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Abstract
Large Language Models (LLMs) have ushered in a new era in Natural Language Processing, but their massive size
demands effective compression techniques for practicality. Although numerous model compression techniques
have been investigated, they typically rely on a calibration set that overlooks the multilingual context and results in
significant accuracy degradation for low-resource languages. This paper introduces Multilingual Brain Surgeon (MBS),
a novel calibration data sampling method for multilingual LLMs compression. MBS overcomes the English-centric
limitations of existing methods by sampling calibration data from various languages proportionally to the language
distribution of the model training datasets. Our experiments, conducted on the BLOOM multilingual LLM, demonstrate
that MBS improves the performance of existing English-centric compression methods, especially for low-resource
languages. We also uncover the dynamics of language interaction during compression, revealing that the larger the
proportion of a language in the training set and the more similar the language is to the calibration language, the
better performance the language retains after compression. In conclusion, MBS presents an innovative approach to
compressing multilingual LLMs, addressing the performance disparities and improving the language inclusivity of
existing compression techniques. The codes are available at: https://github.com/X-LANCE/MBS.
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1. Introduction

Large Language Models (LLMs) have revolution-
ized Natural Language Processing (NLP) with their
remarkable performance. However, their colossal
size and computational demands necessitate ef-
fective Model Compression (MC) techniques for
practical use. In the case of multilingual LLMs, the
vast size is crucial for retaining information from
various languages and mitigating the curse of multi-
linguality (Conneau et al., 2020; Goyal et al., 2021).
Moreover, wide language coverage and interfer-
ence among languages pose a harder challenge
for compressing multilingual LLMs.

Existing approaches for MC have predominantly
focused on model quantization (Frantar et al., 2023;
Dettmers et al., 2022; Xiao et al., 2023; Yao et al.,
2022), where model parameters are mapped to
lower bit-level representations, and network prun-
ing, which reduces the size of neural networks
by eliminating unnecessary connections. Inspired
by the classic Optimal Brain Damage (OBD) and
Optimal Brain Surgeon (OBS) pruning framework
(Hassibi et al., 1993; Le Cun et al., 1989), various
approaches, namely GPTQ (Frantar et al., 2023)
for model quantization, SparseGPT (Frantar and
Alistarh, 2023) and Wanda (Sun et al., 2023) for
network pruning, have been proposed to compress

†Lu Chen and Kai Yu are the corresponding authors.

LLMs. These compression methods utilize a cali-
bration dataset to determine the priority of param-
eters and thus are retraining-free, avoiding expen-
sive fine-tuning cost especially for LLMs.

However, neither of these methods has consid-
ered the multilingual scenario: all of them use a
single-language (e.g., English) calibration dataset
to determine the priority of parameters for multilin-
gual models. A significant performance drop on
multilingual tasks is observed due to this English-
centric approach, especially in the case of low-
resource languages.

In this paper, we propose Multilingual Brain Sur-
geon (MBS), which has successfully achieved sig-
nificant sparsity levels when compressing multi-
lingual LLMs while simultaneously minimizing the
performance drop across different languages in
the models, leaving no language behind after com-
pression. Specifically, as shown in Figure 1, MBS
samples the calibration data of different languages
proportionally to the language distribution of the
model training dataset. This approach effectively
addresses the multilingual compression problem
compared to previous monolingual sampling meth-
ods. Furthermore, we observed the dynamics of
language interaction during compression and drew
two main conclusions: 1) The larger the propor-
tion of a language in the model training dataset,
the more resistant it is to compression. 2) The

https://github.com/X-LANCE/MBS


11795

Figure 1: MBS samples calibration data from different languages proportionally to the language distribution
of training datasets. This approach (right part) effectively addresses the multilingual compression problem
compared to previous monolingual sampling methods (left part).

more similar the downstream language is to the
calibration language, the less performance drop it
obtained after compression. We further propose a
measure of similarity among languages to explain
and predict the performance drop.

The experiments were conducted on BLOOM
(BigScience Workshop, 2022), one of the most ef-
fective open-source multilingual LLM models. We
sample the calibration data from CC-100 (Wenzek
et al., 2020), a widely used dataset of web-crawled
data containing 100+ languages. The perplexity of
languages is tested on XL-Sum (Hasan et al., 2021),
a dataset that contains high-quality articles from
BBC covering 45 languages. Experimental results
demonstrate that MBS enhances the performance
of GPTQ, SparseGPT, and Wanda compared to us-
ing only English calibration data. We want to further
highlight that MBS is applicable to all compression
methods that involve the use of calibration data, es-
pecially those following the OBS/OBD framework
(Hassibi et al., 1993; Le Cun et al., 1989), which
necessitates approximations of second-derivative
information.

2. Background

2.1. Optimal Brain Surgeon (OBS)
Optimal Brain Surgeon (Hassibi et al., 1993) is a
classic network pruning algorithm. It assumes that
a network’s error converges to a local minimum and
calculates the second-order derivatives (Hessian
matrix H) of the error (E) with respect to each pa-
rameter (w) to determine which connections can be
safely pruned without significantly affecting perfor-
mance. The increase in error (Lj) when a parame-
ter (wj) is set to zero, and the optimal adjustment
(δw) of the remaining weights to compensate for

the removal are given by:

Lj =
1

2

wj
2

[H−1]jj
(1)

δw = − wj

[H−1]jj
H−1

:,j . (2)

2.2. Error Measurement
The network’s error can be expressed in terms of
the l2-error between the outputs before and after
compression (Hubara et al., 2021). Given inputs X
(the training dataset), the original weights W, the
updated weights Ŵ, and a sparsity mask M of the
same size as W, the error is defined as:

E = ||WX− (M⊙ Ŵ)X||22. (3)

In the case of quantization, the mask is a matrix
filled with ones. The second-order derivatives (H)
of the error with respect to the parameters are there-
fore represented as H = 2XXT, which forms the
basis of our approximation objective.

2.3. SparseGPT, Wanda and GPTQ
To assess the importance of parameters,
SparseGPT and Wanda employ different
pruning metrics. Taking inspiration from
OBS, SparseGPT defines its metric as
Si,j = [|W|2/diag((XTX + λI)−1)]i,j , with λ
being the Hessian dampening factor to prevent
inverse computation collapse. On the other hand,
Wanda uses Si,j = |Wi,j | · ||Xj ||2 as its pruning
metric.

Remarkably, these two metrics are essentially
equivalent when λ is set to 0, and only the diago-
nal elements of the Hessian matrix XTX + λI are
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retained:

diag(((XTX+ λI)⊙ I)−1) = (||Xj ||22)−1. (4)

This assumption aligns with the practice of Optimal
Brain Damage (Le Cun et al., 1989), which retains
only the diagonal elements of the second-order
derivatives matrix. Consequently, we can conclude
that:

SSparseGPT = S2
Wanda (5)

if we disregard the non-diagonal elements of H.
The primary distinctions between SparseGPT

and Wanda are as follows:

• SparseGPT retains the non-diagonal elements
of the Hessian metrics, whereas Wanda takes
the opposite approach.

• SparseGPT performs adjustments (δw) on
non-pruned parameters to compensate for re-
moval, while Wanda does not.

Equally inspired by OBD, the quantization formulas
provided by GPTQ are as follows:

wj = argminwj

(quant (wj)− wj)
2

[H−1]jj
(6)

δF = −wj − quant (wj)

[H−1]jj
·
(
H−1

)
:,j

(7)

Here, wj represents the greedy-optimal weight to
quantize next, δF denotes the corresponding opti-
mal update of weights, and quant(w) rounds the
value of w to the nearest point on the quantization
grid. It’s evident that these formulas follow a similar
pattern to the OBD/OBS approach, and the informa-
tion of the Hessian matrix H is crucial in all these
methods.

3. Is Monolingual Calibrating
Applicable to Multilingual MC?

Previous model compression methods only use En-
glish corpus as the sole calibration data, neglecting
other languages. This raises the question: how
does monolingual calibration impact the perfor-
mance of other languages during multilingual
model compression? In this section, we aim to
explore this issue theoretically, focusing on two
main aspects: the proportion of languages in the
training data, and the similarity between languages.
Further experimental analysis will be provided in
Section 5.3.

We denote the total error of the model as E, and
the error on language m as Em. We know that
model training convergence applies to the whole
training dataset. Thus, E resides in a local mini-
mum. However, for languages m and n, Em and En

may not necessarily be in their own local minima.

This also explains the presence of the multilingual
curse (Conneau et al., 2020), where the perfor-
mance of a multilingual model in all languages
is lower than that of a monolingual model with
the same configuration. This occurs because the
model is in a global local minimum, rather than indi-
vidual local minima for each language. Due to their
differing distributions, the local minima for each lan-
guage do not overlap. The reason why using larger
language models can alleviate this problem might
be that, with a huge amount of parameters, they
can simulate a distribution sophisticated enough
where different languages’ local minima are close.

3.1. Proportion in training data
Due to the fact that the size of English corpus is
much larger than low-resource languages, we may
suppose a language pair m and n with a signifi-
cantly different training corpus size (pn >> pm).

Intuitively, we can assume that languages with
larger corpora in the training set tend to have their
minimum error closer to the minimum of E be-
cause they contribute more weight to the total error.
This characteristic makes them more robust against
compression. Conversely, languages with smaller
corpora inherently have their minimum error far-
ther from the minimum of E, and compression can
potentially push them even further away.

Figure 2: Languages with larger corpora have their
minimum error closer to the minimum ofE. Monolin-
gual compression effectively "pushed" the model’s
state towards the minimum error of that particular
language.

This phenomenon is manifested in the follow-
ing way illustrated in Figure 2: when compressing
models with only the calibration data of the well-
represented1 language n, it has a significant impact
on the performance of the underrepresented lan-
guage m. However, compressing models with only

1In the rest of the paper, we call a language "well-
represented" when its proportion is relatively big in the
model training set, and "underrepresented" when its pro-
portion is relatively small.
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the calibration data of the underrepresented lan-
guage m has a comparatively minor impact on the
performance of the well-represented language n.

3.2. Similarity between languages

In the second scenario, we may suppose that the
two languages are as well-represented as each
other (pm ≈ pn). According to Equation 1, the pri-
ority of compression is fully determined by H, so it
is sufficient to compare Hm and Hn. We may sup-
pose the non-diagonal elements are trivial (Le Cun
et al., 1989) to calculate the inverse of H. The
metric is thus simplified to S = |W| · ||X||2, so we
can directly compare ||X||2, which is a vector of
length q (number of parameters), and each of the
elements is the sum of the square of the inputs at
the corresponding position.

A classic method to compare the similarity of two
vectors is cosine similarity. The choice of cosine
similarity over Euclidean distance is motivated by
the need to compare two vectors based on the like-
lihood that their largest components remain con-
sistent after undergoing the same element-wise
multiplication with unknown vectors (model param-
eters). This can be modeled as the comparison of
two vectors after they have experienced the same
coordinate axis transformation, assessing whether
their largest components remain identical. Clearly,
when two vectors have a smaller angle between
them, the likelihood that their largest components
remain the same after undergoing the same coordi-
nate axis transformation is relatively higher (demon-
strated in Figure 3).

Figure 3: The angle between language 2 and lan-
guage 3 is smaller than that between language 1
and language 2. After element-wise multiplication,
language 2 and 3 are more likely to prioritize the
same parameter w1 because their angle before mul-
tiplication is smaller.

However, it’s important to acknowledge that co-
sine similarity does not fulfill the properties of a
distance metric, particularly the triangle inequal-
ity. Consequently, we cannot directly deduce the
similarity between languages 1 and 3 from the sim-
ilarities between 1 and 2, and 2 and 3. However,
the property of a distance metric is less critical in
the context of our work, since our goal is only to

compare the similarity between the calibration lan-
guage and the non-calibration languages, rather
than among non-calibration languages.

We can compute the cosine similarity between
||Xm||2 and ||Xn||2. When they are similar, using
only data of language m as calibration data will
introduce little performance drop in language n,
and vice versa. That is to say, when two languages
are very different, employing data from just one of
the two languages as calibration data will lead to a
significant performance decrease in the other.

4. Multilingual Brain Surgeon (MBS)

To mitigate interference among languages in mul-
tilingual model compression, we introduce Multi-
lingual Brain Surgeon (MBS), a method that pro-
portionally samples calibration data from different
languages based on their distribution in the model
training dataset. We provide additional theoretical
details as follows.

In the OBD/OBS framework, we treat the error
(E) as a whole. This makes sense for monolin-
gual models since they contain only one language.
However, for multilingual models, the error can be
regarded as the sum of errors (En) associated with
different languages. For a model trained on mul-
tiple languages, we can express the total error as
follows:

E = E1 + E2 + E3 + . . .+ En. (8)

Consequently, the Hessian matrix can be repre-
sented as the sum of Hessian matrices for each
language:

H = H1 +H2 +H3 + . . .+Hn, (9)

where Hn = Xn
TXn. Here, Xn represents the

inputs (training data) for language n, with a shape
of q × pn, where q is the total number of network
parameters, and pn is the total number of training
samples for language n.

Let’s denote a subset of training data as X
[k]
n .

Then, we have:

Hn = Xn
TXn =

pn∑
k=1

X [k]
n

T
X [k]

n , (10)

which leads to:

H =

p1∑
k=1

X
[k]
1

T
X

[k]
1 +

p2∑
k=1

X
[k]
2

T
X

[k]
2 +. . .+

pn∑
k=1

X [k]
n

T
X [k]

n .

(11)
It’s evident that each language’s contribution to

H depends on its representation in the model’s
training data. Therefore, when selecting calibration
data, it’s essential to choose samples from each
language in proportion to its presence in the training
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set. Specifically, for language n, the percentage of
its representation in the training set is pn/p, where
p is the total number of training samples. Thus, we
should allocate a proportionate amount of data from
language n (i.e., pn/p percent) in the calibration
data used for compression.

5. Experiments

5.1. Experimental Setup

Models. The experiments were conducted using
the BLOOM (BigScience Workshop, 2022) model
family, which is recognized as one of the most effec-
tive open-source multilingual LLMs. Our primary
tests were performed on both the BLOOM-560m
and BLOOM-7b1 models to provide insights into the
performance of smaller and larger models. For the
network pruning experiments, a pruning sparsity of
50% was applied. In the quantization experiments,
the models were quantized to 3 bits precision with
groupings of size 1024.

Datasets & Language Selection. For calibra-
tion data, we selected CC-100 (Wenzek et al.,
2020), a dataset comprising web-crawled content
in over 100 languages, similar to the setup used by
previous studies like Frantar and Alistarh (2023),
Sun et al. (2023), and Frantar et al. (2023) which
used a monolingual English dataset called C4 (Raf-
fel et al., 2019).

To evaluate multilingual perplexity, we employed
XL-Sum (Hasan et al., 2021), a dataset contain-
ing high-quality articles from BBC covering 45 lan-
guages, as our benchmark. Additionally, we as-
sessed perplexity on the test sets of raw-WikiText2
(Merity et al., 2016), a widely used English per-
plexity benchmark. Due to resource limitations for
certain languages in the BLOOM model, we con-
ducted experiments on a subset of 20 languages,
which were those available in CC-100, XL-Sum,
and BLOOM. These languages include Arabic
(ar), Bengali (bn), Chinese simplified (zh-Hans),
Chinese traditional (zh-Hant), French (fr), Gu-
jarati (gu), Hindi (hi), Igbo (ig), Indonesian (id),
Marathi (mr), Nepali (ne), Portuguese (pt), Span-
ish (es), Swahili (sw), Tamil (ta), Telugu (te), Urdu
(ur), Vietnamese (vi), and Yoruba (yo).

Evaluation. We evaluated the perplexity of the
compressed model separately for each language
using XL-Sum. We also conducted zero-shot evalu-
ations, employing the widely recognized EleutherAI-
eval-harness (Gao et al., 2021), with a focus on
multilingual tasks to assess the performance of
less-represented languages. The zero-shot tasks
that we have chosen to evaluate the compressed
model are specified in Table 1.

Calibration data & Baselines. Our calibration
data consisted of 256 segments, each containing

2048 tokens, sampled from CC-100. We used our
MBS sampling method and sampled 87, 47, 37, 31,
14, 13, 7, 4, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 segments
respectively for en, zh-Hans, fr, es, pt, ar, vi,
hi, id, bn, ta, te, ur, ne, mr, gu, zh-Hant, sw,
yo and ig. Additionally, we conducted tests in
the Equal MBS setting, in which an equal number
of segments were sampled from each language.
We also implemented the monolingual compres-
sion setting, using 256 segments from the same
language.

Language Similarity Study. To study language
similarity, we conducted monolingual pruning on En-
glish and Igbo, representing the best-represented
and worst-represented languages in our dataset, re-
spectively. We also performed similar experiments
on Urdu and Tamil, which respectively represent
the least and most similar languages to the others
(further explanation is provided in the results sec-
tion). To compare language similarity, we utilized
the representations after the embedding layer of
the BLOOM model, as the compression algorithms
do not affect the embedding layer.

5.2. Main results
We conducted our MBS sampling technique to com-
press both BLOOM-7b1 and BLOOM-560m models,
using GPTQ, SparseGPT, and Wanda. The trends
observed in the results for these two models are
similar. For the sake of better formatting, we will
present the results for the 7b1 model in the main
text and provide the results for the 560M model in
the appendices.

Perplexity. Figure 4 presents the evaluation of
perplexity for each language after compression on
the BLOOM-7b1 model. The baselines consist of
monolingual compression using English-only cali-
bration data.

1. Across various compression methods, the
MBS sampling technique consistently leads
to minimal increases in perplexity. This holds
true whether we utilize Wanda or SparseGPT
for pruning or GPTQ for quantization.

2. For underrepresented languages (located
on the right side of the axis), MBS can no-
tably reduce the increase in perplexity after
compression, thus preserving the model’s ca-
pacity for lower-resourced languages, leaving
no languages behind.

3. Even for the most well-represented lan-
guage, specifically English (on both datasets
"en" and "wikitext2"), using MBS sampling in-
troduces a lower perplexity than its monolin-
gual English-centric sampling counterpart.

Zero shot tasks. Table 1 provides an overview
of the performance of zero-shot tasks after the
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Figure 4: Perplexity for each language and their respective increases when compared to the dense
BLOOM-7b1 model after pruning (left) or quantization (right). From left to right, languages are ranked in
order from the most well-represented to the least represented.

compression process. The results demonstrate
that, in the majority of tasks, utilizing MBS sam-
pling yields superior performance compared to
other sampling techniques. Furthermore, the per-
formance after compression closely approximates
that of the dense model, highlighting the effective-
ness of our approach.

Equal MBS. Table 2 provides the results for
Equal MBS, where an equal number of samples are
taken from each language. While Equal MBS is not
the optimal setting, it generally improves the per-
formance of the compressed model. This demon-
strates that even without access to the distribution
of languages in the training set, Equal MBS can still
enhance compression results for the chosen lan-
guages, showcasing the versatility of our method.

5.3. Monolingual Compression Study

5.3.1. Factor 1: Proportion in training data

To investigate how the proportion of a language in
the training data affects compression results, we
selected English (en) and Igbo (ig), which have
the largest and smallest proportions in the train-
ing data among the languages in our experiments,
respectively. The results are presented in Figure 5.

It is evident that if we use only English as our
calibration data, it significantly impacts less well-
represented languages, causing substantial in-
creases in perplexity, particularly for Marathi (mr)
and Gujarati (gu). However, for better-represented
languages, English (en) has a relatively smaller
influence, as observed with Chinese simplified (zh-
Hans), French (fr), and Spanish (es). Conversely,
when we use only Igbo as our calibration data, the
increase in perplexity for the other languages is
relatively small. Clearly, languages with a lower
representation in the training set tend to experi-
ence a more substantial increase in perplexity.

5.3.2. Factor 2: Similarity between languages

We calculated the cosine similarity of ||Xn||22 for
different languages using BLOOM-7b1, and then
converted this similarity into degrees. This allowed
us to create a distance map between languages.
To visualize the relative positions of different lan-
guages, we employed Multidimensional scaling
(Mead, 1992) and generated a 2-dimensional figure
(Figure 6). The original distance map is included
in the appendices.

Upon observing this graph, we can identify some
interesting clusters. Typically, languages from dif-
ferent language families tend to form distinct clus-
ters. For instance, there is a cluster comprising
Indo-European languages such as English, Span-
ish, French, and Portuguese, a cluster for Chinese
simplified and Chinese traditional, both of which
are Chinese languages, and another cluster con-
sisting of Niger-Congo languages like Yoruba, Igbo,
and Swahili. This clustering may be attributed to
the following factors:

• Shared Grammar Structure: Languages
within the same language family often share
similar grammar structures.

• Shared Tokens: During the tokenization pro-
cess, these languages frequently share tokens,
including prefixes, suffixes, and other word-
building elements.

To investigate how language similarity impacts
compression outcomes, we chose to examine two
extreme cases: Tamil (ta), which is the language
that is "closest" to all other languages (with an aver-
age distance of 7.25), and Urdu (ur), which is the
language that is "farthest" from all other languages
(with an average distance of 15.45). The results for
Wanda are displayed in Figure 7, while the results
for SparseGPT, which exhibit similar patterns to
those of Wanda, are provided in the appendices.
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Accuracy of
0-shot task Dense Wanda Wanda

+MBS SparseGPT
SparseGPT

+MBS
GPTQ GPTQ

+MBS
xcopa↑
id 69.80% 67.20% 67.40% 65.60% 66.40% 67.20% 67.40%
sw 51.60% 54.80% 53.80% 55.20% 51.20% 54.60% 55.00%
ta 59.20% 61.20% 57.80% 60.60% 58.60% 58.40% 57.80%
vi 70.80% 69.80% 67.20% 66.80% 66.40% 67.00% 68.20%
zh 65.20% 62.00% 63.60% 62.20% 63.80% 61.00% 62.60%
Average 63.32% 63.00% 61.96% 62.08% 61.28% 61.64% 62.20%
xstory_cloze↑
ar 58.57% 53.94% 54.93% 54.93% 56.32% 56.45% 57.18%
en 70.75% 68.23% 67.70% 69.23% 68.96% 68.70% 68.96%
es 66.12% 64.39% 63.20% 62.87% 64.39% 64.53% 64.79%
hi 60.56% 56.92% 57.18% 57.64% 58.44% 58.04% 58.17%
id 64.46% 59.96% 60.29% 59.23% 61.81% 60.89% 62.54%
sw 53.94% 50.89% 51.69% 50.69% 52.02% 52.28% 52.95%
te 57.45% 56.52% 56.72% 56.78% 57.97% 57.18% 57.71%
zh 61.88% 58.37% 59.56% 57.91% 60.89% 60.03% 60.03%
Average 61.71% 58.65% 58.91% 58.66% 60.10% 59.76% 60.29%
xwinograd↑
en 82.15% 79.40% 78.88% 80.09% 79.74% 79.35% 79.57%
fr 71.08% 71.08% 67.47% 72.29% 73.49% 65.06% 67.47%
pt 76.81% 74.14% 75.29% 71.48% 74.14% 69.20% 72.24%
zh 74.40% 74.40% 75.79% 74.40% 75.20% 71.23% 73.81%
Average 76.11% 74.76% 74.36% 74.57% 75.64% 71.21% 73.27%
pawsx↑
en 61.30% 53.60% 54.75% 57.50% 58.25% 56.75% 58.60%
es 59.35% 51.75% 54.05% 54.10% 56.60% 57.95% 56.10%
fr 50.90% 47.45% 46.45% 50.85% 47.10% 52.30% 48.60%
zh 47.35% 45.05% 45.45% 45.70% 47.45% 49.10% 50.00%
Average 54.73% 49.46% 50.18% 52.04% 52.35% 54.03% 53.33%
xnli↑
ar 33.83% 33.67% 33.91% 34.89% 34.51% 33.67% 34.75%
en 53.91% 52.20% 52.59% 53.49% 53.49% 52.73% 52.93%
es 48.70% 48.14% 47.47% 45.13% 46.81% 46.63% 47.54%
fr 49.68% 43.57% 48.38% 46.29% 49.00% 48.58% 48.62%
hi 46.51% 42.63% 44.51% 40.60% 45.97% 44.19% 46.63%
sw 37.92% 38.36% 37.80% 37.35% 36.29% 36.63% 37.33%
ur 42.10% 39.82% 40.54% 40.42% 39.58% 38.42% 41.98%
vi 47.05% 45.99% 46.35% 42.46% 44.89% 44.29% 46.09%
zh 35.43% 35.31% 33.99% 34.57% 34.21% 35.27% 34.71%
Average 43.90% 42.19% 42.84% 41.69% 42.75% 42.27% 41.35%
Average↑ 57.63% 55.36% 55.49% 55.38% 56.13% 55.59% 57.08%

Table 1: 0-shot task performance of BLOOM-7b1 with different model compression methods.

It is evident that when we use Tamil (ta) as our
sole calibration data, the increase in perplexity for
other languages is relatively small, especially for
languages that are "closer" to Tamil, such as Ben-
gali (bn) and Hindi (hi). Conversely, when Urdu
(ur) serves as our sole calibration data, the in-
crease in perplexity for other languages is rela-
tively significant on average. The consistent pattern
across all four graphs reveals that languages more
distant from the language being compressed
tend to exhibit a more significant increase in
perplexity.

An intriguing case study can be conducted on
Chinese simplified and Chinese traditional. Despite
their close proximity on the language map, they sig-

nificantly differ in corpus size. Chinese simplified
enjoys a much larger proportion, resulting in a more
pronounced impact on Chinese traditional after the
compression process, while Chinese simplified re-
mains relatively unaffected. These experiments
demonstrate the validity and accuracy of our the-
ory.

6. Related Work

Large Language Model. Large Language
Models(Zhao et al., 2023) like GPT-4(OpenAI
et al., 2024), LLaMA(Touvron et al., 2023) and
OPT(Zhang et al., 2022), which have revolutionized
Natural Language Processing through their ability
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Figure 5: Monolingual pruning results using Wanda with calibration data in English or Igbo. The size of
each bubble corresponds to the magnitude of the increase in perplexity for the model in that particular
language, while the vertical axis represents the size of training data in log(bytes) from the language in the
training set of BLOOM. The languages with a smaller proportion in the training set experience a
greater increase in perplexity.

Compression
Methods

Average
0-shot Task
Accuracy↑

Average
ppl↓

Wanda 55.36% 64.70
Wanda+
Equal MBS 55.20% 24.97

Wanda+
MBS 55.49% 26.28

SparseGPT 55.38% 59.84
SparseGPT+
Equal MBS 55.86% 22.62

SparseGPT+
MBS 56.13% 23.82

GPTQ 55.59% 31.17
GPTQ+
Equal MBS 56.52% 23.15

GPTQ+
MBS 57.08% 24.26

Table 2: Performance of Equal MBS, where an
equal number of segments are sampled from each
language.

to understand and generate nuanced text. Along-
side, multilingual language models(Doddapaneni
et al., 2021) such as BLOOM(BigScience Work-
shop, 2022) and XLM-R(Conneau et al., 2020) are
breaking language barriers by learning universal
representations from texts across numerous lan-
guages. These developments underscore a sig-
nificant shift towards creating more versatile and
inclusive NLP systems, with research focusing on
architectural innovations, training efficiencies, and
cross-lingual capabilities to enhance global digital
interaction.

We would like to emphasize that MBS can be ap-
plied to any model compression method that utilizes
calibration data, particularly methods based on the
OBS/OBD framework, where the approximation of

Figure 6: Distance map of different languages as-
sociated with their corresponding language families.
We can see that languages with the same family
cluster together from this map.

second-derivative information is required. Thanks
to a survey on model compression for large lan-
guage models by (Zhu et al., 2023), we examined
the state-of-the-art model compression methods
for large language models, and we found that our
MBS is useful for almost all of them.

Pruning and quantization are two major model
compression methods for LLMs.

Pruning. Pruning reduces model size and com-
plexity by eliminating unnecessary or redundant
components. It can be categorized into structured
pruning, where higher-granularity structures like
rows or columns of weight matrices are removed,
and unstructured pruning, which eliminates in-
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Figure 7: Similarly to Figure 5, but focusing on Urdu or Tamil. The languages less similar to the
calibration language experience a greater increase in perplexity.

dividual weights, leading to irregular sparse struc-
tures. In the domain of unstructured pruning,
MBS can be applied to Wanda (Sun et al., 2023)
and SparseGPT (Frantar and Alistarh, 2023) that
we presented in the background section, and also
LoRAPrune (Zhang et al., 2023). In the structured
pruning domain, MBS can empower LLM-Pruner
(Ma et al., 2023).

Quantization. Quantization involves converting
floating-point numbers into lower bit-level represen-
tations, integers, or other discrete forms and can
be categorized into Quantization-Aware Training
and Post-Training Quantization. MBS finds nu-
merous applications in quantization, particularly in
post-training quantization. In post-training quan-
tization, certain approaches focus on quantizing
only the weights of LLMs. Among these methods,
MBS can be applied to AWQ (Lin et al., 2023),
GPTQ (Frantar et al., 2023), OWQ (Lee et al.,
2023), SpQR (Dettmers et al., 2023), SqueezeLLM
(Kim et al., 2023), QuIP (Chee et al., 2023), and
SignRound (Cheng et al., 2023). Some other meth-
ods try to quantize both weights and activations
of LLMs. Among them, MBS can be applied to
SmoothQuant (Xiao et al., 2023), RPTQ (Yuan
et al., 2023), OliVe (Guo et al., 2023), ZeroQuant-
V2 (Yao et al., 2023), Outlier Suppression+ (Wei
et al., 2023), FPTQ (Li et al., 2023), QuantEase
(Behdin et al., 2023), and OmniQuant (Shao et al.,
2023).

7. Conclusions

In summary, the Multilingual Brain Surgeon (MBS)
is a groundbreaking approach for improving mul-
tilingual LLMs. It tackles the English-centric bias
in existing techniques and enhances LLM perfor-
mance after compressing. Our experiments on the
BLOOM model highlight the effectiveness of MBS,
benefiting pruning and quantization methods like
SparseGPT, Wanda, and GPTQ.

We also studied language interaction during com-
pression, finding that language proportion in the
training dataset and language similarity are crucial
factors. Languages with larger proportion are less
affected by compression, while similar languages
perform better when only one language is used
in calibration data. Our proposed similarity mea-
sure accurately predicts performance drops in such
scenarios.

This research not only enhances the practicality
of multilingual LLMs compression methods but also
maintains language coverage, making multilingual
NLP applications more inclusive and powerful.
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A. Details of Calibration Data

Language
Size in Bytes
in BLOOM
training data

MBS
sampling

Equal
sampling

en 4.85E+11 87 13
zh-Hans 2.61E+11 47 13
fr 2.08E+11 37 13
es 1.75E+11 31 13
pt 7.93E+10 14 13
ar 7.49E+10 13 13
vi 4.37E+10 7 13
hi 2.46E+10 4 13
id 2.00E+10 3 13
bn 1.86E+10 3 13
ta 7.99E+09 1 13
te 2.99E+09 1 13
ur 2.78E+09 1 13
ne 2.55E+09 1 13
mr 1.78E+09 1 13
gu 1.20E+09 1 13
zh-Hant 7.62E+08 1 12
sw 2.36E+08 1 12
yo 8.97E+07 1 12
ig 1.41E+07 1 12

Table 3: The number of segments taken from each
language by each sampling method.

The number of segments taken from each lan-
guage is detailed in Table 3. We rounded up the
segment counts for languages with fewer than one
segment to ensure their representation in the cal-
ibration data. In the equal sampling scenario, to
maintain comparability, some languages have one
segment less than others to achieve a total of 256
segments.

B. MBS results tables

Perplexity. Table 6 showcases the perplexity
evaluation for each language after pruning on the
BLOOM-560m model. The observed trends align
closely with those observed on the BLOOM-7b1
model.

Zero shot tasks. Table 7 illustrates the zero-shot
task results for the pruned BLOOM-560m model. It
is noticeable that the average accuracy using the
MBS sampling method continues to outperform the
baselines, although the results appear to exhibit
more variability. This variability can be attributed to
the reduced capacity of smaller models to maintain
their multilingual capabilities.

The role of parameter compensation. We
have observed a notable distinction in the effects of
SparseGPT and Wanda. In monolingual pruning,
SparseGPT, which involves parameter updates and
employs a more precise pruning metric, appears

https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
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Dataset Dense Wanda ↑ SparseGPT ↑ MBS +
Wanda ↑ MBS +

SparseGPT ↑

en 13.68 15.67 15% 14.92 9% 15.55 14% 15.01 10%
zh-Hans 23.70 34.75 47% 35.56 50% 26.59 12% 25.87 9%
fr 9.59 13.16 37% 13.41 40% 10.68 11% 10.39 8%
es 10.71 13.82 29% 13.75 28% 11.91 11% 11.59 8%
pt 10.97 14.58 33% 17.37 58% 12.25 12% 11.96 9%
ar 14.40 29.19 103% 25.33 76% 16.45 14% 15.88 10%
vi 10.16 14.76 45% 15.00 48% 11.59 14% 11.24 11%
hi 10.96 18.26 67% 19.09 74% 12.52 14% 12.19 11%
id 20.48 29.37 43% 37.27 82% 23.76 16% 22.97 12%
bn 17.27 33.37 93% 40.50 134% 20.29 17% 19.51 13%
ta 16.55 42.23 155% 44.10 167% 20.10 21% 19.34 17%
te 18.10 64.97 259% 69.20 282% 24.59 36% 22.05 22%
ur 13.26 27.03 104% 30.56 130% 15.83 19% 15.10 14%
ne 27.22 152.67 461% 148.00 444% 34.90 28% 32.91 21%
mr 23.07 176.78 666% 144.65 527% 32.25 40% 28.91 25%
gu 21.52 184.62 758% 118.48 450% 30.84 43% 26.97 25%
zh-Hant 21.84 113.34 419% 102.26 368% 24.96 14% 24.30 11%
sw 34.35 145.54 324% 135.84 295% 54.32 58% 44.23 29%
yo 53.29 128.12 140% 126.54 137% 79.62 49% 67.52 27%
ig 39.16 90.41 131% 90.89 132% 59.00 51% 49.10 25%
wikitext2 11.37 16.15 42% 13.91 22% 13.82 22% 13.26 17%
Average 20.08 64.70 222% 59.84 198% 26.28 31% 23.82 19%

Table 4: Perplexity for each language and their respective increases when compared to the dense
BLOOM-7b1 model after pruning. Evaluation performed on XL-Sum and WikiText2 datasets. From top to
bottom, languages are ranked in order from the most well-represented to the least represented.

Dataset Dense GPTQ GPTQ+MBS
en 13.68 15.3 15.37
zh-Hans 23.7 28.69 26.28
fr 9.59 10.94 10.46
es 10.71 12.49 11.9
pt 10.97 13.05 12.36
ar 14.4 17.35 16.12
vi 10.16 11.97 11.15
hi 10.96 13.72 12.27
id 20.48 25.36 23.45
bn 17.27 22.88 19.83
ta 16.55 24.5 19.53
te 18.1 32.83 22.67
ur 13.26 18.29 15.4
ne 27.22 45.5 33.97
mr 23.07 43.32 29.57
gu 21.52 40.4 27.83
zh-Hant 21.84 26.85 24.75
sw 34.35 68.42 46.19
yo 53.29 98.46 67.82
ig 39.16 71.56 49.96
wikitext2 11.37 12.6 12.56
Average 20.08 31.17 24.26

Table 5: Perplexity for each language of BLOOM-
7b1 model before and after quantization.

to have a more detrimental impact on less well-
represented languages. However, when we apply
MBS, SparseGPT continues to outperform Wanda.
This phenomenon may be attributed to the fact that
smaller models are more sensitive to parameter
updates. A biased Hessian matrix can exacerbate
the model’s divergence from the correct direction
through these updates. Conversely, a correctly ap-
proximated Hessian matrix can effectively guide
the pruning in the correct direction.

C. Monolingual pruning results

Distance map of BLOOM-560m model. The dis-
tance map depicting the relationships between lan-
guages in the BLOOM-560m model is depicted in
Figure 8. We can discern a similar clustering pat-
tern to that observed in the BLOOM-7b1 model.

The original distance matrices are provided in
the following tables(12, 13).
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Dataset Dense Wanda SparseGPT MBS +
Wanda

MBS +
SparseGPT

en 13.68 34.30 32.02 35.08 32.87
zh-Hans 23.70 72.92 101.79 62.39 59.28
fr 9.59 22.89 24.99 21.66 20.37
es 10.71 25.41 27.94 23.98 22.56
pt 10.97 27.47 34.99 25.82 24.27
ar 14.40 80.09 1.13E+14 41.36 47.57
vi 10.16 43.26 127.59 30.75 29.64
hi 10.96 44.10 1.20E+15 29.17 43.84
id 20.48 109.13 76038.83 64.40 79.85
bn 17.27 102.78 4.42E+23 56.65 121.11
ta 16.55 176.25 1.71E+07 64.40 209.90
te 18.10 355.98 6.96E+05 116.20 355.54
ur 13.26 97.65 3.62E+20 44.60 61.35
ne 27.22 555.21 1.27E+17 135.67 200.16
mr 23.07 503.51 4.25E+12 142.76 619.28
gu 21.52 327.11 2.17E+13 136.47 197.21
zh-Hant 21.84 137.00 266.49 61.30 58.56
sw 34.35 919.14 6011.36 357.63 336.80
yo 53.29 1.02E+03 3557.88 542.40 450.00
ig 39.16 728.01 1306.30 370.35 307.76
wikitext2 11.37 30.58 29.75 31.09 29.90
Average 20.08 257.99 2.11E+22 114.01 157.51

Table 6: Perplexity for each language and their respective increases when compared to the dense
BLOOM-560m model after pruning. Evaluation performed on XL-Sum and WikiText2 datasets. From top
to bottom, languages are ranked in order from the most well-represented to the least represented.

Figure 8: The graph illustrates the relative positions of different languages. Different dot shapes represent
different language families. The closer they are on the graph, the more similar they are to each other.
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0-shot task Dense Wanda SparseGPT Wanda
equal

SparseGPT
equal

MBS+
Wanda

MBS+
SparseGPT

xcopa
id 59.20% 56.20% 51.80% 58.40% 57.40% 58.60% 55.80%
sw 51.60% 52.60% 52.60% 51.80% 52.80% 52.20% 52.20%
ta 55.80% 57.20% 54.00% 56.00% 56.00% 54.80% 56.20%
vi 61.00% 55.40% 51.60% 57.60% 56.20% 56.00% 55.60%
zh 58.60% 52.80% 53.00% 53.40% 53.60% 53.80% 55.00%
Average 57.24% 54.84% 52.60% 55.44% 55.20% 55.08% 54.96%
xstory_cloze
ar 52.08% 48.25% 49.57% 49.24% 48.31% 48.97% 48.84%
en 61.22% 57.78% 59.23% 56.92% 57.97% 57.51% 59.70%
es 55.86% 53.67% 54.40% 53.81% 54.14% 54.27% 55.00%
hi 55.00% 52.68% 48.31% 53.21% 54.00% 53.08% 52.88%
id 55.53% 53.14% 48.31% 53.14% 52.42% 53.34% 52.22%
sw 49.83% 49.11% 48.78% 49.24% 49.24% 49.44% 48.51%
te 55.72% 54.33% 53.28% 54.80% 55.46% 54.07% 55.46%
zh 54.53% 51.95% 51.29% 51.56% 52.68% 51.95% 53.54%
Average 54.97% 52.61% 51.65% 52.74% 53.03% 52.83% 53.27%
xwinograd
en 65.89% 61.98% 62.58% 62.28% 63.44% 62.02% 62.92%
fr 60.24% 56.63% 51.81% 56.63% 56.63% 59.04% 57.83%
pt 60.08% 55.51% 60.46% 54.75% 57.41% 55.13% 59.70%
zh 67.66% 66.27% 66.87% 66.87% 63.49% 66.07% 69.64%
Average 63.47% 60.10% 60.43% 60.13% 60.24% 60.57% 62.52%
pawsx
en 52.00% 49.90% 48.60% 49.15% 49.85% 47.60% 50.85%
es 53.25% 48.75% 48.85% 51.60% 48.75% 50.70% 50.80%
fr 47.95% 47.70% 48.45% 46.45% 46.75% 46.45% 45.35%
zh 45.20% 45.15% 44.85% 45.50% 45.70% 45.55% 44.75%
Average 49.60% 47.88% 47.69% 48.18% 47.76% 47.58% 47.94%
xnli
ar 33.35% 33.47% 33.55% 33.59% 33.57% 33.41% 33.67%
en 49.50% 46.53% 45.89% 45.43% 46.09% 45.31% 46.37%
es 45.23% 45.71% 41.72% 43.11% 42.87% 44.45% 42.95%
fr 45.29% 45.51% 42.20% 45.07% 45.27% 45.71% 43.75%
hi 40.84% 38.64% 33.35% 37.90% 36.45% 38.78% 34.77%
sw 33.17% 33.65% 33.51% 33.45% 33.21% 33.63% 33.29%
ur 37.13% 33.75% 33.27% 35.23% 34.77% 35.11% 34.01%
vi 40.52% 40.28% 33.05% 38.44% 36.61% 39.14% 37.15%
zh 33.95% 33.33% 33.45% 33.29% 33.47% 33.29% 33.61%
Average 39.89% 38.99% 36.67% 38.39% 38.04% 38.76% 37.73%
Total
Average 51.24% 49.26% 47.95% 49.26% 49.15% 49.31% 49.41%

Table 7: 0-shot tasks performance on each task of BLOOM-560m pruned model.
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Dataset Dense en ↑ ig ↑ ta ↑ ur ↑
en 13.68 15.67 15% 17.61 29% 17.20 26% 18.93 38%
zh-Hans 23.70 34.75 47% 33.97 43% 31.99 35% 31.70 34%
fr 9.59 13.16 37% 12.70 32% 13.94 45% 14.84 55%
es 10.71 13.82 29% 14.16 32% 15.83 48% 17.17 60%
pt 10.97 14.58 33% 14.60 33% 15.78 44% 18.20 66%
ar 14.40 29.19 103% 26.27 82% 22.82 58% 17.65 23%
vi 10.16 14.76 45% 12.74 25% 13.48 33% 14.62 44%
hi 10.96 18.26 67% 15.82 44% 13.18 20% 13.97 28%
id 20.48 29.37 43% 27.30 33% 27.48 34% 33.96 66%
bn 17.27 33.37 93% 26.71 55% 21.94 27% 30.11 74%
ta 16.55 42.23 155% 27.14 64% 19.31 17% 24.44 48%
te 18.10 64.97 259% 39.77 120% 25.58 41% 37.68 108%
ur 13.26 27.03 104% 25.07 89% 19.70 49% 15.38 16%
ne 27.22 152.67 461% 64.74 138% 46.59 71% 46.60 71%
mr 23.07 176.78 666% 66.86 190% 45.71 98% 68.97 199%
gu 21.52 184.62 758% 48.30 124% 35.17 63% 37.96 76%
zh-Hant 21.84 113.34 419% 49.41 126% 56.20 157% 36.81 69%
sw 34.35 145.54 324% 58.74 71% 91.94 168% 125.09 264%
yo 53.29 128.12 140% 72.86 37% 127.05 138% 180.01 238%
ig 39.16 90.41 131% 51.30 31% 91.28 133% 149.15 281%
wikitext2 11.37 16.15 42% 16.25 43% 14.14 24% 15.68 38%
Average 20.08 64.70 189.1% 34.40 68.7% 36.49 63.4% 45.19 90.2%

Table 8: Monolingual pruning results using Wanda on BLOOM-7b1 with calibration data in en, ig, ta, and
ur. Perplexity evaluated on XL-sum and wikitext2. Languages are ranked from the most well-represented
to the least represented, from top to bottom.

Dataset Dense en ig ta ur
en 13.68 14.92 9% 16.28 19% 16.53 21% 16.80 23%
zh-Hans 23.70 35.56 50% 30.31 28% 31.45 33% 33.05 39%
fr 9.59 13.41 40% 11.42 19% 12.71 32% 12.75 33%
es 10.71 13.75 28% 12.82 20% 14.12 32% 14.58 36%
pt 10.97 17.37 58% 13.49 23% 14.86 35% 15.38 40%
ar 14.40 25.33 76% 18.54 29% 19.31 34% 16.87 17%
vi 10.16 15.00 48% 12.07 19% 13.26 31% 13.07 29%
hi 10.96 19.09 74% 14.44 32% 12.73 16% 12.46 14%
id 20.48 37.27 82% 25.56 25% 27.34 33% 26.84 31%
bn 17.27 40.50 134% 24.21 40% 21.07 22% 21.85 26%
ta 16.55 44.10 167% 26.36 59% 17.84 8% 22.58 36%
te 18.10 69.20 282% 31.56 74% 24.12 33% 28.66 58%
ur 13.26 30.56 130% 19.20 45% 17.32 31% 14.12 7%
ne 27.22 148.00 444% 47.77 76% 42.62 57% 40.12 47%
mr 23.07 144.65 527% 43.74 90% 37.81 64% 49.41 114%
gu 21.52 118.48 450% 39.39 83% 34.87 62% 32.87 53%
zh-Hant 21.84 102.26 368% 30.51 40% 50.00 129% 43.85 101%
sw 34.35 135.84 295% 46.74 36% 72.81 112% 72.94 112%
yo 53.29 126.54 137% 61.08 15% 105.97 99% 113.09 112%
ig 39.16 90.89 132% 41.37 6% 74.44 90% 86.14 120%
wikitext2 11.37 13.91 22% 13.56 19% 13.66 20% 13.95 23%
Average 20.08 59.84 169.3% 27.64 37.8% 32.14 47.3% 33.40 51.1%

Table 9: Monolingual pruning results using SparseGPT on BLOOM-7b1 with calibration data in en,
ig, ta, and ur. Perplexity evaluated on XL-sum and wikitext2. Languages are ranked from the most
well-represented to the least represented, from top to bottom.
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Dataset Dense en ig te id
en 13.68 34.30 151% 49.17 259% 53.12 288% 38.50 181%
zh-Hans 23.70 72.92 208% 87.98 271% 126.56 434% 79.06 234%
fr 9.59 22.89 139% 32.46 238% 41.75 335% 24.91 160%
es 10.71 25.41 137% 38.29 258% 47.38 343% 28.18 163%
pt 10.97 27.47 150% 42.04 283% 57.68 426% 30.47 178%
ar 14.40 80.09 456% 79.26 451% 66.66 363% 55.03 282%
vi 10.16 43.26 326% 39.63 290% 150.26 1379% 38.05 275%
hi 10.96 44.10 303% 50.54 361% 32.37 195% 36.25 231%
id 20.48 109.13 433% 108.26 429% 952.66 4551% 60.77 197%
bn 17.27 102.78 495% 141.25 718% 68.01 294% 83.81 385%
ta 16.55 176.25 965% 147.99 794% 60.52 266% 163.29 887%
te 18.10 355.98 1866% 260.31 1338% 95.77 429% 445.67 2362%
ur 13.26 97.65 636% 143.11 979% 49.14 271% 63.39 378%
ne 27.22 555.21 1940% 320.61 1078% 143.19 426% 237.41 772%
mr 23.07 503.51 2083% 290.52 1159% 140.02 507% 220.62 856%
gu 21.52 327.11 1420% 215.13 900% 124.55 479% 286.66 1232%
zh-Hant 21.84 137.00 527% 156.15 615% 227.56 942% 167.85 668%
sw 34.35 919.14 2576% 419.52 1121% 897.07 2511% 465.66 1256%
yo 53.29 1024.94 1823% 529.35 893% 711.20 1235% 573.17 976%
ig 39.16 728.01 1759% 285.28 629% 773.60 1876% 409.11 945%
wikitext2 11.37 30.58 169% 40.70 258% 46.07 305% 33.40 194%
Average 20.08 257.99 883.9% 165.60 634.4% 231.67 850.2% 168.63 610.0%

Table 10: Monolingual pruning results of Wanda on BLOOM-560m.

Dataset Dense en ig te id
en 14 32 43 48 40
zh-Hans 24 102 128 108 110
zh-Hant 22 266 162 227 279
fr 10 25 28 39 28
es 11 28 34 48 32
pt 11 35 37 54 35
ar 14 1.13E+14 8.10E+07 247 3.52E+07
vi 10 128 70 948 78
hi 11 1.20E+15 3.93E+10 128 2.98E+09
id 20 76039 7049 11397 62
bn 17 4.42E+23 2.16E+10 1788 6.12E+15
ta 17 17114940 361068 85 1.80E+08
te 18 696319 180476 75 2.40E+07
ur 13 3.62E+20 55283 807 1.55E+07
ne 27 1.27E+17 1.70E+09 636 6.43E+10
mr 23 4.25E+12 2.13E+08 1250 3.76E+11
gu 22 2.17E+13 3051 252 4.96E+06
sw 34 6011 467 1363 1502
yo 53 3558 342 882 1463
ig 39 1306 205 990 753
wikitext2 11 30 36 41 34
Average 20 2.11E+22 2.99E+09 1020 2.92E+14

Table 11: Monolingual pruning results of SparseGPT on BLOOM-560m.



11812

en zh-Hans zh-Hant fr es pt ar vi hi id bn ta te ur ne mr gu sw yo ig
en 0 10 11 5 6 7 9 8 10 6 9 8 12 20 14 9 12 10 10 10
zh-Hans 10 0 1 13 15 16 8 12 3 12 6 6 5 11 8 5 6 16 17 18
zh-Hant 11 1 0 15 17 18 8 14 4 13 6 6 5 10 7 6 6 17 19 19
fr 5 13 15 0 2 3 11 5 12 4 10 10 14 22 16 11 13 6 6 7
es 6 15 17 2 0 1 12 7 15 6 13 12 17 25 18 13 15 7 5 6
pt 7 16 18 3 1 0 12 7 15 5 13 13 17 25 18 13 16 5 4 5
ar 9 8 8 11 12 12 0 8 6 8 6 5 8 14 8 4 8 11 12 12
vi 8 12 14 5 7 7 8 0 10 2 8 8 12 19 12 8 10 4 6 6
hi 10 3 4 12 15 15 6 10 0 10 3 3 3 10 5 3 4 14 16 16
id 6 12 13 4 6 5 8 2 10 0 8 7 12 19 13 8 10 4 6 6
bn 9 6 6 10 13 13 6 8 3 8 0 2 4 12 6 3 3 12 14 14
ta 8 6 6 10 12 13 5 8 3 7 2 0 4 12 6 2 4 11 13 13
te 12 5 5 14 17 17 8 12 3 12 4 4 0 8 4 5 2 16 18 18
ur 20 11 10 22 25 25 14 19 10 19 12 12 8 0 7 12 10 23 25 25
ne 14 8 7 16 18 18 8 12 5 13 6 6 4 7 0 5 5 16 18 18
mr 9 5 6 11 13 13 4 8 3 8 3 2 5 12 5 0 4 12 13 13
gu 12 6 6 13 15 16 8 10 4 10 3 4 2 10 5 4 0 14 16 17
sw 10 16 17 6 7 5 11 4 14 4 12 11 16 23 16 12 14 0 3 3
yo 10 17 19 6 5 4 12 6 16 6 14 13 18 25 18 13 16 3 0 1
ig 10 18 19 7 6 5 12 6 16 6 14 13 18 25 18 13 17 3 1 0
Average 9.3 9.4 10.1 9.25 10.6 10.65 8.5 8.3 8.1 7.95 7.6 7.25 9.2 15.45 10.2 7.45 8.75 10.2 11.1 11.35

Table 12: Original distance matrix generated from the BLOOM-7b1 model.

en zh-Hans zh-Hant fr es pt ar vi hi id bn ta te ur ne mr gu sw yo ig
en 0 8 9 2 1 4 54 14 28 12 47 48 60 52 38 31 55 15 13 13
zh-Hans 8 0 1 7 8 5 53 7 24 6 45 46 58 49 34 28 53 7 5 5
zh-Hant 9 1 0 8 9 6 53 6 24 5 45 46 58 49 34 28 53 6 5 5
fr 2 7 8 0 2 4 53 12 26 10 46 47 59 51 36 30 53 13 12 12
es 1 8 9 2 0 3 54 13 27 11 46 47 59 51 37 31 54 14 12 13
pt 4 5 6 4 3 0 53 11 26 9 45 46 59 50 36 29 53 11 9 9
ar 54 53 53 53 54 53 0 50 29 49 12 7 9 7 19 30 5 51 52 52
vi 14 7 6 12 13 11 50 0 22 5 42 43 55 46 31 26 50 5 6 6
hi 28 24 24 26 27 26 29 22 0 20 23 22 34 25 11 9 29 23 23 24
id 12 6 5 10 11 9 49 5 20 0 41 42 54 45 30 23 49 6 6 5
bn 47 45 45 46 46 45 12 42 23 41 0 10 20 9 14 26 9 43 43 44
ta 48 46 46 47 47 46 7 43 22 42 10 0 13 6 13 22 9 44 45 45
te 60 58 58 59 59 59 9 55 34 54 20 13 0 13 25 32 12 56 57 57
ur 52 49 49 51 51 50 7 46 25 45 9 6 13 0 15 26 6 47 48 48
ne 38 34 34 36 37 36 19 31 11 30 14 13 25 15 0 13 20 32 33 33
mr 31 28 28 30 31 29 30 26 9 23 26 22 32 26 13 0 31 26 26 26
gu 55 53 53 53 54 53 5 50 29 49 9 9 12 6 20 31 0 51 51 52
sw 15 7 6 13 14 11 51 5 23 6 43 44 56 47 32 26 51 0 5 4
yo 13 5 5 12 12 9 52 6 23 6 43 45 57 48 33 26 51 5 0 3
ig 13 5 5 12 13 9 52 6 24 5 44 45 57 48 33 26 52 4 3 0
Average 25.2 22.45 22.5 24.15 24.6 23.4 34.6 22.5 22.45 21.4 30.5 30.05 39.5 32.15 25.2 24.65 34.75 22.95 22.7 22.8

Table 13: Original distance matrix generated from the BLOOM-560m model.
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