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Abstract

A recent renewal in interest in long text understanding has sparked the emergence of high-quality long text
benchmarks, as well as new models demonstrating significant performance improvements on these benchmarks.
However, gauging the implication of these advancements based solely on the length of the input text offers
limited insight. Such benchmarks may require models to parse long-range dependencies or merely to locate
and comprehend the relevant paragraph within a longer text. This work introduces the Minimal Viable Phrase
(MVP), a novel metric that determines, through perturbations to the input text, the shortest average text length that
needs to be preserved to execute the task with limited performance degradation. Our evaluation of the popular
SCROLLS benchmark reveals that only one of its seven tasks necessitates an MVP of over 512 tokens–the
maximum text length manageable by the previous generation of pre-trained models. We highlight the limited need
for understanding long-range dependencies in resolving these tasks, discuss the specific design decisions that
seem to have led to the QuALITY task requiring reliance on long-range dependencies to be solved, and point out
specific modeling choices that seem to outperform on the QuALITY task.
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1. Introduction

Since the introduction of pretrained Transformers
such as BERT (Devlin et al., 2019; Vaswani et al.,
2017), the focus of NLP research has predomi-
nantly been on short utterances and paragraphs.
This focus was partly due to the quadratic complex-
ity of self-attention in relation to sequence length.
Renewed interest in research focused on under-
standing long texts was spurred by recent ad-
vancements in machine learning hardware, includ-
ing improvements in material sciences (Schaller,
1997; Chang et al., 2022) and optimizations of low-
level machine learning operations (NVIDIA et al.,
2020; Dao et al., 2022), algorithmic improvements
to the self-attention mechanism and the grow-
ing demand fueled by the widespread adoption
of chatbot-style applications like ChatGPT. Sup-
porting this growing interest, several benchmarks
have been developed to assess advancements in
understanding longer texts (Tay et al., 2020b; Sha-
ham et al., 2022; Hudson and Moubayed, 2022).

To what extent improvements in long text natu-
ral language understanding (NLU) benchmarks re-
flect an enhanced ability to model long-range de-
pendencies is uncertain. Simply considering text
length is inadequate to gauge reliance on long text
dependencies. For instance, in the scenario of
determining a word’s definition from a lengthy dic-
tionary, the task might merely involve a straight-
forward word-matching problem. Without further
probing of such benchmarks, the degree to which
they depend on extended text sequences remains

ambiguous.

Numerous perturbation studies (Pham et al.,
2021; Sinha et al., 2021, 2020; Gupta et al., 2021;
O’Connor and Andreas, 2021; Clouatre et al.,
2022) have been conducted to investigate the im-
portance of specific aspects of text while complet-
ing a task. By performing an NLP task after remov-
ing the tested aspect from the text, we can under-
stand how essential it was to complete that partic-
ular task. For instance, when the order of words in
the GLUE benchmark (Wang et al., 2018) is en-
tirely shuffled, the performance impact on most
models across various tasks is minimal, suggest-
ing that several GLUE tasks can be addressed
using mere bag-of-word information. While one
might assume that this benchmark, which mea-
sured NLU advancements for years, would require
heavy use of the order of words to be completed,
verifying such assumptions can yield surprising re-
sults.

2. Background and Related Work

This work leverages a set of perturbations de-
signed to remove varying degrees of long-range
dependencies from text while retaining other struc-
tural elements. We propose the Minimal Viable
Phrase (MVP), a novel metric that enables auto-
matic identification of the smallest average con-
tiguous text length essential for task execution
without notable performance deterioration. Our
study on the widely used SCROLLS benchmark re-
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Figure 1: Bi-gram distance in SCROLLS task, as shown in Shaham et al. (2022).

veals that only one task requires an MVP exceed-
ing 512 tokens among the seven tasks included.
We discuss the specific choice made in construct-
ing the QuALITY task (Pang et al., 2022) that likely
led to it relying on long-range dependencies to be
solved, highlight the current limited performance
of models in using long-range dependencies, and
discuss the likely characteristics that have led cer-
tain types of model to outperform other models on
the QuALITY task.

2.1. Long Text Benchmarks

Utterance and paragraph length NLP benchmarks,
such as the GLUE (Wang et al., 2018) and Su-
perGLUE benchmark (Sarlin et al., 2020), have
proven invaluable resources for evaluating and
guiding scientific advancements in NLP. A few
long text benchmarks may be suitable for play-
ing a similar role in long-text understanding. As
benchmarks become widely accepted, they be-
come defacto targets of scientific advancements.
To mitigate Goodhart’s law style failing (Strath-
ern, 1997), it is crucial to examine what it is that
they measure exactly and to what extent. Our in-
tent is to gauge the extent to which long-text un-
derstanding benchmarks currently necessitate an

understanding of long-range dependencies. The
Long-Range Arena (LRA) benchmark (Tay et al.,
2020b), the Multitask Long Document Bench-
mark (MuLD) (Hudson and Moubayed, 2022), and
the Standardized CompaRison Over Long Lan-
guage Sequences (SCROLLS) Benchmark (Sha-
ham et al., 2022) where all considered for this
study.

While widely used, the LRA is mainly composed
of non-NLP tasks. The NLP problems are artifi-
cially lengthened through byte-level computation,
which makes it unclear whether improvements on
this benchmark accurately reflect broader improve-
ments in long text NLU.

The MuLD is an NLU benchmark that encom-
passes six diverse tasks, all involving documents
of 10,000 words or more. Some tasks artificially
lengthen texts either by expanding the original con-
tent or embedding distractors. Most of the tasks
in MuLD have an average text length much in ex-
cess of what can currently be reasonably handled
by pretrained long text models. Paradoxically, this
hinders the utilization of this benchmark to identify
the extent to which long-range dependencies are
relied upon by such models.



12018

The SCROLLS Benchmark is a text-to-text (Raf-
fel et al., 2020) benchmark encompassing seven
tasks. It is currently the most extensively em-
ployed benchmark for evaluating long text under-
standing capabilities. The average input lengths
for the tasks range from 1706 words to 51,653
words. The benchmark includes a combination of
summarization, question-answering (QA), and nat-
ural language inference (NLI) tasks.

2.1.1. SCROLLS

SCROLLS provides quantitative analysis suggest-
ing that their sampling of tasks necessitates that
a model contends with long-range dependencies
that are hundreds to thousands of words in dis-
tance on average. To demonstrate this, they take
every bi-gram in the reference text and calculate
the distance between the first and second part of
the bi-gram in the input text, thus showing that if
the correct answer were to be present in the text
verbatim, it would necessitate fusing far apart por-
tions of the text. Figure 1 shows the analysis result
presented in the SCROLLS paper.

We find those metrics and analysis unconvinc-
ing in demonstrating that the SCROLLS tasks
necessitate longer range dependencies than the
other tasks. The arXiv task metric is in line with the
summarization tasks present in SCROLLS. The
CNN/DailyMail task metric can be explained by
the shorter average text length present in this
task; the average distance between any random
bi-gram would be shorter in absolute terms when
measured on a dataset containing shorter sen-
tences on average. The difference between the
SCROLLS QA dataset and the SQuAD/Natural
Questions dataset is much larger. However, those
two datasets are extractive QA problems, mean-
ing that by design, the correct answer is present
verbatim in the input text. A comparison with a
non-extractive QA dataset would have provided
a better reference point for the tasks present in
SCROLLS.While this metric does show to what ex-
tent the SCROLLS QA tasks are not purely extrac-
tive, it is insufficient in showing whether or not long-
range dependencies are required to solve those
tasks. It is hard to make statements about the
extent to which those datasets require an under-
standing of long-range dependencies to be solved
from this metric alone and further exploration is re-
quired.

2.2. Long Text Transformers

The Transformer architecture (Vaswani et al.,
2017), despite its theoretical potential to attend
to infinite sequence lengths, is confined by the
quadratic complexity of its self-attention mecha-

nism when it comes to handling longer texts. Var-
ious modifications have been proposed to over-
come this limitation: introducing sparsity in the at-
tention mechanism (Child et al., 2019a), adopting
low-rank approximations for self-attention (Wang
et al., 2020a), and a mix of global context with lo-
calized attention (Ainslie et al., 2020b; Guo et al.,
2021).

Figure 2: Mix of local and global self-attention, as
shown in Guo et al. (2021).

Figure 3: Pooled local self-attention, as shown in
Ivgi et al. (2022).

Notably, most successful long-text NLU tech-
niques blend local self-attention with a global con-
text. This context is incorporated either through
global tokens (Beltagy et al., 2020; Xiong et al.,
2022; Guo et al., 2021)—offering a global view to
the localized self-attention—or by employing a de-
coder, which aggregates the local context gener-
ated by the local attention model (Ivgi et al., 2022).
An example of both is shown in Figure 2 and Fig-
ure 3.
These models can be further separated into two

categories:

• Short-text pooling models: These models
extend existing short-text pretrained models
by either aggregating their outputs or adding
global tokens to their local attention.



12019

– The Longformer Encoder-Decoder
(LED) (Beltagy et al., 2020), the SLiding
Encoder and Decoder (SLED) (Ivgi et al.,
2022), and the BART-LS (Xiong et al.,
2022) all build on top of a pretrained
BART model (Lewis et al., 2019).

– They build local context with the pre-
trained BART models, which they either
enhance through the use of global to-
kens (Beltagy et al., 2020; Xiong et al.,
2022), which provides global context to
the local self-attention mechanism, or
with a decoder that can pool the local con-
text built by the BART models (Ivgi et al.,
2022).

• End-to-end models: These models are pre-
trained from scratch on long text.

– LongT5 (Guo et al., 2021; Ainslie et al.,
2023) models are pretrained from scratch
on long text.

– They use a mix of local attention and
global tokens to give global context to the
model while limiting the computational im-
pact of longer sequences.

– Being pretrained from scratch, theymight
better understand long-range dependen-
cies than other models since long-range
dependencies have been part of their
whole pretraining and have only been
part of a fraction of the pretraining of the
other models, where further pretraining is
used.

1.5 The scholar is typesetting.
is typeThe schosetting lar.

Figure 4: Subword-level phrase shuffling, has
shown in Clouatre et al. (2022).

2.3. Long Range Understanding Studies

Prior work has peered into the limitations of deep
learning models’ usage of long-range context.
Work on the language modeling task with either
LSTM’s (Khandelwal et al., 2018) or pretrained
Transformers (Sun et al., 2021) have studied the
effective maximal context length. By limiting how
far back the context given to a model was to per-
form languagemodeling, they could study themax-
imal length at which additional context is useful,
measured by a drop in test perplexity.

An interesting observation arises when focus-
ing on the prediction of rare words, which intu-
itively would require more nuanced context from

the surrounding text. LSTMswere observed to rely
on a context of about 50 tokens for general lan-
guage modeling but could make use of up to 250
tokens for predicting infrequent words, and pre-
trained Transformers employed context lengths of
up to 2000 tokens for general language modeling,
with as many as 5000 tokens being beneficial for
predicting rarer words.

Such results are useful in showcasing the im-
portance of using appropriate tasks to evaluate to
which extent models can leverage long-range de-
pendencies. Without focusing on the rare word
prediction subtask, one might conclude that the ef-
fective context that deep learning models can use
is 2 to 5 times lower than its effective range. These
models may be able to leverage even longer se-
quences given the right problem, as is showcased
in many copying tasks, but without appropriately
challenging benchmarks, it is hard to make such
conclusions.

2.4. Text Perturbations

Text perturbations to probe the behaviors of
trained models is a post-hoc interpretability
method (Madsen et al., 2021), providing insights
into the inner workings of fully trained models.
Such an approach is also inherently linked to the
task being perturbed. Any insights obtained from
text perturbation approaches are then conditioned
on both models and datasets. By removing spe-
cific structures of text and evaluating models on
these perturbed inputs, it aims to provide insights
into what was necessary for the model to complete
a particular task.
In our study, we are interested in removing ar-

bitrary amounts of long-range dependencies from
the text while limiting the impact of other types
of perturbations on the text. We use the Phrase
Shuffle (Clouatre et al., 2022), a perturbation of
the order of text that aims to preserve as much lo-
cal structure as possible while removing as much
global structure from the text as possible. In other
words, phrase shuffling a text will remove an ar-
bitrary amount of long-range dependencies while
keeping much of the other aspects of structure in
the text intact.

An example of Phrase Shuffling is shown in Fig-
ure 4, and the pseudocode to Phrase Shuffling is
shown in Figure 1. Phrase Shuffle creates chunks
of contiguous tokens of variable length, which are
then shuffled. The text is traversed sequentially,
from left to right. Every token traversed, with prob-
ability ρ, will indicate the end of a phrase, starting a
new phrase on the next token. Those phrases are
then shuffled, preserving much of the local struc-
ture of the text while severing varying degrees of
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long-range dependencies.

Function PhrasePerturbation(ρ← 0.5,
text←list):

all_phrases← list();
phrase← list(text[0])
for token in text[1 :] do

p ∼ Unif ([0, 1]);
if p < ρ then

all_phrases.append(phrase);
phrase← list(token)

else
phrase← [phrase, token];

end
end
all_phrases.append(phrase);
perturbed_text←
‘’.join(shuffle(all_phrases))

return perturbed_text
Algorithm 1: Pseudocode for Phrase Shuf-
fle. (Clouatre et al., 2022)

3. MVP: Minimal Viable Phrase

TheMinimal Viable Phrase (MVP) is defined as the
smallest continuous length of text that, on aver-
age, needs to be preserved for a model to main-
tain good performance on a specific task. The
process of determining the MVP involves fine-
tuning a model on a given task and then evalu-
ating its performance on progressively perturbed
inputs through the application of the Phrase Shuf-
fle (Clouatre et al., 2022). Phrase Shuffling builds
random contiguous phrases of controllable aver-
age length and shuffling those phrases. This pre-
servesmuch of the structure in the text while sever-
ing varying amounts of long-range dependencies.

From this process, we obtain two sets of val-
ues: the performances of the model on the differ-
ent perturbed text as well as the average length of
the phrases that were then shuffled. With those
values, we apply the Kneedle Algorithm (Satopaa
et al., 2011) to determine the MVP of a particu-
lar task. The Kneedle Algorithm is a commonly
used approach to identifying the ”elbows” point in a
curve by detecting the point of maximum curvature.
The point of maximum curvature detected by the
algorithm represents the average phrase length at
which the model’s performance loss accelerates
themost, indicating that the perturbations are start-
ing to affect what is most relied upon by the model
to complete the task.

If the models primarily rely on long-range depen-
dencies to complete the task, removing long-range
dependencies by shuffling long sub-sequences
of the text should have an outsized impact on
its performance. However, suppose the point of

maximum curvature only happens when phrases
become shorter, such as when we break para-
graphs into sentences; in that case, we can sur-
mise that a large portion of the performance could
be explained not by understanding long-range de-
pendencies but by understanding particular para-
graphs or the simple pooling of information gath-
ered from those paragraphs.

4. Experiments

We fine-tune a pretrained Long-T5-Base model,
which can handle sequence lengths of up to 16k
tokens on every task of the SCROLLS benchmark.
We evaluate the fine-tuned model first on the un-
perturbed test data, then on a series of inputs
where we apply varying degrees of phrase shuf-
fling to remove varying degrees of long-range de-
pendencies.

4.1. Training Details
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Figure 5: Plotted is the relation between the av-
erage phrase length and the performance on the
NLI task in the SCROLLSBenchmark. Left is more
perturbed; up is better performance. The MVP is
circled in red.

In total, we finetuned the model 3 different times
on each task. We apply five different random
seeds to each perturbation of the text for each
trained model. Reported results are than the aver-
age over 15 different perturbations obtained from
the same parameters. We used the hyperparam-
eters described by Guo et al. (2021) for finetun-
ing. We train on the first 90% of the training set,
validate on the last 10%, and test on the valida-
tion set as the test labels are not public. We used
the TGlobal version of the Long-T5 Base model,
meaning the version that uses the Transient global
attention. We trained all models for the suggested
amount of epochs in the original SCROLLS paper
and kept the one with the best validation score.
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Figure 6: Plotted are the relations between the average phrase length and the performance on the differ-
ent summarization tasks in the SCROLLS Benchmark. Left is more perturbed; up is better performance.
The MVP is circled in red.
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Figure 7: Plotted are the relations between the average phrase length and the performance on the
different QA tasks in the SCROLLS Benchmark. Left is more perturbed; up is better performance. The
MVP is circled in red.

The ρ values used in the phrase shuffling, mean-
ing the probability that a particular token would be
the boundary of a phrase, where: [0.0001, 0.00025,
0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025,0.05,0.1,0.2,
0.3, 0.4, 0.5]. Respectively, this would yield aver-
age phrase length of lengths: [10000, 4000, 2000,
1000, 400, 200, 100, 40,20,10,5, 3.33, 2.5, 2.0] which
covers the whole spectrum of interest. In our ex-
periments, all phrase shuffling is applied to the
subwords of the Long-T5 vocabulary and not the
words.

5. Results and Discussion

Pictured in Figures 5, 6 and 7 is the general impact
of the phrase shuffle on the models’ performance,
as well as the detected MVPs.

We observe that, QuALITY excluded, none of
the tasks in the SCROLLS benchmark have an
MVP above 512 tokens, a length of text that does
not require a long text model to handle. In all non-
QuALITY tasks, we observe very little impact on
performance from breaking down the text into what
is, in effect, paragraphs and sentences. This may
explain the popularity and success of short-text
pooling models for long text understanding, as we
see limited impact from removing longer-range de-
pendencies on most evaluated tasks.

The results and tasks are summarized in Table 1.
From those results, we cannot find an obvious re-
lation between the text length, the task type, and
the MVP of a task.

Task Average Length (Word) Task Type MVP (Tokens)

GovReport 7886 Summarization 40
SummScreenFD 5598 Summarization 20

QMSum 9497 Summarization 400
Qasper 3629 QA 100

NarrativeQA 51653 QA 40
QuALITY 4193 QA 6671

ContractNLI 1706 NLI 100

Table 1: Summary information of the different
tasks used and their MVPs.

5.1. Model Comparison

From the SCROLLS public leaderboard, we can
observe that approaches such as SLED and
BART-LS that rely on pretrained short-context
building blocks will, relative to their scores on the
other tasks, systematically under-perform models
that are trained from scratch on long text, such as
Long-T5, on QuALITY. In Table 2, we compare
the results of BART-LS, BART-Large SLED, and
LongT5 Base. Those three models were chosen
for comparison as they have fairly analogous pa-
rameter counts as well as average performance.
While the aggregate score of the non-QuALITY
task on both BART-LS and BART-Large SLED are

https://www.scrolls-benchmark.com/leaderboard
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either on par or above LongT5 Base, they score
lower by amargin on theQuALITY task. This lends
credence to the hypothesis that long-range depen-
dencies are especially important in the QuALITY
task and less so in the other tasks.

Of the tasks on which we have human perfor-
mance, QuALITY is the one in which neural mod-
els are the furthest from human level. We sum-
marize the information on human performance on
the SCROLLS benchmark in Table 3. This neural
model to human gap is likely caused by the limited
ability of thosemodels to properly understand long-
range dependencies, which would be most neces-
sary in the QuALITY task.

Model Non QuALITY avg QuALITY

BART-LS 40.4 35.9
BART-Large SLED 38.52 34.8

LongT5 Base 38.83 37.25

Table 2: Comparable models scores on QuALITY
and non-quality tasks. LongT5 Base performs on
part with BART-Large SLED and underperforms
BART-LS on the aggregate of the non-QuALITY
tasks but outperforms them by a margin on the
QuALITY task.

Task Human Performance Best Neural Approach Human Neural Gap

Qasper 60.9 53.9 7
QuALITY 93.5 48.1 45.4

NarrativeQA 58.7 31.1 27.6

Table 3: Estimated human performance where
available, with best public results for compari-
son. (Shaham et al., 2022)

5.2. QUaLITY

In the construction of their dataset, QUaLITY in-
troduced the speed validation. The overall pro-
cess is pictured in Figure 8. Annotators are given
45 seconds to read the context paragraph and an-
swer the question quickly. Suppose a human can-
not answer a question under a certain time thresh-
old that can readily be answered given an unlim-
ited amount of time. In that case, we can en-
sure that more than simply skimming is needed
and that any single passage through the text is
unlikely to permit us to complete the task. Writ-
ers who built the dataset were incentivized to pro-
duce questions that annotators in speed validation
would get wrong but annotators with unlimited time
would get right. Half of the QUaLITY dataset is
made up of such questions. We believe that this
step is likely the main differentiator between QuAL-
ITY and the rest of the tasks and can generally be
adapted to many other task constructions.

Figure 8: Crowdsourcing pipeline used to build
the QUaLITY dataset (Pang et al., 2022).

Pre-existing tasks could be filtered down with
this approach. One could take existing test sets
of tasks such as NarrativeQA or Qasper, apply the
speed validation described in the QUaLITY paper
wholesale, and provide a subset of those tasks
that would both be validated to not be trivial for
human to complete as well as being more likely
to require leveraging long-range dependencies to
complete. This would provide a lot of clarity as to
which extent our current benchmarks rely on long-
range dependencies.

6. Limitation

There are several limitations to this study that
should be noted.

First, while the method used is effective for dis-
tinguishing between tasks that require strict long-
range dependencies of a certain length and those
that do not, it is less effective at distinguishing be-
tween tasks that require the synthesis of smaller
units, such as paragraphs, and tasks where a sin-
gle small unit of text suffices. This is an important
distinction since tasks that can be described as
search problems, such as finding a word’s defini-
tion in a dictionary, may be better served by small-
context models, while synthesis tasks, like summa-
rization, will still benefit from models that can pool
information from the larger context.

Second, due to hardware and model limitations,
we were restricted to exploring a single model and
using text of sequence lengths of up to 16,000 to-
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kens, which limits the scope of our empirical re-
sults. Larger models and benchmarks such as
MULD, which contains much longer texts on aver-
age, should be explored to add to our conclusions.

Third, the use of the Kneedle Algorithm to find
the inflection point is not without issues. We use
it to find the point of maximum curvature between
the score of our model and the logarithm of the
phrase length. While using a logarithmic scale
seems intuitively sound — for instance, the im-
pact difference between average phrase lengths
of 10,000 and 5,000 tokens should parallel that
between 100 and 50 tokens — it is ultimately ar-
bitrary, and the Kneedle Algorithm is sensitive to
such decisions. The use of the elbow of a curve it-
self can have issues. While widely used in several
domains to find points of interest, it remains fairly
arbitrary, relying mostly on intuition for justification
rather than theory.

7. Conclusion

In this work, we have introduced the Minimal Vi-
able Phrase, which gives us information on how
long-range dependencies are relied upon by a
model to complete a task. We have found that only
the QuALITY task relies strictly on long-range de-
pendencies to be completed. We speculate that
the specific design choice made in building the
task, specifically the time trial and the writers’ in-
centives, ensured that long-range dependencies
were central to the task completion. From our
results, we believe that while constructing bench-
marks for long text understanding, special atten-
tion to how the different tasks are constructed con-
cerning long-range dependencies is warranted. It
does not seem that long-text, even if from tasks
that should intuitively require understanding some
long-range dependencies such as summarization,
is a sufficient criterion to ensure that long-range de-
pendencies understanding is properly evaluated.
We may not notice serious shortcomings in our
approaches if the scientific community optimizes
for benchmarks that include insufficient long-range
dependencies.
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