using pre-trained pivot-to-
source/target models. There are several ways of
generating synthetic source-target parallel data:

1. Translating the pivot side of the source-pivot
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Language Pairs WMT22_african
eng-xho 8.6M
eng-zul 3.8M
xho-zul 1M
eng-tsn 5.9M
eng-nso 3M
nso-tsn 235K

Table 1: Training data size: Number of parallel
sentences for all language pairs.

data to the target language and translating the
pivot side of the pivot-target data to the source
language (Park et al., 2017).

2. Translating pivot monolingual sentences into
both source and target languages (Currey and
Heafield, 2019).

Yang et al. (2022) used sequence-level knowl-
edge distillation to generate a distilled source-target
dataset using three teacher models, which is then
used to train a multilingual NMT model. Chen et al.
(2017) used word-level KD in guiding a source-
to-target model (student) through a pivot-to-target
model (teacher). One reason for the improvements
from using synthetic data is that some synthetic
sentences are actually of higher quality than their
original counterparts (Briakou and Carpuat, 2022).

In this work we propose replacing the original
pivot sentences with synthetic ones with either of
the pivoting paradigms. This enables us to vali-
date the hypothesis that regenerating pivot sen-
tences to have a structure closer to that of the
source and target languages will improve pivot-
based translation. We regenerate pivot sentences
using knowledge distillation with autoregressive
and non-autoregressive translation models as po-
tential ways of restructuring the pivot sentences.

2.3. Related Work

In recent years, there have been several attempts to
improve NMT for low-resource languages through
multilingual training (Firat et al., 2016; Lakew
et al., 2018; Neubig and Hu, 2018). Kumar et al.
(2021); Neubig and Hu (2018) proposed frame-
works for adapting the existing NMT systems to
new low-resourced languages. Zhang et al. (2021)
used transfer learning to adapt NMT models from
translating between high-resource languages to
low-resources. Moreover, Kumar et al. (2021);
Lakew et al. (2018) fine-tuned NMT models on self-
generated data, which led to greater performance
gains in low-resource and zero-resource directions.

eng How did the light wave travel through air?
zul Igagasi lokukhanya lalihamba kaniani emoyeni?
xho Iliza lokukhanya lalihamba niani emoyeni?

Figure 2: Example word alignment between En-
glish, Xhosa, and Zulu.

3. Experimental Setup

Data As our approach is aimed at translating be-
tween closely related low-resource languages, we
evaluate on two pairs of such languages. We se-
lect Xhosa (xho) and Zulu (zul) from the Nguni
Language family and Sepedi (nso) and Tswana
(tsn) from the Sotho-Tswana language family. We
evaluate translation in both directions, and select
English (eng) as pivot language for both language
pairs due to parallel data availability. An example of
word alignment between English, Xhosa and Zulu
is given in Figure 2.

For training and validation, we use a subset of
WMT22_african.1 Table 1 shows available number
of sentences for each language pair. We reserve
the first 3000 sentences from each language pair for
validation and the rest for training. We use the Flo-
res dev set to evaluate the performance of different
regeneration methods for pivoting.2 It contains 997
parallel sentences for each language pair. Addi-
tionally, we report the results of the best translation
systems as evaluated on the Flores devtest set,
which contains 1012 parallel sentences for each
language pair.

Vocabulary The low-resource languages we are
working with are agglutinative. The Nguni lan-
guages are written conjunctively, meaning that
words may consist of multiple morphemes without
separation. As a preprocessing step for these lan-
guages (Xhosa and Zulu) we use a combination of
BPE and supervised morphological segmentation
with CRFs (Moeng et al., 2021) (see appendix A).
Sepedi and Tswana are disjunctive (morphemes
are space-separated), so we use BPE only.

For the translation between Xhosa and Zulu, we
train a multilingual vocabulary on the eng − xho,
eng − zul, and xho − zul datasets, with a vocab
size of 30K. We use the same vocabulary for train-
ing all models in the pivot-based approaches. We
follow the same approach with translation between
Sepedi and Tswana.

Model Architecture All models were trained
with the Fairseq toolkit (Ott et al., 2019). We

1https://huggingface.co/datasets/allenai/
wmt22_african

2https://huggingface.co/datasets/facebook/
flores

https://huggingface.co/datasets/allenai/wmt22_african
https://huggingface.co/datasets/allenai/wmt22_african
https://huggingface.co/datasets/facebook/flores
https://huggingface.co/datasets/facebook/flores
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Figure 3: Fuzzy Reordering Score (FRS) of dif-
ferent synthetic datasets compared with real data
among different language pairs. A larger score in-
dicates more monotonic alignments.

used the transformer-base architecture (Vaswani
et al., 2017) for training all AT models and the
Levenshtein Transformer (Gu et al., 2019) for train-
ing NAT models.

We used the following hyper-parameters for all
models: Adam optimizer with learning rate = 5e− 4,
β1 = 0.9 and β2 = 0.98, inverse square root learn-
ing rate scheduler with warmup updates of 4, 000
for AT models and 10, 000 for NAT models, label
smoothed cross entropy criterion for AT models
and nat_loss for NAT models with label smooth-
ing of 0.1 and dropout of 0.3. All models were
trained on either an Nvidia A100 full card (40GB)
or a division of half a card (20GB) for 45 epochs
with a batch size of 12288 tokens for AT models
and 8192 tokens for NAT models. We select the
best checkpoint based on validation loss.

Multilingual Model Additionally, we perform
some experiments using a multilingual NMT model
to generate synthetic data or to perform pivoting.
We use the multilingual model of Elmadani et al.
(2022) that was trained to translate to and from
8 Southern African languages, including all 4 lan-
guages we consider in this paper. However it was
trained to translate directly between only one of
the four language pairs, so we also consider fine-
tuning the model with direct translation data be-
tween these language pairs as an additional base-
line.

4. Synthetic Pivot Sentence
Generation

4.1. Notation
We start by defining the general notation used for
models and datasets. Given two languages, A and
B, let AB − BA represent the parallel dataset be-
tween the two languages, whereAB andBA denote
the language A and language B sides of the bitext,
respectively. Let A AT−→ B and A

NAT−→ B be the A
to B autoregressive and non-autoregressive trans-
lation models, respectively, trained on the AB −BA

dataset. BAT
A denotes the distilled BA sentences

generated from model A AT−→ B. A NAT model
trained on dataset AB −BAT

A with synthetic target-
side data is represented as A

NAT−→ BAT .

4.2. Approach
Let S, T , and P be the source, target, and pivot
languages, respectively. Our goal is to translate
between the two languages S ↔ T , where S and
T are closely related languages.

We aim to regenerate P sentences to have a sim-
ilar structure to S and T . Our approach is divided
into two steps: First, synthetic pivot generation,
where we use AT and NAT models to regenerate
P sentences from S and T . The second step is to
replace the actual pivot sentences with synthetic
ones and use them in the pivoting approaches from
§2.2.

Given datasets SP −PS and TP −PT , we regen-
erate PS and PT sentences using the three types of
translation models. We pass SP and TP sentences
to all models to generate three synthetic versions
of PS and PT :

1. PAT
S and PAT

T are generated from S → P and
T → P autoregressive models trained on real
data.

2. PNAT
S and PNAT

T are generated from S →
P and T → P non-autoregressive models
trained on real data.

3. PNATAT

S and PNATAT

T are generated from
S → P and T → P non-autoregressive mod-
els trained on synthetic data generated from
autoregressive models.

Synthetic pivot sentence generation using the
multilingual NMT model follows the same approach,
except that since we don’t have a multilingual NAT
model, some NAT model combinations are not
applicable here.

4.3. Reordering evaluation
Figure 3 shows the Fuzzy Reordering Score
(FRS) (Talbot et al., 2011) of the real data and the
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S
NAT−→ PS

AT−→ P P
AT−→ T

S
NAT−→ PATPAT AT−→ TS

AT−→ PAT PNAT AT−→ TS
AT−→ PNAT

PNATAT AT−→ TS
AT−→ PNATAT

S/T − P

S/T − PAT

S/T − PNAT

S/T − PNATAT

T
AT−→ P T

NAT−→ P

T
NAT−→ PAT

Figure 4: The procedure we took for training the S → P and P → T models. The arrows indicate
generating P synthetic sentences from a model and using them to train another model. The colour
scheme indicates the data we used for training the model.

three synthetic datasets among different language
pairs. It also shows the FRS of direct translation
datasets, xho − zul and nso − tsn. We use FRS
to measure the change in word order during syn-
thetic data generation: A larger score indicates
more monotonic alignments between the two lan-
guages. We used the fast_align library (Dyer
et al., 2013) for generating the alignments used
to compute the FRS (see appendix B for details).
The figure shows that similar languages have simi-
lar FRS with English among different datasets. The
FRS between similar languages is always higher
than the FRS between any of these languages and
English. Furthermore, the auto-regressively gen-
erated data has less reordering than real data and
non-auto-regressively generated data. Zhou et al.
(2021) argued that NAT models need training data
with more monotonic alignments to perform better
because it is hard for these models to learn com-
plicated alignments. However, our results show
that sentences generated from NAT models have
fewer monotonic alignments compared to the ones
generated by AT models.

5. Synthetic Cascading

5.1. Approach
In the cascading approach, source sentences are
translated to the pivot language through a source-
to-pivot (S → P ) model, which is then in turn trans-
lated to the target language through a pivot to target
(P → T ) model. The S → P and P → T mod-
els are trained separately. To train either, the real
dataset and three synthetic datasets from §4 are
available; for each dataset we can train either AT
or NAT model. That give 8 sets of S → P models
and 8 sets of P → T models, leading to 64 possible
combinations. However, for S → P , we did not
train NAT models on synthetic datasets generated
from another NAT models (PNAT

S and PNATAT

S ).
For P → T , we did not train any NAT models. We
ended up with 6 S → P and 4 P → T models (24

combinations). Figure 4 shows which dataset was
used in training each of these models. The arrows
between models indicate that the top model was
used to generate the pivot side of the training data
for the model at the lower level.

We perform cascaded translation by using the
S → P model to translate the S side of the test set
(ST ) to P . This output is translated to T using the
P → T model. The overall translation quality of a
system depends on two factors: the performance
of individual S → P and P → T models, and the
degree of matching between the S → P and P →
T models. We are particularly interested in the
robustness of P → T models to the input they are
given. Therefore we say that a robust P → T model
can maintain its performance regardless of how the
S → P model was trained.

5.2. Results

Table 2 reports the results of the cascading ap-
proach for translation between Xhosa and Zulu and
between Tswana and Sepedi. Both the results of
the individual source to pivot and pivot to target
models, and for the cascaded source to target trans-
lation are given. Due to space limitations we don’t
report the results of all model combinations: we re-
port the results of the combination corresponding to
each source-to-pivot model, and the average perfor-
mance for each of the pivot-to-target models. The
latter reflects the relative robustness of the different
pivot-to-target models to pivot sentences generated
by the various input models. In other words, it bet-
ter reflects the ability of a back-translation model to
adapt to noise on the input side - no matter what the
source of the input pivot sentence is, it can translate
to the target language robustly. Moreover, the aver-
age score informs us which Pivot-to-Source/Target
model to choose in order to translate the Pivot sen-
tences into the Source and Target languages in the
Synthetic Direct Translation approach. See tables
6, 7, 8 and 9 in the appendix for the full cascading
results.
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xho → zul tsn → nso zul → xho nso → tsn

pivot cascade pivot cascade pivot cascade pivot cascade

S
AT−→ P 26.1 9.2 11.8 5.6 28.4 8.7 14.4 8.4

S
AT−→ PAT 24.0 8.7 8.9 5.1 26.6 8.3 7.3 4.7

S
NAT−→ P 18.7 7.7 6.4 3.7 18.5 5.7 6.9 4.9

S
AT−→ PNAT 20.3 7.6 5.5 3.5 20.7 6.9 5.0 4.0

S
NAT−→ PAT 23.4 8.8 2.6 2.4 25.3 8.2 3.7 3.7

S
AT−→ PNATAT 22.8 8.7 0.6 0.5 25.9 8.8 1.2 1.1

P
AT−→ T 15.2 7.8 8.5 2.6 12.2 7.2 10.1 3.3

PAT AT−→ T 15.8 8.3 7.6 3.3 12.7 7.8 13.2 4.0
PNAT AT−→ T 13.4 8.3 6.4 3.2 11.1 7.3 10.3 4.3
PNATAT AT−→ T 14.2 8.4 6.3 3.1 12.2 7.6 6.7 4.0

Table 2: Pivot translation results with bilingual models (dev set BLEU scores). Results are reported for
both the individual pivot models (Source to Pivot and Pivot to Target) and the full cascade (Source to
Target), with English as pivot language. For the cascaded results we report the best result for each source
to pivot model (out of all the pivot to target models), as well as the average result when using each of the
pivot to target models (over all the source to pivot models).

We find that the combination of the best source-
pivot and pivot-target models often but no always
lead to the best cascaded translation performance.
The source-to-pivot model trained on the original
data almost aways lead to the best cascaded per-
formance as well, but for the choice of pivot-to-
target models the picture is more mixed: The back-
translation model PAT AT−→ T usually results in the
best performance, even though in some cases the
model trained on original data has higher pivot-to-
target performance, and the PNAT AT−→ T models
are more robust for some language pairs. Where
the structure of the pivot sentences are changed
more drastically by the source-pivot model, the
matching in model type between the S → P and
P → T models becomes a bigger factor in explain-
ing the overall performance.

Synthetic Training Data and Model Robustness
A potential explanation of the results is the degree
of robustness in each P → T model. Regenerating
English sentences from a translation model can
add noise (Edunov et al., 2018). Back-translation
models are more tolerant to source-side noise due
to the noise added to the training data. If the quality
of the generated data is good enough, the back-
translation model can benefit from both robustness
and an increase in individual performance.

Multilingual model results As an additional ex-
periment we use the multilingual autoregressive
model to generate synthetic pivot sentences. We
only consider translation between Sepedi and

tsn → nso nso → tsn

pivot cascade pivot cascade

S
AT−→ P(m) 20.3 14.4 26.9 13.9

S
AT−→ PAT 15.2 13.3 19.4 12.5

S
NAT−→ PAT 9.1 8.8 10.4 7.6

S
AT−→ PNATAT 9.5 8.9 11 7.9

P
AT−→ T(m) 23.1 11.2 18.2 10.3

PAT AT−→ T 18 10.5 13.9 10.1
PNATAT AT−→ T 11.6 8.7 11.5 9.4

Table 3: Pivot translation results with synthetic data
from an (autoregressive) multilingual model (dev
set BLEU scores). Results are reported in the same
format as Table 2.

Tswana, as the bilingual model results indicate that
this relatively lower-resourced language pair ben-
efits more from synthetic pivoting than translation
between Xhosa and Zulu. The results are given
in Table 3, only considering translation between
Sepedi and Tswana. We experiment both with us-
ing the multilingual model directly for the cascaded
generation (S AT−→ P (m) and P

AT−→ T (m)), and
using synthetic pivot data generated by the multilin-
gual model to train bilingual models for the cascade.
The results show that using the multilingual model
to perform both S → P and P → T outperforms all
synthetic cascading systems in overall system per-
formance. We hypothesize that synthetic pivoting
does not help improve multilingual cascading sys-
tems due to the lack of transferability of multilingual
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Figure 5: BLEU scores of different xho → zul mod-
els for synthetic direct translation.
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Figure 6: BLEU scores of different tsn → nso mod-
els for synthetic direct translation.

information. Generating monolingual sentences
from a multilingual model is not enough to obtain
multilinguality improvements.

eng → nso/tsn(m)

6

8

10

12

14

16

18

5.2

1
2
.5 1
3
.3

BL
EU

+ Finetuning

9
.2

1
4
.4

half-half
ennso/tsn

Direct translation

Figure 7: BLEU scores of tsn → nso models, using
a multilingual model for synthetic direct translation.

6. Synthetic Direct Translation

6.1. Approach
We extend the pivot-based approach proposed by
Park et al. (2017), who proposed generating syn-
thetic S − T sentences from P . Park et al. (2017)
used P

AT−→ S to translate the pivot side of PT −TP

to the source language and P
AT−→ T to translate

the pivot side of PS − SP to the target language.
This generates an S − T dataset with the size of
SP−PS and PT−TP combined. In this dataset, half
of the sentences on each side are synthetic, while
the other half is real; both the source and target
sides contain a combination of real and synthetic
sentences. We call this approach half-half.

We propose translating all pivot sentences (PS +
PT ) to both source and target languages using dif-
ferent types of P → S/T models. Additionally, the
pivot sentences to be translated may themselves
be synthetic (following §4). We refer to this as
synthetic-only pivoting. We select the synthetic
data generation models based on the cascading re-
sults: We choose the best AT-based P → T model
and the best NAT-based P → T model based on
robustness. The direct translation models trained
on synthetic data only can then be fine-tuned on
available real S − T sentences.

6.2. Results
Xhosa to Zulu Figure 5 shows the performance
of the synthetic-only pivoting approach compared
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to the half-half approach on xho → zul translation.
The first bar represents the half-half baseline of
Park et al. (2017). We use two sources of eng sen-
tences, real sentences and engNATAT sentences
generated from the xho, zul

NAT−→ engAT models.
Then, we use the selected eng → xho, zul models
to translate these sentences from both sources to
xho and zul. In the figure, the bars’ colours repre-
sent the source of the eng sentences used to gen-
erate xho and zul synthetic data, while the x-axis
shows the model used for translating eng pivot sen-
tences. For example, for the result in the first blue
all real eng sentences (enxho + enzul) were trans-
lated to both xho and zul, using the engAT → xho
and engAT → zul models, respectively. As a fi-
nal step we fine-tune all models on real xho− zul
data (see figure 8 in the appendix for zul → xho
translation).

The results show that the performance of all the
models that use synthetic pivot sentences are rela-
tively similar; neither the choice of eng data sources
nor of the synthetic data generation models have
a substantial impact. However, these models are
slightly better than the baseline approach. The
gains from fine-tuning are also similar across mod-
els. However, using real eng sentences for transla-
tion is generally better regardless of the type of the
translation model. Moreover, none of the fine-tuned
models outperformed the direct translation base-
line with more than 0.4 BLEU points. We argue
that the translation between xho and zul does not
reflect truely low-resource translation scenarios, as
the available bitext between the two languages in-
cludes more than 1M pair of sentences. Although
it might not seem to be a lot of data, the fact that
the two languages are structurally similar supports
the hypothesis that less data would be needed to
train a translation model from scratch.

Tswana to Sepedi The translation from Xhosa to
Zulu reflects the importance of the synthetic data in
the model’s robustness but not in the overall transla-
tion quality of pivot-based systems. Figure 6 shows
the performance of the synthetic data generation
approach for tsn → nso translation, where much
less direct bitext is available. All models obtain
very large gains after fine-tuning. The fine-tuned
models also surpass direct translation by a large
margin (in contrast to Xhosa to Zulu translation).
Therefore, lower-resource languages can benefit
more from pivot-based approaches than higher-
resource languages. We also see that the baseline
half-half approach performs poorly compared to our
approaches that use fully synthetic nso− tsn paral-
lel data (see figure 9 in the appendix for nso → tsn
translation).

Multilingual Synthetic Direct Translation We
also experimented with synthetic direct translation
using the multilingual model. Again only translation
between Tswana and Sepedi is considered. Fig-
ure 7 shows the performance of the synthetic-only
pivoting approach compared to the half-half ap-
proach on translating from Tswana to Sepedi (see
figure 10 in the appendix for nso → tsn translation).
We find that synthetic-only pivoting outperforms
half-half in Tswana to Sepedi translation. However,
in this case fine-tuning the synthetic-only pivoting
model on real data harms translation quality, sug-
gesting that the synthetic data is more informative
than the real data.

7. Final Results

Table 4 shows the performance of baselines and
the best models trained using synthetic pivot data.
All approaches are evaluated on Flores devtest set.
The best performance in all translation directions
(excluding the multilingual models) is obtained by
translating all pivot sentences to source and target
languages using back-translation models, followed
by training the S → T model on the generated
data and fine-tuning on real data. The results also
confirm that the translation between Sepedi and
Tswana benefits from including synthetic data more
than the translation between Xhosa and Zulu.

We compare approaches using the multilingual
model Elmadani et al. (2022) separately, as train-
ing on a large number of language pairs lead to
complementary gains. The multilingual direct trans-
lation model was fine-tuned on direct translations
between all 4 language pairs. For xho ↔ zul our
best synthetic pivoting approach outperforms the
multilingual models. However on nso ↔ tsn all
the multilingual approaches outperform our best
synthetic pivoting approach.

8. Conclusion

This paper investigated strategies to improve pivot-
based NMT systems using synthetic pivot data.
Training with synthetic data reduces the complexity
of learning the pivot language by changing the struc-
ture of pivot sentences to be closer to the source
or target languages. In our experiments we used
the real sentences along with pivot sentences and
synthetic datasets generated from different types
of NMT models. The results indicate that synthetic-
only pivoting can benefit from synthetic pivot data
more than cascading, and the largest gains are
obtained in the lowest resource settings.
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Model xho → zul zul → xho nso → tsn tsn → nso
BLEU CHRF2 BLEU CHRF2 BLEU CHRF2 BLEU CHRF2

Bilingual Direct Translation 12.1 49.5 11.7 50.4 5.3 29.2 4.3 27.1

Cascading 9.0 45.2 8.9 45.0 6.3 29.6 3.8 25.1
Synthetic Cascading 9.0 45.7 9.4 46.6 7.6 32.1 4.6 27.9

Synthetic Direct Translation
half-half 10.1 46.8 10.1 47.6 0.8 14.3 1.6 19.3

+fine-tuning 11.7 49.7 11.4 49.5 2.0 20.6 3.0 24.4
Synthetic-only pivoting 10.5 48.9 10.6 50.0 5.6 29.2 4.2 26.4

+fine-tuning 12.4 50.2 11.9 50.5 10.9 36.6 9.7 36.3

Multilingual Direct Translation 11.7 50.1 11.7 50.7 15.2 42.9 15.4 44.4
Multilingual Cascading 10.6 48.7 10.6 50.0 13.1 40.5 13.4 40.5
Multilingual Synthetic Direct 14.6 41.9 12.6 41.3

Table 4: Final translation results of the pivoting approaches evaluated on the Flores devtest set. For
each of our synthetic approaches the best model combinations were chosen based on their BLEU scores
on the Flores dev set.

9. Limitations

In this paper, we only investigated the case of trans-
lating between similar languages. However, our
results suggest that while language similarity plays
a role, it might not be as crucial as hypothesized
and therefore pivot-based models for translating
between unrelated languages might also benefit
from this approach. We do not consider using ad-
ditional monolingual pivot data, which could poten-
tially improve system performance further. Our re-
sults show that the performance of the pivot-based
approaches highly depends on the quality of the
NMT model used for synthetic pivot data genera-
tion. This will make it hard to apply our approach
in extremely low-resource scenarios where only a
small amount of parallel data between low-resource
languages and pivot language is available.
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A. Combining BPE and
Morphological Segmentation

Although CRF models can detect morphemes more
accurately than BPE, we cannot rely solely on mor-
phological segmentation models for preprocessing
and vocabulary creation; morphological segmen-
tation alone does not deal with the out of vocab-
ulary token problem. We propose running BPE
after surface segmentation to ensure accurate mor-
phemes and a finite vocabulary without unknown
tokens (UNK). However, this approach requires
additional processing ensure that morpheme and
subword boundaries and handled consistently.

The BPE algorithm divides the words into differ-
ent space-separated sub-words. Then, it adds the
end-of-word token (</w>) at the end of the last
subword of each word. Adding this token aims
to differentiate between the sub-words of different
words, making it possible to recover the original
text from the encoded text. Now we want to com-
bine two segmentation strategies; morphological

surface segmentation and then BPE. The straight-
forward solution is to encode the text in two phases.
The first phase would add </w> tokens to distin-
guish between different words, while the second
phase would add </m> to distinguish between mor-
phemes. The decoding would also be done in two
stages: remove </m>, then </w>. However, treat-
ing the </w> token as a regular token would result
in splitting it into sub-tokens in the second stage (< /
w >), which would lead to increasing the sequence
length with meaningless tokens.

Our proposed solution is to remove the </w>
token after the surface segmentation phase (first
phase) after recording which morpheme was at
the end of each word. Then we run BPE on the
modified text, which does not contain a token to
differentiate between the end of morpheme and
the end of word. In this case, BPE adds </w> at
the end of both words and morphemes. Then, we
use the recordes information to keep </w> only
at the end of words and remove it from the end of
morphemes. Since we use one unique </w> token
to indicate the end of a word, it is possible to do the
decoding in one stage by only removing this token.

Table 5 shows the steps for combining Sur-
face Segmentation with BPE. First, we segment
the Xhosa sentence using Surface Segmentation.
Then, we use a binary array to indicate if the mor-
pheme is at the end of a word. We then remove the
</w> tokens and train the BPE tokenizer on all seg-
mented Xhosa and Zulu sentences and all original
English sentences. After training and running BPE
on all sentences, we use the saved binary array to
filter out </w> tokens from the end of morphemes
that are not at the end of their words.

B. Fuzzy Reordering Score (FRS)

The fuzzy reordering score (FRS) measures the
structural similarity of two languages. This score is
computed using an algorithm proposed by Talbot
et al. (2011). It takes as input the parallel data be-
tween two languages and the alignments between
source and target sentences.

We used the fast_align library (Dyer et al.,
2013) for generating the alignments from parallel
data. We trained the alignments for the real par-
allel data normally and used the grow-diag-final
symmetrization heuristic. For the datasets that in-
clude a synthetic pivot side, we used the same
alignment model trained for the corresponding
real version of the dataset. For example, we
used the alignment model trained with xhoeng −
engxho to produce the alignments for xhoeng −
engAT

xho, xhoeng−engNAT
xho , and xhoeng−engNATAT

xho .
We used force_align with grow-diag-final sym-
metrization heuristic. The alignments are extracted
after tokenizing the datasets.
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Xhosa English
sentence Qwalasela umbuzo ongezantsi Consider the question below
segment Qwalasel a</w> u m buzo</w> o ng e zantsi</w>
save ends 0 1 0 0 1 0 0 0 1
remove ends Qwalasel a u m buzo o ng e zantsi

Train BPE

BPE Qwa lasel</w> a</w> u</w> m</w> buzo</w> Cons id er</w> the</w>
o</w> ng</w> e</w> zant si</w> question</w> be low</w>

filter Qwa lasel a</w> u m buzo</w> o ng e zant si</w>

Table 5: Preprocessing example: combining surface segmentation with BPE

AT-based NAT-based
xho → zul eng

AT−→ zul engAT AT−→ zul engNAT AT−→ zul engNATAT AT−→ zul
15.2 15.8 13.4 14.2

AT-
based

xho
AT−→ eng 26.1 8.7 9.2 8.7 9.2

xho
AT−→ engAT 24.0 8.1 8.7 8.3 8.7

NAT-
based

xho
NAT−→ eng 18.7 7.0 7.3 7.7 7.4

xho
AT−→ engNAT 20.3 7.0 7.4 7.6 7.6

xho
NAT−→ engAT 23.4 8.1 8.5 8.8 8.8

xho
AT−→ engNATAT

22.8 8.1 8.6 8.4 8.7

avg 7.83 8.28 8.25 8.4

Table 6: BLEU scores of 24 xho → zul cascading translation systems. The first column of the table
represents xho → eng models, while the first row of the table represents eng → zul. The second column
and the second row include the individual performance of xho → eng and eng → zul models, respectively.
bold represents the best performance for each xho → eng model, while underline represents the best
performance for each eng → zul model. The colour scheme is the same as in figure 4; models that
translate between the same language pair and have the same colour were trained on the same dataset.

AT-based NAT-based
zul → xho eng

AT−→ xho engAT AT−→ xho engNAT AT−→ xho engNATAT AT−→ xho
12.2 12.7 11.1 12.2

AT-
based

zul
AT−→ eng 28.4 8.0 8.7 7.8 8.2

zul
AT−→ engAT 26.6 7.8 8.3 7.7 8.2

NAT-
based

zul
NAT−→ eng 18.5 5.6 5.7 5.7 5.6

zul
AT−→ engNAT 20.7 6.5 6.9 6.9 6.8

zul
NAT−→ engAT 25.3 7.5 8.2 7.6 8.0

zul
AT−→ engNATAT

25.9 8.0 8.8 8.2 8.6

avg 7.23 7.76 7.32 7.56

Table 7: BLEU scores of 24 zul → xho cascading translation systems. the first column of the table
represents zul → eng models, while the first row of the table represents eng → xho. The second column
and the second row include the individual performance of zul → eng and eng → xho models, respectively.
bold represents the best performance for each zul → eng model, while underline represents the best
performance for each eng → xho model. The colour scheme is the same as in figure 4; models that
translate between the same language pair and have the same colour were trained on the same dataset.
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AT-based NAT-based
nso → tsn eng

AT−→ tsn engAT AT−→ tsn engNAT AT−→ tsn engNATAT AT−→ tsn
10.1 13.2 10.3 6.7

AT-
based

nso
AT−→ eng 14.4 6.4 8.4 7.8 6.0

nso
AT−→ engAT 7.3 3.8 4.4 4.7 4.6

NAT-
based

nso
NAT−→ eng 6.9 3.7 4.3 4.9 4.6

nso
AT−→ engNAT 5.0 3.0 3.3 3.9 4.0

nso
NAT−→ engAT 3.7 2.5 2.9 3.4 3.7

nso
AT−→ engNATAT

1.2 0.5 0.7 0.9 1.1

avg 3.32 4.00 4.27 4.00

Table 8: BLEU scores of 24 nso → tsn cascading translation systems. the first column of the table
represents nso → eng models, while the first row of the table represents eng → tsn. The second column
and the second row include the individual performance of nso → eng and eng → tsn models, respectively.
bold represents the best performance for each nso → eng model, while underline represents the best
performance for each eng → tsn model. The colour scheme is the same as in figure 4; models that
translate between the same language pair and have the same colour were trained on the same dataset.

AT-based NAT-based
tsn → nso eng

AT−→ nso engAT AT−→ nso engNAT AT−→ nso engNATAT AT−→ nso
8.5 7.6 6.4 6.3

AT-
based

tsn
AT−→ eng 11.8 4.5 5.6 4.8 4.7

tsn
AT−→ engAT 8.9 4.0 5.1 4.6 4.7

NAT-
based

tsn
NAT−→ eng 6.4 2.7 3.5 3.7 3.4

tsn
AT−→ engNAT 5.5 2.4 3.3 3.4 3.5

tsn
NAT−→ engAT 2.6 1.5 2.0 2.4 2.2

tsn
AT−→ engNATAT

0.6 0.2 0.3 0.5 0.3

avg 2.55 3.3 3.23 3.13

Table 9: BLEU scores of 24 tsn → nso cascading translation systems. The first column of the table
represents tsn → eng models, while the first row of the table represents eng → nso. The second column
and the second row include the individual performance of tsn → eng and eng → nso models, respectively.
bold represents the best performance for each tsn → eng model, while underline represents the best
performance for each eng → nso model. The colour scheme is the same as in figure 4; models that
translate between the same language pair and have the same colour were trained on the same dataset.

AT-based NAT-based
nso → tsn eng

AT−→ tsn(m) engAT AT−→ tsn engNATAT AT−→ tsn
18.2 13.9 11.5

AT-
based

nso
AT−→ eng(m) 26.9 13.9 12.9 11.0

nso
AT−→ engAT 19.4 12.5 12.2 11.3

NAT-
based

nso
NAT−→ engAT 10.4 7.5 7.6 7.6

nso
AT−→ engNATAT

11.0 7.4 7.8 7.9

avg 10.3 10.1 9.4

Table 10: BLEU scores of 12 nso → tsn cascading translation systems, with pivot data generated by a
multilingual model. The first column of the table represents nso → eng models, while the first row of the
table represents eng → tsn. The second column and the second row include the individual performance
of nso → eng and eng → tsn models, respectively. (m) indicates that we are using the multilingual model
for this translation. bold represents the best performance for each nso → eng model, while underline
represents the best performance for each eng → tsn model. The colour scheme is the same as in figure
4: Models that translate between the same language pair and have the same colour were trained on the
same dataset.
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AT-based NAT-based
tsn → nso eng

AT−→ nso(m) engAT AT−→ nso engNATAT AT−→ nso
23.1 18.0 11.6

AT-
based

tsn
AT−→ eng(m) 20.3 14.4 12.4 9.3

tsn
AT−→ engAT 15.2 13.3 11.8 9.1

NAT-
based

tsn
NAT−→ engAT 9.1 8.4 8.8 8.0

tsn
AT−→ engNATAT

9.5 8.6 8.9 8.6

avg 11.2 10.5 8.7

Table 11: BLEU scores of 12 tsn → nso cascading translation systems, with pivot data generated by a
multilingual model. The first column of the table represents tsn → eng models, while the first row of the
table represents eng → nso. The second column and the second row include the individual performance
of tsn → eng and eng → nso models, respectively. (m) indicates that we are using the multilingual model
for this translation. bold represents the best performance for each tsn → eng model, while underline
represents the best performance for each eng → nso model. The colour code is the same as in figure 4;
Models that translate between the same language pair and have the same colour were trained on the
same dataset.
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Figure 8: BLEU scores of different zul → xho mod-
els. The colour scheme indicates the source of the
eng sentences that are later translated to xho and
zul using the models on the x axis.
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Figure 9: BLEU scores of different nso → tsn mod-
els. The colour schemee indicates the source of
the eng sentences that are later translated to nso
and tsn using the models on the x axis.
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Figure 10: BLEU scores of different nso → tsn
models, using a multilingual model for synthetic
pivoting. The color code indicates the source of the
eng sentences that are later translated to nso and
tsn using the models on the x axis. (m) indicates
that the nso and tsn sentences are generated from
the multilingual model.
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