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Introduction

Welcome to the proceedings of the 6th International Conference on Natural Language and Speech Pro-
cessing!

This volume presents a vibrant tapestry of cutting-edge research in natural language processing, highlight-
ing advancements in a diverse range of areas. It addresses many NLP aspects as bridging the language
divide, expressive and robust communication, building and leveraging resources, and unifying theory and
practice. Research works dealing with these topics have been presented at ICNLSP 2023.

Thirty seven (37) papers have been accepted by the program committee members that helped us a lot with
their insightful comments. All papers have been presented orally, that is why the program was quite long
and rich. The technical program included 05 oral sessions, namely: Classification and clustering, Deep
learning and transformers, Analysis, summarization, and numerical representation, Speech and phonetics,
and Dataset.

This year, we were honoured by the participation of two distinguished scholars: Prof. Dr. Alexander
Waibel from Carnegie Mellon University (USA) and Karlsruhe Institute of Technology (Germany) and
Dr. Najim Dehak from Johns Hopkins University (USA). Professor Alexander Waibel gave the first talk
entitled “Transcending Communication Barriers: From Machine Translation to Language Transparence”.
During his talk, Prof. Alex discussed the latest advances and activities to transcend these barriers. The
second talk, entitled “Biosignal-based Digital Biomarkers for Aging” was given by Dr. Najim Dehak,
in which he described several tools to detect, assess, and monitor the functional and cognitive decline of
elderly adults. Both talks were very interesting.

This volume reflects the richness and diversity of the NLP community itself. Contributions from re-
searchers across the globe explore a wide range of languages, domains, and methodologies. This tapestry
of research highlights the collaborative spirit and boundless potential of NLP to revolutionize the way we
understand, interact with, and create language.

We hope readers enjoy reading the content of the 6 ICNLSP proceedings. We would like also to invite
them to check the proceedings of the past versions of ICNLSP.

Mourad Abbas
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Invited Talks

Transcending Communication Barriers: From Machine Translation to Lan-
guage Transparence
Prof. Dr. Alex Waibel, Carnegie Mellon University, USA

As we marvel at impressive advances in Artificial Intelligence in recent years, we
may wonder whether the problem of language translation and language barriers
has been solved. Aside from remaining technical issues, it is important to note that
translation is only one (even though important) step toward making people on the
planet understand each other: Our thoughts are expressed in many ways: speech,
text, video, handwriting, road signs, facial expressions, voice, lip movement, emo-
tion, gesture, mannerisms and more... For frictionless communication, the way technology is deployed
in different settings is just is as important a consideration as the performance of the technology itself
and they come with profound consequences on the technical design and requirements. To make language
barriers fade into the background, we need language transparence, not only translation: multimodal, im-
mersive, cross lingual, culturally aware, proactive communication and dubbing tools that interpret the
communicative intent and transcend barriers between us. In this talk, I will review major milestones on
our journey and discuss our latest advances and activities toward this goal.

\\

Biosignal-based Digital Biomarkers for Aging
Dr. Najim Dehak, Johns Hopkins University, USA

Currently, there are more Americans aged 65 and older (over 49 million) than
at any other time in history, according to the US Census Bureau. A significant
increase in individuals with severe chronic conditions will have profound social
and economic effects on society. Three aspects describe the human aging process:
functional (motor system), cognitive, and behavior (social and psychological stres-
sors). In this talk, we will describe several tools to detect, assess, and monitor the
functional and cognitive decline of elderly adults. Those tools named biomarkers
are based on multimodal biosignals such as speech, handwriting, and eye movement. In addition, we
will describe our current work on emotion recognition from speech that can be used to assess social and
psychological stressors.
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Classification of Human- and AI-Generated Texts
for English, French, German, and Spanish

Kristina Schaaff and Tim Schlippe and Lorenz Mindner
IU International University of Applied Sciences, Germany.
kristina.schaaff@iu.org; tim.schlippe@iu.org

Abstract

In this paper we analyze features to classify
human- and Al-generated text for English,
French, German and Spanish and compare
them across languages. We investigate two
scenarios: (1) The detection of text generated
by Al from scratch, and (2) the detection of
text rephrased by Al For training and testing
the classifiers in this multilingual setting, we
created a new text corpus covering 10 topics
for each language. For the detection of Al-
generated text, the combination of all proposed
features performs best, indicating that our fea-
tures are portable to other related languages:
The F1-scores are close with 99% for Spanish,
98% for English, 97% for German and 95% for
French. For the detection of Al-rephrased text,
the systems with all features outperform sys-
tems with other features in many cases, but
using only document features performs best for
German (72%) and Spanish (86%) and only
text vector features leads to best results for En-
glish (78%).

1 Introduction
In recent years, chatbots have gained popularity and
are now widely used in everyday life (Pelau et al.,
2021). These systems are designed to simulate
human-like conversations and provide assistance,
information, and emotional support (Dibitonto
et al., 2018; Arteaga et al., 2019; Falala-Séchet
et al., 2019; Adiwardana et al., 2020). OpenAI’s
ChatGPT has emerged as one of the most com-
monly used tool for text generation (Taecharun-
groj, 2023). Within a short span of only five
days after its release, over one million users regis-
tered (Taecharungroj, 2023). The application sce-
narios are manifold, ranging from children seeking
help with their homework to individuals seeking
medical advice or companionship.

As the use of chatbots like ChatGPT becomes
more prevalent in our daily lives, it is important
to differentiate between human-generated and Al-

generated text. As Al algorithms improve, de-
tecting Al-generated content accurately becomes
increasingly challenging, posing issues such as
plagiarism, fake news generation, and spamming.
Thus, tools that can differentiate between human-
and Al-generated content are crucial.

In Mindner et al. (2023), we explored a large
number of innovative features such as text objec-
tivity, list lookup features, and error-based features
for the detection of English (EN) text generated
by ChatGPT. However, in the current study, we ex-
tended this research to Spanish (ES), German (DE),
and French (FR). We selected these languages, as
these are amongst the most frequently used lan-
guages in the world (Ethnologue, 2023).

Consequently, our contributions are as follows:

* We proved, that the features we investigated
in Mindner et al. (2023) can be successfully
ported to other languages.

* We extended our Human-Al-Generated Text
Corpus1 with FR, DE and ES articles which
cover 10 topics, providing a benchmark cor-
pus for the detection of Al-generated texts in
EN, FR, DE and ES.

* Our best systems significantly outperform the
state-of-the-art system for the detection of Al-
generated text ZeroGPT.

2 Related Work

In the this section, we will describe the related
work concerning ChatGPT and the classification of
human- and Al-generated texts.

2.1 ChatGPT

Since its release by OpenAl in late 2022, ChatGPT
has revolutionized the field of AI (Mesko, 2023)
and several other generative Als such as Google’s
Bard? or Llama? (Touvron et al., 2023) have been

"https://github.com/LorenzM97/human-Al-
generatedTextCorpus

Zhttps://bard.google.com

3https://ai.meta.com/Ilama



released. Those tools are capable of generating text
in response to user queries across a wide range of
domains. Its successful implementation has been
demonstrated in areas like education (Baidoo-Anu
and Owusu Ansah, 2023), medicine (Jeblick et al.,
2022), and language translation (Jiao et al., 2023).
ChatGPT is built on the Generative Pre-trained
Transformers (GPT) language model and under-
goes fine-tuning using reinforcement learning with
human feedback. This approach allows ChatGPT
to grasp the meaning and intention behind user
prompts, enabling it to provide relevant and helpful
responses. During the training process, a substan-
tial amount of text data is incorporated to ensure the
safety and accuracy of the generated text. While
the quantity of training data has not been published,
we know that the previous GPT-3 model, which
is substantially larger than other language mod-
els such as BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019), and T5 (Roberts et al.,
2019), was trained with 175 billion parameters and
499 billion crawled text tokens (Brown et al., 2020).
Through extensive training on a diverse dataset,
ChatGPT has acquired a sophisticated understand-
ing of human language, allowing it to generate
text that closely resembles that written by humans
(Mitrovi¢ et al., 2023).

2.2 Detecting Human- and AI-Generated Texts
Commercial tools and plagiarism apps, such
as GPTZero (Shrivastava, 2023), ZeroGPT?, Al
Content Detector’, and GPT-2 Output Detector®
(Mitchell et al., 2023), have been developed to iden-
tify Al-generated text. Furthermore, researchers
are working on developing new corpora for this
task and finding out which features and classi-
fiers improve classification accuracy: For exam-
ple, (Yu et al., 2023) present a corpus of human-
and Al-generated abstracts to investigate com-
mercial and non-commercial systems—but only
for EN. Recent studies have explored various ap-
proaches to detect Al-generated text, including
XGBoost (Shijaku and Canhasi, 2023), decision
trees (Zaitsu and Jin, 2023), and transformer-based
models (Mitrovié et al., 2023; Guo et al., 2023):
Mitrovic et al. (2023) evaluated characteristics of
Al-generated text from EN customer reviews and
built a transformer-based classifier that achieved
79%. Zaitsu and Jin (2023) achieved 100% accu-

*https://www.zerogpt.com
Shttps://copyleaks.com/ai-content-detector
®https://openai-openai-detector—-mqlck.hf.space

racy in the detection of Japanese texts with decision
trees combining stylometric features for Japanese
such as bigrams, comma position, and function
word rates. Guo et al. (2023) evaluated the char-
acteristics of human-generated and Al-generated
answers to questions in EN and Chinese. They
fine-tuned a ROBERTa model on their texts and
achieved 98.8% F1-score on the EN answers and
96.4% F1-score on the Chinese answers. Shijaku
and Canhasi (2023) addressed the detection of gen-
erated essays written in EN and proposed an XG-
Boost model that achieved 98% accuracy using
features generated by TF-IDF and a set of hand-
crafted features. Soni and Wade (2023) analyzed
human- and Al-generated text summarization and
achieved 90% accuracy using DistilBERT’ (Sanh
et al., 2019). Mindner et al. (2023) explored fea-
tures to detect Al-generated and -rephrased text
for EN. They report an F1-score of 96% for Al-
generated text and 78% for Al-rephrased text on
their text corpus which contains different topics.
These F1-scores were even achieved when the Al
was instructed to create the text in a way that a
human would not recognize that it was generated
by an Al

To the best of our knowledge, we are the first
to explore a large set of features and state-of-the-
art classifiers across multiple languages with XG-
Boost, Random Forrest and MLP. We compare our
results with two popular state-of-the-art tools that
detect texts generated by Al: GPTZero and Ze-
roGPT. GPTZero is used by over 1 million peo-
ple (Shrivastava, 2023), but its results are only re-
liable for EN texts. Consequently, we also used
ZeroGPT for comparison which is able to deal
with other languages. As there is currently no text
corpus available, which contains human- and Al-
generated texts in multiple languages, we extended
our Human-Al-Generated Text Corpus to cover EN,
FR, DE and ES.

3 Our Human-AI-Generated Text Corpus
As mentioned in the previous section, we extended
our Human-Al-Generated Text Corpus (Mindner
et al., 2023) to cover EN, FR, DE, and ES. In total,
for each language we used 100 human-generated,
100 Al-generated, and 100 Al-rephrased articles for
our multilingual analysis which contain the follow-
ing 10 topics: biology, chemistry, geography,
history, I'T, music, politics, religion, sports,
and visualarts.

"https://huggingface.co/docs/transformers/model_doc/distilbert



Human Al-generated Al-rephrased
Language P S w P S w P S w
EN 415 1.7k 383k 555 14k 27.6k 255 1.1k 24.6k
FR 415 1.2k 31.0k 524 13k 265k 157 0.8k 187k
DE 335 1.2k 205k 529 14k 229k 256 1.0k 16.4k
ES 450 1.4k 38.0k 514 1.2k 26.8k 190 0.8k 189k

Table 1: Al-Generated/Rephrased Text
(P = #paragraphs, S = #sentences, W = #words).

The characteristics of our Human-AI-Generated
Text Corpus for the respective languages are sum-
marized in Table 1: EN consistently has the highest
counts across all categories and types of text. On
the other hand, the counts for FR, DE, and ES vary
substantially depending on whether the text was
human-generated, Al-generated, or Al-rephrased.
This illustrates how languages differ in the expres-
sion of information. The prompts which we used
to receive the Al-generated and Al-rephrased texts
are listed in Table 2.

Lang. Prompt

Text Generation

EN Generate a text on the following topic: <topic>
FR Rédigez un texte sur le theme suivant: <topic>
DE Erstelle einen Text zum folgenden Thema: <topic>
ES Genera un texto sobre el siguiente tema: <topic>
Text Rephrasing

EN Rephrase the following text: <topic>

FR Reformulez le texte suivant: <topic>

DE Formuliere den folgenden Text um: <topic>

ES Reformule el siguiente texto: <topic>

Table 2: Prompts used for Generation and Rephrasing

4 Our Features for the Classification of
Human- and AI-Generated Texts

As shown in Table 3, we analyzed 37 features for
their suitability to discriminate between human-
and Al-generated text. More details of the features
are given in Mindner et al. (2023).

4.1 Perplexity-Based Features

Perplexity is a measure of how well a language
model is able to predict a sequence of words. The
lower the perplexity, the better a language model
will perform to predict the next word in a sequence.
As Al-generated texts are usually based on statisti-
cal patterns and rules, they tend to be more repeti-
tive and therefore have a lower perplexity than hu-
man generated texts. The perplexity-based features
in our study are based on the findings by Mindner
et al. (2023); Gehrmann et al. (2019); Mitrovié et al.
(2023); Guo et al. (2023).

For sentence tokenization, we use the Natural

Language Toolkit (NLTK)3. Perplexity is calcu-
lated using evaluate package® and GPT-2 using the
respective models for EN' FRY' DE'2 and ES'3.

4.2 Semantic Features

In our study, semantic features refer to the prop-
erties of words or phrases used to represent their
meanings. Previous studies successfully used these
features for the differentiation between human- and
Al-generated texts (Mitrovi¢ et al., 2023; Guo et al.,
2023; Mindner et al., 2023).

Again, we use different Python packages for the
respective languages: TextBlob’s sentiment analy-
sis for English”, textblob-fr!> for French, and
textblob-de!® for German. Due to the absence
of a package that computes both, polarity and sub-
jectivity, for ES texts were translated these texts
into EN using Googletrans'’, despite potential in-
formation loss, because of its high BLEU score and
proficiency in ES-EN translation.

4.3 List Lookup Features

With our ListLookup features, we analyze informa-
tion about the word or character class, e.g., whether
it is a stop word or a special character. These fea-
tures have previously been used for this task by
Mindner et al. (2023); Shijaku and Canhasi (2023);
Kumarage et al. (2023). For every language, we
used ChatGPT to generate a list of all discourse
markers as well as the personal pronouns. These
lists were additionally evaluated by language ex-
perts. To count stop words, we use NLTK for the
respective languages.

Shttps://www.nltk.org
*https://github.com/huggingface/evaluate
https://huggingface.co/gpt2
https://huggingface.co/dbddv01/gpt2-french-small
Phttps://huggingface.co/dbmdz/german-gpt2
Bhttps://huggingface.co/DeepESP/gpt2-spanish
https://textblob.readthedocs.io/en/dev/quickstart. html
Bhttps://github.com/sloria/textblob-fr
"https://textblob-de.readthedocs.io/en/latest/api_reference
.html#module-textblob_de.sentiments
"https://github.com/ssut/py-googletrans



Category Feature

Description

Perplexity PPLpcan
PPLpax

mean PPL
maximum PPL

Semantic sentimentpolarity
Sentlmentsubjectivity

degree of positivity/negativity [-1,+1]
degree of subjectivity [0,+1]

ListLookup  stopWordcount
discourseM arkercount
t’l:tleRepetitioncount
title Repetition eiative
personal Pronouncount
personal Pronoun eiative

number of stop words

number of discourse markers

absolute repetitions of title

relative repetitions of title

absolute number of personal pronouns
relative number of personal pronouns

Document wordsPer Paragraphmean
wordsPer Paragraphstdes
sentencesPer Paragraphmean
sentencesPer Paragraphstdes
wordsPerSentencemean
wordsPerSentencestdqes
uniqgWordsPerSentencemean
uniqgWordsPerSentencestden
wWOordScount
uniqgWordscount
uniqwordsrelative
paragraphcount
sentencecount
punctuationcount
quotationcount
charactercount
uppercaseW ordsreiative
POSPerSentencemean
special Charcount

mean number of words per paragraph
stdev of wordsPer Paragraph

mean number of sentences per paragraph
stdev of sentencesPer Paragraph

mean number of words per sentence

stdev of wordsPerSentence

mean number of unique words per sentence
stdev of uniqW ordsPerSentence
number of running words

number of unique words

relative number of unique words

number of paragraphs

number of sentences

number of punctuation marks

number of quotation marks

number of characters

relative number of words in uppercase
mean number of unique POS-tags/sentence
number of special characters

ErrorBased — grammarErTorcount
multi Blankcount

number of spelling/grammar errors
number of multiple blanks

Readability  fleschReadingFEase
fleschKincaidGradeLevel

Flesch Reading Ease score [0-100]
Readability as U.S. grade level [0-100]

AlFeedback Al Feedback

Ask Al if text was generated by Al

TextVector TF-IDF
Sentence-BERT
Sentence-BERT-dist

500-dim TF-IDF vector of 1-/2-grams
mean Sentence-BERT vector
mean distance of Sentence-BERT vectors

Table 3: Summary of our Features for the Classification of Generated Texts.

4.4 Document Features

Our document features are related to the content
and structure of a document such as word fre-
quencies, syntactic structures, and corpus statis-
tics. These features have been successfully used
by (Kumarage et al., 2023; Shijaku and Canbhasi,
2023; Guo et al., 2023; Mitrovi¢ et al., 2023; Za-
itsu and Jin, 2023; Mindner et al., 2023). To cal-
culate sentence- and word-related features, the
text is first divided into sentences and words us-
ing NLTK’s sent_tokenize and word_tokenize
functions. For the features related to Part-of-speech
(POS) in EN texts, we use the NLTK function
pos_tag. As NLTK Ilacks POS tags for the other
three languages, we use spaCy NLP library'8. For

POS tags in DE texts, we use de_core_news_sm'?,

Bhttps://github.com/explosion/spaCy
Phttps://spacy.io/models/de#tde_core_news_sm

2

for FR texts, we use fr_core_news_sm?°, and for

ES texts, es_core_news_sm>!.

4.5 Error Based Features

This feature category introduced in Mindner et al.
(2023) is based on errors in the text such as gram-
mar and spelling mistakes.

To count multiple blanks, we used regular ex-
pressions. Grammar and spelling errors are de-
tected using the open-source tool LanguageTool*
which allows it to detect grammar errors in multiple
languages. For the detection of DE errors, the built-
in class LanguageToolPublicAPI(de-DE) for
querying the tool’s public servers is used. For the
other languages, the tool’s remote server is applied
using the function Language-Tool (language).

Phttps://spacy.io/models/fri#fr_core_news_sm
2 https://spacy.io/models/es#tes_core_news_sm
Zhttps://github.com/jxmorris12/language_tool_python



4.6 Readability Features
Readability features assess the readability level of
texts as in Mindner et al. (2023); Shijaku and Can-
hasi (2023); Flesch (1948); Kincaid et al. (1975).
To derive Flesch Reading Ease and Flesch-
Kincaid Grade Level we use Textstat’>. This
Python library provides functions to calculate text
statistics such as grade level, complexity, and read-
ability. Textstat supports calculating Flesch Read-
ing Ease, and Flesch-Kincaid Grade Level for EN,
FR, DE, and ES texts. However, it is important to
note that these measures were originally developed
for the specific structure of words, sentences, and
syllables of EN. Therefore, when applying these
measures to texts in FR, DE, and ES, the results
may not be as representative as those for EN.

4.7 Al Feedback Features
Our Al Feeback features reflect, how an Al cate-
gorizes the text (Mindner et al., 2023). For this

purpose, we use ChatGPT with the prompts in Ta-
ble 4.

Lang. Prompt

EN Was the following text generated by ChatGPT?
FR Le texte suivant a-t-il été généré par ChatGPT?
DE Waurde der folgende Text von ChatGPT generiert?
ES (El siguiente texto fue generado por ChatGPT?

Table 4: Prompts used for Al Feedback.

4.8 Text Vector Features
Our TextVector features analyze semantic content
of a text, identifying patterns and repetition (Mind-
ner et al., 2023; Shijaku and Canhasi, 2023; So-
laiman et al., 2019; Reimers and Gurevych, 2019).
For the features based on Sentence-BERT, we
use the sentence-transformer model distiluse-
base-multilingual-cased-v2%4, since it sup-
ports all the languages used in this research. In
addition to the four languages in our experiments,
it can be used for more than 50 languages, guaran-
teeing reliable results for possible future research.

4.9 Summary of Our Analyzed Features

Our 8 feature categories contain 37 features. While
the Al feedback category consists of one feature,
the perplexity, semantic, error-based, and readabil-
ity features each contain two features. The largest
feature category are document features, which con-
tains 19 different features. Table 3 summarizes all
the features that are part of our experiments.

Zhttps://github.com/textstat/textstat
**https://huggingface.co/sentence-transformers/distiluse-
base-multilingual-cased-v2

5 Experimental Setup

In this section, we will describe our experiments
with the different feature categories and three clas-
sification approaches: The two more traditional
approaches XGBoost (Shijaku and Canhasi, 2023)
and random forest (RF) (Breiman, 2001) as well
as a neural network-based approach with multi-
layer perceptrons (MLP) (Murtagh, 1991). As in
other studies like Guo et al. (2023); Kumarage et al.
(2023); Mitrovié et al. (2023), we evaluated the
classification performance with accuracy (Acc) and
Fl1-score (F1). First, we built text generation de-
tection systems which were trained, fine-tuned, and
tested with our human-generated and Al-generated
texts. Second, we implemented text rephrasing de-
tection systems which were trained, fine-tuned, and
tested with our human-generated and Al-rephrased
texts. To provide stable results, we used a 5-fold
cross-validation, randomly dividing our corpus into
80% training, 10% validation, and 10% unseen test
set. The numbers in all tables are the average of
the test set results. The best performances are high-
lighted in bold. As a baseline, we choose two pop-
ular state-of-the-art tools which detect texts gener-
ated by Al: GPTZero and ZeroGPT. GPTZero is
used by over 1 million people (Shrivastava, 2023).
However, we found that GPTZero’s results were
only reliable for EN texts. Consequently, we used
ZeroGPT as our baseline for FR, DE and ES.

6 Results

Table 5 lists Acc and F1 for detecting Al-generated
and -rephrased texts in EN, FR, DE, and ES. For
each language classifiers trained on Al-generated
texts achieve better performances compared to clas-
sifiers trained on Al-rephrased texts.

6.1 Results of Single Feature Categories

As shown in Figure 1 using the example of
sentiment sypjectivity, the distribution of fea-
ture values can differ depending on whether
the text is human-generated, Al-generated or
Al-rephrased and depending on the language.
sentiment sypjectivity denotes objectivity (low val-
ues) or subjectivity (high values) of a text. Average
sentiment sypjectivity vValues tend to be higher for
Al-generated text than for human-generated and Al-
rephrased text. In general, DE texts are the most
objective texts—be it human- or Al-generated—
while EN and ES are more subjective. Moreover,
Al-generated texts tend to be more subjective than
Al-rephrased texts for our languages.
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Figure 1: Distribution of sentimentsypjectivity

DE

Generated Rephrased
XGBoost RF MLP XGBoost RF MLP
Category Lang | Acc F1 Acc F1 Acc F1 [ Acc F1 Acc F1 Acc F1
Perplexity EN 83.0 822 87.0 853 820 821|520 487 550 546 560 632
FR 62.0 603 69.0 668 680 69.0 | 500 502 53.0 442 560 588
DE 740 740 760 76.1 81.0 80.6 | 53.0 536 61.0 604 560 62.7
ES 82.0 823 83.0 824 820 836|560 554 630 637 620 673
Semantic EN 720 729 750 756 73.0 723 | 660 644 660 643 520 543
FR 61.0 558 670 656 630 594|550 482 570 500 510 529
DE 640 583 640 59.8 63.0 633|560 599 540 544 620 60.1
ES 720 699 750 738 760 757 | 580 56.1 58.0 524 53.0 563
ListLookup ~ EN 720 72.1 79.0 785 710 678 | 720 739 670 675 69.0 703
FR 720 73.0 760 767 670 629 | 660 626 650 655 640 632
DE 740 758 79.0 778 720 741|570 59.1 58.0 592 500 520
ES 78.0 79.6 820 84.1 730 768 | 750 752 80.0 813 77.0 784
Document EN 91.0 91.6 920 926 870 86.0 | 700 69.6 71.0 708 780 76.1
FR 940 942 910 90.8 920 922 | 8.0 853 84.0 808 81.0 8l1.2
DE 87.0 872 90.0 89.6 880 880|720 719 670 667 71.0 713
ES 96.0 962 98.0 98.1 870 885 | 84.0 834 830 820 86.0 864
ErrorBased EN 550 61.7 550 61.7 560 639|620 680 620 680 62.0 68.0
FR 620 642 630 672 61.0 655|530 560 560 589 560 59.7
DE 67.0 67.1 670 67.1 670 69.8 | 620 619 620 635 560 50.7
ES 700 712 710 719 71.0 746 | 59.0 568 61.0 563 640 652
Readability  EN 60.0 563 630 593 600 568|540 51.1 540 478 50.0 50.2
FR 61.0 647 620 660 650 674|590 583 60.0 606 520 31.6
DE 570 535 530 515 570 536 | 480 419 450 391 450 449
ES 740 73.7 740 721 690 666 | 540 49.1 61.0 507 56.0 525
AlFeedback EN 620 67.1 620 67.1 62.0 68.1 | 520 509 500 398 450 30.1
FR 520 242 520 242 480 372|420 336 420 336 550 534
DE 490 46.1 470 350 500 434|520 61.8 520 61.8 500 543
ES 520 73 520 73 520 206|500 00 520 73 49.0 257
TextVector EN 90.0 899 950 949 830 81.7|79.0 782 750 71.0 69.0 651
FR 940 94.1 930 930 850 854|770 773 750 752 680 642
DE 87.0 87.0 940 940 90.0 908 | 68.0 675 720 673 720 71.7
ES 84.0 845 910 895 810 766 | 760 740 760 73.6 68.0 644
All EN 90.0 909 98.0 980 870 878|770 776 71.0 698 720 719
FR 940 944 950 95.0 88.0 892 | 89.0 879 860 842 740 664
DE 940 938 970 969 870 866 | 700 71.6 71.0 683 700 71.6
ES 940 944 990 99.0 90.0 902 | 83.0 822 830 829 780 76.1

Table 5: Results for the Detection of EN FR, DE and ES Al-generated and Al-Rephrased Texts.

6.1.1 English

Text Generation Detection The results for EN
in Table 5 indicate that the system that com-
bines all features (All) in an RF performs best

(Acc=98.0%, F1=98.0%). The 2nd-best system
is the MLP system that uses Document features
(Acc=95.0%, F1=94.9%). The RF system that
uses TextVector features results in a similar per-




formance (Acc=95.0%, F1=94.9%). The worst-
performing system is the XGBoost system that uses
the ErrorBased features (Acc=55.0%, F1=61.7%).
Compared to GPTZero (Accgprzero=76.0%,
Flaprzero=78.9%), most of our systems perform
better. Our best system with all features (All) out-
performs GPTZero by 28.9% relative in Acc and
24.2% relative in F1. ZeroGPT reaches 78.0%
Acczeroapr and 81.8% F1z...cpr. Thus, our
best system performs 25.6% relatively better in
Acc, and 19.8% relatively better in F'1.

Text Rephrasing Detection The performances
for the EN text rephrasing detection systems
are worse than the text generation detection sys-
tems for all feature categories except ErrorBased
(Acc=62.0%, F1=68.0%). The best-performing
system is the XGBoost system that uses TextVec-
tor features (Acc=79.0%, F1=78.2%), followed
by the MLP system that uses Document features
(Acc=78.0%, F1=76.1%). The worst-performing
system is the MLP system that uses the AlFeed-
back feature. All our fext rephrasing detec-
tion systems were able to outperform GPTZero
(ACCGPTZE7«0=43.O% and FlGPTZero:27-8%)~
Our the best-performing 7extVector feature sys-
tem even outperforms GPTZero by 83.7% rela-
tive in Acc and even 159.8% relative in FI. Ze-
roGPT reaches 49.0% Acczerocpr and 43.9%
Flze.0gpr. Thus, Document outperforms it by
61.2% relative in Acc and 81.5% relative in F1.

6.1.2 French

Text Generation Detection The results for FR
in Table 5 demonstrate that the system that com-
bines all features (All) in an RF performs best
(Acc=95.0%, F1=95.0%). The 2nd-best system
is the XGBoost system that uses Document fea-
tures (Acc=86.0%, F1=85.3%), followed by the
XGBoost system that uses TextVector features
(Acc=T77.0%, F1=T77.3%). The worst-performing
systems are those that use the AlFeedback fea-
ture. Our best FR system with all features
(AlD) outperforms ZeroGPT (Acczeroqpr=62.0,
FlzeroapT)=72.6%) by 53.2% relative in Acc and
30.9% relative in F1.

Text Rephrasing Detection The performances
for the FR text rephrasing detection systems are
worse than the rext generation detection systems
for all feature categories except the MLP sys-
tem that uses the AlFeedback feature (Acc=55.0%,
F1=53.4%). The best-performing system is
the system that that combines all features (All)

in an XGBoost (Acc=89.0%, FI1=87.9%), fol-
lowed by the XGBoost system that uses Doc-
ument features (Acc=86.0%, FI1=85.3%) and
the XGBoost system that uses TextVector fea-
tures (Acc=77.0%, FI=77.3%). The worst-
performing systems are again those that use
the AlFeedback feature.  Our best FR sys-
tem with all features (All) outperforms Ze-
roGPT (ACCZeroGPT=57-0, FlZeroGPT):67-4%)
by 56.1% relative in Acc and 30.4% relative in F1.

6.1.3 German

Text Generation Detection The results for DE in
Table 5 indicate that the system that combines all
features (All) in an RF performs best (Acc=97.0%,
F1=96.9%). The 2nd-best system is the RF sys-
tem that uses TextVector features (Acc=94.0%,
F1=94.0%), followed by the RF system that uses
Document features (Acc=90.0%, F1=89.6%). As
for the previous languages, the worst-performing
systems are those that use the AlFeedback fea-
ture. Our best FR system with all features
(All) outperforms ZeroGPT (Acczeroqpr=65.0,
Flzer0apT)=70.9%) by 49.2% relative in Acc and
36.7% relative in F1.

Text Rephrasing Detection The performances for
the DE text rephrasing detection systems are worse
than the text generation detection systems for all
feature categories except the systems that use the
AlFeedback features. The best-performing system
is the XGBoost system that that uses the Docu-
ment features (Acc=72.0%, F1=71.9%), followed
by the MLP system that uses TextVector features
(Acc=72.0%, F1=T71.7%). The worst-performing
systems are those that use the Readability fea-
ture. Our best DE system with the Document
features outperforms ZeroGPT (Acczeropr=48.0,
Flzer0apr=49.5%) by 45.5% relative in Acc and
45.3% relative in F1.

6.1.4 Spanish

Text Generation Detection The results for ES
in Table 5 show that the system that combines all
features (All) in an RF performs best (Acc=99.0%,
F1=99.0%). The 2nd-best system is the RF sys-
tem that uses Document features (Acc=98.0%,
F1=89.1%), followed by the RF system that
uses TextVector features (Acc=91.0%, F1=89.5%)
and the RF system that uses ListLookup features
(Acc=82.0%, F1=84.1%). As for the previous lan-
guages, the worst-performing systems are those
that use the AlFeedback feature. The F1I of 7.3%
is so poor since the feature classifies the text as
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Al-generated text in almost all cases. Our best
ES system with all features (All) outperforms Ze-
roGPT (ACCZeroGPT:6O-Oa FlZeroGPT):71-5%)
by 65.0% relative in Acc and 38.5% relative in F1.

Text Rephrasing Detection The performances
for the ES text rephrasing detection systems are
worse than the rext generation detection systems
for all feature categories. The best-performing sys-
tem is the RF system that uses the Document fea-
tures (Acc=86.0%, F1=86.4%). The 2nd best sys-
tem is the system that combines all features (All)
in an RF (Acc=83.0%, F1=82.9%), followed by
the RF system that uses the ListLookup features
(Acc=80.0%, F1=81.3%). The worst-performing
systems are those that use the AlFeedback feature.
The F1 of 0% and 7.3% are so poor since the fea-
ture classifies the text as Al generated text in almost
all cases. Our best ES system with the Document
features outperforms ZeroGPT (Acczeroqpr=52.0,
Flzer0ap7=63.7%) by 65.4% relative in Acc and
25.6% relative in F1.

6.1.5 Combination of All Features
As shown in Table 5, the best performances for
the text generation detection systems are achieved
using a combination of all features (All). Looking
at the systems which use all features, the Acc for
the Al-generated FR and DE texts is similar with
97.0%, while the Acc for the Al-generated EN texts
15 98.0%. The best F I for the Al-generated DE clas-
sifier is 96.9%. Thus, it is slightly worse than the
classifiers trained on our EN and FR texts which
achieved 98.0% and 97.1%, respectively. The
best classifier trained on the Al-generated ES texts
achieved slightly better performances, with 99.0%
Acc and 99.0% F1. Comparing the performances
of the systems trained on the Al-generated texts,
it can be summarized that the classifiers deliver
comparable performances across the languages.
The performances of the systems which use all
features (All) vary more for the Al-rephrased texts
across the languages. While the best EN classifier
reaches 79.0% Acc on the Al-rephrased texts, the
best FR classifier achieves 89.0% Acc on the Al-
rephrased texts. The Al-rephrased detection sys-
tem for DE only achieves 72.0% Acc. Compared to
the best DE text rephrasing detection system, the
FR system is 23.6% relatively better in Acc. The
Acc for the ES text rephrasing detection system
is 1% worse than the FR system. For FI, com-
parable conclusions can be drawn across the lan-
guages. Thus, our investigated features do not de-

liver comparable performances for the detection of
Al-rephrased texts across the evaluated languages.

7 Conclusion and Future Work
In this paper, we investigated features to classify
whether text is written by a human, generated by
Al from scratch or rephrased by Al. We conducted
a comparative analysis of the classification across
the languages of EN, FR, DE, and ES, assessing
the performance of these features in their respec-
tive linguistic contexts. To train and test classifiers
which use the features, we extended the Human-AlI-
Generated Text Corpus (Mindner et al., 2023)—our
new text corpus, which covers 10 different topics
for each of the four languages. For Al-generated
text, our classifier performed best when combining
all features, meaning that there are no substantial
differences for features across languages. There-
fore, we conclude, that the same feature set could
also be used for other languages from the same lan-
guage families. The accuracies are close with 99%
for ES, 98% for EN, 97% for DE and 95% for FR.
In contrast to that, for the detection of Al-rephrased
text, the systems with all features outperformed sys-
tems with other features in many cases. For DE
(72%) and ES (86%) we achieved the best results
using only document features while for EN the text
vector features yielded the best results (79%).
Although our results indicate that the same fea-
ture set could be applied to other languages within
the same familie, future work could investigate
the applicability of these features across further
language families. This would help in understand-
ing the robustness of our method across a more
diverse set of languages. Moreover, our corpus cur-
rently covers 10 different topics for each language.
Extending the corpus to include more topics, and
possibly considering different domains and genres,
may help in generalizing the findings and making
the system more robust. Finally, experimenting
with different machine learning architectures such
as transformer models could potentially lead to fur-
ther optimizations.

Ethics Statement

The collected corpus is made freely available to
the community. It is based on Wikipedia and news
texts. The research was conducted transparently,
free from bias and in compliance with applicable
laws and regulations. The use of Al models and
data is intended to foster a deeper understanding of
Al-generated content, with the goal of promoting
responsible use and technological innovation.
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Abstract

Label noise refers to errors in training labels
caused by cheap data annotation methods, such
as web scraping or crowd-sourcing, which can
be detrimental to the performance of super-
vised classifiers. Several methods have been
proposed to counteract the effect of random la-
bel noise in supervised classification, and some
studies have shown that BERT is already robust
against high rates of randomly injected label
noise. However, real label noise is not random;
rather, it is often correlated with input features
or other annotator-specific factors. In this pa-
per, we evaluate BERT in the presence of two
types of realistic label noise: feature-dependent
label noise, and synthetic label noise from an-
notator disagreements. We show that the pres-
ence of these types of noise significantly de-
grades BERT classification performance. To
improve robustness, we evaluate different types
of ensembles and noise-cleaning methods and
compare their effectiveness against label noise
across different datasets.

1 Introduction

Deep learning algorithms have been shown to per-
form extremely well in supervised classification
tasks given high-quality datasets. Unfortunately,
obtaining gold-standard labels is often prohibitively
expensive with large-scale datasets, leading practi-
tioners to resort to cheaper data collection methods
such as crowd-sourcing or automatic annotation
methods (Yan et al., 2014). These techniques are
known to impart a substantial amount of label noise
in the data, which can degrade classification perfor-
mance (Ji et al., 2021). Label noise refers to errors
or inconsistencies within the data labels, such that
the prescribed labels do not match the gold labels
assigned by experts. Datasets obtained through
web scraping often contain label noise given the ab-
sence of expert-verified gold labels (Li et al., 2017).
Due to a meteoric rise in social media usage, more
and more datasets are automatically acquired from

Hanan Aldarmaki
MBZUAI
hanan.aldarmaki@mbzuai.ac.ae

online social platforms, and such datasets are likely
to contain label noise. Small-scale datasets can
also suffer from the same problem if the annota-
tion process is challenging or the annotators have
divergent opinions (Ma et al., 2019).

Some prior works have been dedicated to devel-
oping and deploying algorithms that combat the
effects of label noise in text classification (Han
et al., 2018; Sukhbaatar et al.; Zhang and Sabuncu,
2018; Jiang et al., 2018). However, most previous
studies simulated label noise by random substitu-
tion, and recent research has shown empirically
that many methods that successfully handle ran-
dom noise are ineffective against real-world label
noise (Jiang et al., 2020). In the text classification
domain, Zhu et al. (2022) explored the robustness
of previously proposed methods for handling la-
bel noise, including noise matrix with regulariza-
tion (Jindal et al., 2019), co-teaching (Han et al.,
2018), and label smoothing (Szegedy et al., 2016).
They concluded that BERT (Devlin et al., 2019)
is already robust against randomly injected label
noise and these approaches obtain no additional
performance gains. On the other hand, they find
that feature-dependent label noise, which realisti-
cally arises from automatic annotation techniques,
degrades BERT performance and these noise han-
dling techniques add little to no robustness at all.
This creates a need for a comprehensive evalua-
tion of noise-robust methods in the domain of text
classification, considering the presence of realistic
labeling errors.

In this paper, we describe methods and experi-
ments for handling realistic label noise in BERT
text classification. We use two datasets that contain
feature-dependent label noise from automatic anno-
tation, namely Yorub4 and Hausa (Hedderich et al.).
These two datasets have been manually cleaned, so
a clean version of each exists for evaluation. In
addition, we use tweetNLP (Gimpel et al., 2011)
and SNLI (Bowman et al., 2015) datasets with syn-
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thetic noise that mimics human errors by utilizing
multiple crowd-sourced annotations (Chong et al.,
2022). This collection of datasets provides a range
of noise types and levels that more closely reflect
realistic label noise compared to random noise in-
jection. We evaluate the performance of vanilla
BERT compared with a subset of noise-handling
approaches, namely co-teaching (Han et al., 2018),
Consensus Enhanced Training Approach (CETA)
(Liu et al., 2022), different types of ensembles
(Ganaie et al., 2022), and noise cleaning (Chong
et al., 2022; Sluban et al., 2014). We summarize
our findings as follows:

1. For datasets with feature-dependent label
noise, we find that CETA, some types of en-
sembles, and noise cleaning, all provide pos-
itive performance gains compared to vanilla
BERT.

2. For synthetic label noise from multiple anno-
tations, we do not observe significant gains
using these approaches. We surmise that this
type of noise is more challenging or may even
reflect inherently ambiguous labels.

It is worth noting that the noise is qualitatively
different in these two categories of label noise as
the latter arises from human rather than automatic
processes, which could be due to either errors or
genuine disagreements. Some recent works attempt
to include multiple labels in the training process
rather than rely on a single gold label to account
for the inherent uncertainty from human disagree-
ments. This may be justified given the nature of
some tasks, and the noising scheme performed on
tweetNLP and SNLI may warrant that kind of treat-
ment or further scrutiny to identify clear-cut errors.
However, as we focus on noise robustness as the
scope of this work, we treat the synthetic noise
int these datasets as labeling errors and leave any
further analysis of this sort for future work.

2 Background & Related Works
2.1 Types of Label Noise

Label noise refers to irregularities or inconsisten-
cies within the data labels, where the prescribed
label of a data point does not correspond to the
true expert label. In other words, noisy instances
in this context specifically pertain to inaccuracies
or errors in the labeling of the data, rather than any
distortions or imperfections in the input data itself.

When observing the effect of label noise, the
majority of existing literature in text classification
assumes random injection of label noise (Han et al.,
2018; Sukhbaatar et al.; Zhang and Sabuncu, 2018).
This type of synthetic noising involves randomly
permuting a fixed number of labels according to a
pre-defined noise level and noise type. Because the
process of simulating such noise is entirely random
and does not depend on the input data features in
any way, this type of noise is also known as feature-
independent label noise.

In contrast, feature-dependent label noise is cor-
related with input features (Algan and Ulusoy,
2020). Datasets that use distantly or weakly su-
pervised methods to generate labels are prone to
this type of label noise. These approaches are often
used in low-resource applications where it is im-
practical or expensive to manually annotate large
amounts of data. Relation extraction is one such
application that heavily relies on automatic data
generation methods as supervised relation extrac-
tion methods necessitate an extensive amount of
labeled training data (Mintz et al., 2009). In this
area, denoising methods such as the ones proposed
in Jia et al. (2019), Qin et al. (2018), Liu et al.
(2022) and Ma et al. (2021) are specifically devel-
oped to address feature-dependent label noise in
relation extraction datasets.

Recently, Chong et al. (2022) developed realis-
tic noising methods that mimic how humans make
labeling errors by taking advantage of the multi-
ple rounds of annotation that some datasets un-
dergo. During the annotation process, certain sub-
sets of the data are subjected to rigorous valida-
tion schemes, such as gold labels assigned by ex-
perts, while others are annotated using less strin-
gent methods, such as crowdsourced evaluations.
By incorporating varying annotations generated
during this process, their approach produces real-
istic label noise that reflects how humans make
errors. We refer to this noising scheme as pseudo-
real-world label noise.

2.2 Noise-robust methods

Noise-robust methods in the literature include
model enhancements such as robust loss functions.
Robust loss functions are a class of loss functions
used to train models in a way that is more resistant
to label noise. One such loss function is the family
of generalized cross-entropy loss functions (Zhang
and Sabuncu, 2018), which are designed to be more
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robust to label noise by penalizing the model less
for incorrect predictions that are consistent with
noisy labels.

Another class of noise-robust approaches is what
we refer to as multi-netowrk training. This sub-
category of methods introduces multiple networks
that learn from each other and as such make more
informed decisions regarding which data to use
to update the model parameters. For instance,
co-teaching (Han et al., 2018) includes two mod-
els that are trained in parallel, and each model is
presented with examples that incur low loss by
the other model. Intuitively, correct labels pro-
duce small losses in earlier training epochs and
noisy labels produce higher losses. Similarly, the
Consensus-Enhanced Training Approach (CETA)
proposed in Liu et al. (2022) is a methodology for
robust sentence-level relation extraction that em-
phasizes the selection of clean data points during
the training process. The denoising technique is
applied to establish a robust boundary for classifi-
cation, preventing inaccurately labeled data from
being assigned to the wrong classification space,
and the consensus between two divergent classifiers
is used to select clean instances for training.

2.3 Noise cleaning approaches

Noise-cleaning aims to automatically segregate
clean data from noisy data in order to train the
final classifier using a cleaned subset of the orig-
inal training set. The “small loss trick" is com-
monly used to identify potentially noisy or misla-
beled data. The intuition behind this approach is
that noisy data have comparatively higher loss than
clean data (Takeda et al., 2021; Han et al., 2018;
Jiang et al., 2018; Ji et al., 2021).

Several approaches have been proposed for auto-
matic noise detection, which can be a first step to-
wards noise-cleaning before training a robust classi-
fier. Wheway (2001) used boosting to detect noisy
data instances. The approach involves iteratively
re-weighing the data points to emphasize those that
are most difficult to classify correctly. The result-
ing model is then used to identify the noisy data
points by measuring their contribution to the final
model. Sluban et al. (2014) trained multiple classi-
fiers (ensemble) on different subsets of the data and
combined their outputs to obtain a noise ranking
for each instance. Similarly, Chong et al. (2022)
assessed the performance of pre-trained language
models as error detectors using clean held-out data.

They experiment with the error detection capabil-
ities of individual pre-trained models and an en-
semble of pre-trained language models. They find
that an ensemble of pre-trained model losses out-
performs individual model loss in error detection.

2.4 Label noise & BERT

BERT (Devlin et al., 2019) is a popular pre-trained
language model that is frequently used for text clas-
sification by fine-tuning on target labels. Some
recent studies have shown that BERT is already
robust against randomly injected label noise (Zhu
et al., 2022), and early stopping is sufficient to pre-
vent overfitting on noisy labels. Zhu et al. (2022)
evaluates popular noise robust approaches in BERT
text classification such as appending noise transi-
tion matrix after BERT’s predictions (Sukhbaatar
et al.), acquiring the noise transition matrix with
[2 regularization (Jindal et al., 2019), and multi-
network training via co-teaching (Han et al., 2018).
They conclude that while BERT appears to be in-
herently robust to feature-independent noise, none
of the above approaches improves BERT’s peak
performance in the presence of feature-dependent
label nose.

3 Methodology

In this work, we evaluate BERT text classifica-
tion on datasets containing pseudo-real-world label
noise and feature-dependent label noise. We do
not consider randomly injected label noise as Zhu
et al. (2022) have shown BERT to be already robust
to this type of synthetic noise. The scope of this
work is limited to text classification with BERT
following the baselines established by Zhu et al.
(2022).

3.1 Datasets

To study feature-dependent label noise, we use two
news-topic categorization datasets from two low-
resource African languages: Hausa and Yoruba
(Hedderich et al.). These languages are spoken by
large populations in Africa, with Hausa being the
second most spoken indigenous language, with 40
million native speakers, and Yorubd being the third
most spoken, with 35 million native speakers!. For
these datasets, gazetteers were used for automatic
labeling, which results in feature-dependent label
noise. For instance, when identifying texts for the
“Africa" class, a labeling rule based on a list of

"https://en.wikipedia.org/wiki/Languages_of_Africa
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Dataset Yorub4a | Hausa | TweetNLP | SNLI
Number of classes 7 5 15 3
Average sentence length 13 10 12 21
Train Samples 1340 2045 11565 363043
Validation Samples 189 290 2874 9831
Test Samples 379 582 - 9815
Train Noise Level 33.28% | 50.37% Various Various

Table 1: Dataset statistics

African countries and their capitals was employed.
These datasets were chosen specifically as they
contain automatic annotation label noise i.e., weak-
supervision/feature-dependent noise in addition to
clean versions of the splits, making it possible to
establish ground truth. Note that the amount of
label noise in Hausa and Yoruba is fixed.
Furthermore, we use the noising schemes pro-
posed by Chong et al. (2022) to simulate real-world
label noise produced by crowd-sourced labeling.
Pseudo-real-world label noise is injected in two
benchmark datasets: TweetNLP (Gimpel et al.,
2011) and Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015). TweetNLP
is a part-of-speech tagging dataset developed by
scraping Twitter posts. While TweetNLP already
contained crowd-sourced labels, it later received
separate crowdsource evaluations, allowing access
to multiple annotations from separate annotators.
The SNLI dataset is a large Natural Language In-
ference corpus developed at Stanford. The original
corpus consists of 570K sentence pairs, manually
labeled by experts. Like TweetNLP, a subset of
SNLI later received extensive crowdsource eval-
uation. We noise both TweetNLP and SNLI to
three label noise levels: 10%, 20%, and 30%. Data
statistics for all datasets are shown in Table 1.

3.2 Baselines

Zhu et al. (2022) already evaluated the noise ma-
trix approach (Sukhbaatar et al.), label smoothing
(Szegedy et al., 2016), and co-teaching (Han et al.,
2018) on the feature-dependent datasets, Hausa and
Yorubd, and concluded that no gains are observed
using these methods. We use the following as base-
lines to benchmark our experiments using other
approaches:

1. Vanilla BERT: BERT trained on noisy train-
ing data without a noise-handling mechanism,
except early stopping on a noisy validation set,
as done in Zhu et al. (2022).

2. Co-teaching (Han et al., 2018), which simul-
taneously trains two networks, with each net-
work independently ranking data points based
on their loss to guide the other network on
which points to be included for training. In
other words, each network independently per-
forms noise-cleaning for the other network.

4 Approaches

We experiment with the following approaches as
potential methods for improving performance un-
der realistic label noise conditions:

4.1 Consensus-Enhanced Training Approach
(CETA)

CETA (Liu et al., 2022) has been proposed as a
noise-robust model for relation extraction and has
shown promising results. CETA contains two dis-
crepant classifiers that share a single encoder. The
focus of CETA is to train the classifiers only in
instances where both classifiers have reached a con-
sensus. Such instances are supposedly deemed
clean. To achieve consensus, CETA augments the
standard cross entropy loss to include predictions
from both classifiers and uses the Wasserstein dis-
tance (Kantorovich, 2006) as a secondary criterion.
In this manner, CETA can also be considered an
ensemble learning approach.

4.2 Deep Ensembles

Deep ensembles have been shown to generally ex-
hibit robustness as compared to singular models
and reduce overfitting (Ganaie et al., 2022). To
that end, we hypothesize that ensembles may excel
in noisy classification tasks due to the presence of
label noise in the training data, which can cause in-
dividual models to learn false correlations between
features and labels. By training multiple classifiers
and combining their predictions, each model can
develop a unique representation of the input data
and filter out spurious information, leading to a
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more robust classification boundary. While ensem-
bles have been previously proposed for data and
label noise detection (Wheway, 2001; Sluban et al.,
2014; Chong et al., 2022), their performance as
a method of robust text classification with noisy
labels has not been established.

We formally define ensembles as follows: Given
m classifiers C1, Cy, ..., Cp,, each classifier pro-
duces probabilities P, on a clean test set T, an en-
semble of the predictors averages the probabilities
of each predictor such that P, scimpie = Z:r;l ch;i .
It should be noted that each ensemble member is
trained on either the same noisy training set or a
randomly selected subset of the noisy training set,
depending on the employed technique, which is de-
scribed below. Nevertheless, in all scenarios, each
member is evaluated on the same clean test set. We
experiment with three types of ensembles:

1. Homogeneous Ensembles Ensembles that ag-
gregate predictions from the same type of clas-
sifier (i.e. vanilla BERT with early stopping),
trained with different initializations and hy-
perparameters.

2. Heterogeneous Ensembles Ensembles that
aggregate predictions from different types of
classifiers. In our experiments, we use vanilla
BERT, co-teaching, and CETA as the hetero-
geneous classifiers in the ensemble.

3. Boosting Ensembles that aggregate predic-
tions from the same type of classifier (i.e.
vanilla BERT with early stopping), but each
classifier is trained on a different subset of the
training data.

4.3 Noise Cleaning Based on Fine-Tuned
Model Loss

We use the pre-trained language model’s ability to
identify noisy labels as a way to clean the train-
ing set by removing instances with potential label
noise. This involves fine-tuning BERT on noisy
task-specific training data and evaluating model
loss on each instance. Training instances that have
a loss higher than the selected threshold are ex-
cluded from the training set used to train the final
classifier. We tune the loss threshold on a noisy
validation set.

To avoid biasing or overfitting the model when
computing loss on the same set used for fine-tuning,
we employ an N-fold process to calculate the loss

only on held-out data points®. The process is out-
lined in Algorithm 1. In summary, we fine-tune the
model using a subset of the noisy training set and
use the model to identify and remove noisy sam-
ples from the held-out validation set using a fixed
loss threshold?. The process is repeated separately
N times using disjoint validation sets to clean the
complete training set.

Algorithm 1 Noise Cleaning Algorithm

1: Input: Noisy train set T', loss threshold ¢, num-
ber of folds f
Output: Cleaned train set 7¢jean
Divide T into f validation subsets: V7, ...
fori=1to f do
T,=T\V
Train a fine-tuned model M; on T;
Evaluate the model loss Ly; on V;
Tclean,z‘ = VL'[LVi < ﬂ
end for
Tclean = U,{zl Tclean,i
: return 7gjean

Vi

R A A

—
— O

S Experiments and Results

All of the methods evaluated in these experiments
incorporate early stopping on noisy validation set
as done by Zhu et al. (2022). We use a noisy valida-
tion set because obtaining a clean validation set is
often not feasible in practice. Moreover, Zhu et al.
(2022) show that using a noisy validation set for
early stopping is more or less as effective as using
a clean validation set.

5.1 Hyperparameters

The number of training steps is optimally set to
3000* unless we are required to vary hyperparame-
ter settings for homogeneous ensembles. For homo-
geneous ensembles, we cycle through a combina-
tion of the following hyperparameters: the number
of training steps = [2000, 3000, 4000, 5000, 6000],
learning rate = [0.0002, 0.0004, 0.0005, 0.00001,
0.00002, 0.00003, 0.00004, 0.00005], patience (for
early stopping) = [25, 30, 40, 50], warm-up steps =

%A similar approach is briefly described in (Northcutt et al.,
2021) for estimating noise characterization in the confident
learning framework.

3The loss threshold is a hyperparameter that we tune be-
forehand.

*If the validation accuracy does not improve beyond a cer-
tain patience level, we employ early stopping to prematurely
halt the training process for all experiments.
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‘ Hausa ‘ Yoruba
Clean Data
Vanilla BERT | 82.67 +0.73 [ 76.23 +0.28
Noisy Data
Vanilla BERT | 46.98 £1.01 | 64.72+£1.45
Co-Teaching | 48.11+1.71 | 64.38 £0.98
CETA “49.31 £ 0.31 | *68.07 £ 0.18
HME 46.39 £0.21 | 67.28 £0.81
HTE 48.28 £0.19 | 67.81 £0.73
Boosting 4713 +£0.42 | 67.63 £1.26
NC 4718 £0.22 | 62.17+0.54

Table 2: A comparison of proposed methods against
baselines on datasets with feature-dependent label noise.
HME: Homogeneous ensembles HTE: Heterogeneous
ensembles. Boosting: Ensembles of different random
subsets from the train set. NC: Noise Cleaning. Average
accuracy is reported with a standard deviation from 5
runs of each experiment.

[0, 1,5, 7, 10], weight decay = [0.1, 0.001, 0.0001],
and drop rate = [0.1, 0.25, 0.5, 0.8].

For other experiments that do not explicitly re-
quire us to vary hyperparameters, we fix the fol-
lowing hyperparameters for the African language
datasets, training steps = 3000, learning rate =
0.00005, patience = 25, drop rate = 0.1, warm-up
steps = 0, weight decay = 0.1. We fix the following
hyperparameters for the English language datasets,
training steps = 3000, learning rate = 0.00002, pa-
tience = 25, drop rate = 0.25, warm-up steps = 0,
weight decay = 0.1. For boosting related experi-
ments, we experiment with two training data subset
sizes: 50% of the total training data and 80% of the
total training data. For heterogeneous ensembles,
we aggregate predictions from the following three
classifiers: vanilla BERT, co-teaching, and CETA.

5.2 BERT Models

We use bert-base-uncased® as the backbone for
our English language datasets: TweetNLP and
SNLI. We use bert-base-multilingual-cased® for
our African language datasets: Yorub4d and Hausa.

5.3 Loss threshold

To select a loss threshold for noise-cleaning as de-
scribed in section 4.3, we experiment with different
cut-off points in the following interval [6.0, 8.0].
We use only a noisy validation set to select the
loss threshold. Data points whose loss exceeds the
fixed loss threshold are excluded from the training

Shttps://huggingface.co/bert-base-uncased
®https://huggingface.co/bert-base-multilingual-cased

(c) Yoruba: before (d) Yoruba: after

Figure 1: Noise matrices for Hausa and Yoruba showing
noise distribution before and after noise cleaning.

set, effectively ‘cleaning’ the noisy training set to a
certain extent. Note that we only report results on
the loss threshold that produces the most optimal
accuracy on the noisy validation set. The cleaned
training set is once again used to train a vanilla
BERT model, at which point we can evaluate how
well the noising scheme performed.

5.4 Results
5.5 Feature-dependent label noise

Table 2 shows the results of baseline models and
the proposed approaches on datasets containing
feature-dependent label noise: Hausa and Yoruba.
First, we observe that co-teaching and noise
cleaning do not consistently improve performance
compared to vanilla BERT. CETA, on the other
hand, improves performance by around 3 absolute
percentage points on both datasets. The homo-
geneous ensemble method does not consistently
improve either, but we do observe consistent gains
using heterogeneous ensembles and boosting.
Figure 1 show the noise distribution in the train-
ing set before and after applying the noise cleaning
procedure in both datasets. Note that the noise-
cleaning method results in the removal of both
noisy and clean instances, which leads to the total
noise level not being considerably reduced. Overall,
we we do not observe a larger reduction in noise
level in either dataset. After noise cleaning, we
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TweetNLP | SNLI
Noise Level 10% 20% 30% \ 10% 20% 30%
Clean Data
Vanilla BERT 91.03 £ 0.81 ‘ 85.03 £ 0.16

Noisy Data

Vanilla BERT | 82.08 £0.03 | 74.45+0.65 | 72.96 = 1.42 | 84.79 +0.87 | 83.83 £ 1.01 | 82.01 £0.21

Co-Teaching | 81.31 +£0.11 | 73.68 £0.04 | 72.41 +£0.71 | 84.27 +£0.15 | 83.10 £ 1.20 | 80.99 £+ 0.04

CETA 81.00 £1.81 | 72.40 £1.01 | 72.13 £0.71 | 84.24 £0.01 | 82.67 £0.21 | 81.02 £0.27

HME 81.81 +£0.05 | 74.08 £0.03 | 72.53 £ 0.01 | 85.02 +0.12 | 83.76 + 0.10 | 81.99 £ 0.26

HTE 79.134+0.32 | 7490 £0.51 | 72.32£0.97 | 84.75£0.34 | 83.64 £1.11 | 81.16 £0.97

Boosting 82.53 £0.01 | 74.27+0.15 | 73.52 £3.32 | 85.38 £0.45 | 83.80 £0.81 | 82.06 £ 0.41

NC 80.94 +£0.09 | 74.55 +£0.45 | 72.65 £ 0.19 | 85.13 £ 0.05 | 84.00 £ 0.01 | 82.97 £ 1.09

Table 3: A comparison of proposed methods against baselines on TweetNLP and SNLI datasets noised to various
levels. HME: Homogeneous ensembles HTE: Heterogeneous ensembles. Boosting: Ensembles of different random
subsets from the training set. Average accuracy is reported with the standard deviation from 5 runs of each

experiment.

have 31% label noise in Yoruba compared to 33%
before noise cleaning, with only a 2% reduction in
noise. For Hausa, the noise level after cleaning is
similarly reduced by 3% (47% compared to 50%
before cleaning). In summary, we do not find the
noise-cleaning method to be an efficient error detec-
tor for feature-dependent label noise, as compared
to the other noise-robust we use. This is inconsis-
tent with the result in Chong et al. (2022), where
they show that language models are suitable for la-
bel error detection. However, they also report that
an ensemble of large pre-trained language models
is a better error detector than a smaller individual
pre-trained model, and in both cases, while models
may have good error detection performance, the
performance in the underlying task is not necessar-
ily improved.

5.6 Pseudo-real-world label noise

Table 3 shows the results on datasets contain-
ing pseudo-real-world label noise, TweetNLP, and
SNLI, with three levels: 10%, 20%, and 30%.
In these datasets, we observe that performance
drops significantly with increased noise levels in
TweetNLP, but only small drops in performance are
observed in SNLI. We hypothesize that this poten-
tially reflects the inherent difficulty in the natural
language inference task, and the gold labels may
already be ambiguous even before applying the
noising scheme. Table 4 shows samples from both
SNLI and TweetNLP datasets before and after in-
jecting noisy labels. In many cases, particularly in
SNLI, the given example is rather ambiguous and
both labels can be suitable. These are also cases
where there are high inter-annotator disagreements.

In terms of noise handling techniques, we ob-
serve that all approaches generally do not produce
large gains in performance compared to vanilla
BERT. Furthermore, many approaches result in
slightly worse performance compared to the base-
line. Boosting seems like the most robust technique,
as it maintains baseline performance at least, while
also being effective against feature-dependent la-
bel noise. Noise cleaning in this category obtained
mixed results. Surprisingly, CETA does not ex-
cel over other methods in this particular category.
Although it was specifically designed to address
feature-dependent label noise, its performance is
somewhat inferior to the vanilla BERT baseline
when dealing with realistic label noise. We sur-
mise that this type of artificial noise is more chal-
lenging as it’s based on actual human errors, and
may even reflect intrinsic ambiguities in the task,
which makes it harder to detect through automatic
approaches.

6 Conclusions

In this paper, we described experiments for evaluat-
ing different label noise handling techniques within
the framework of BERT text classification. We eval-
uated some multi-network training approaches (i.e.
co-teaching and CETA), different types of ensem-
bles (homogeneous, heterogeneous, and boosting),
and a noise cleaning technique and compared them
with a vanilla BERT fine-tuned model with early
stopping. We used two datasets that contain feature-
dependent label noise from automatic labeling, as
well as two datasets with synthetic pseudo-real-
world label noise obtained by considering multiple
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Dataset Text Noisy Label Actual Label
SNLI (1) Young man wearing a blue jacket, green shirt and denim jeans is pho- No Relationship Centradiction
tographed by person in beige jacket and burgundy pants while four onlookers
watch on an expanse of sand.<!SEP!> The people are ignoring the man
getting photographed.
SNLI (2) A man wearing a black t-shirt is playing seven string bass a Contradiction No-Relationship
stage.<!SEP!> The man is playing an old guitar.
SNLI (3) Many children are sitting in a classroom watching a woman in the Entailment No-Relationship
front.<!SEP!>The woman is teaching the children
TweetNLP (1) Reading harry potter in bed! waiting for the new south park to come on  ADJ NOUN
TweetNLP (2) @USER: I'm not insulted, at all, trust me. I’'m seeking to understand DET ADBP
you and your video. :)
TweetNLP  (3) Chicagoan early voters in Uptown even get brownies and entertainment ADJ NOUN

while waiting for a dozen people to do number page ballots.

Table 4: Samples from SNLI and TweetNLP with pseudo-real-world noise injection, highlighting the complexity

and potential ambiguity of these tasks.

annotations.

For feature-dependent label noise, the recently
proposed Consensus Enhanced Training Approach
(CETA) shows the most promising results com-
pared to the baselines. Some ensembling tech-
niques, such as boosting, can also improve per-
formance compared to the baselines but do not
provide the level of robustness achieved via CETA.

While pre-trained language models have been
shown previously to have the potential to detect
label errors through out-of-sample loss, our results
indicate that using this technique to automatically
clean the data does not result in improved perfor-
mance compared to using the noisy set. This may
suggest that removing label errors is not necessarily
a good approach for handling label noise; rather,
error detection can be used to identify noisy labels
for manual correction.

The synthetic pseudo-real-world category of la-
bel noise appears to be more challenging as the
noise represents actual human errors, which could
be an indication of inherent ambiguities in the task
itself. Our experiments show that most techniques
do not improve performance compared to the base-
lines. Furthermore, for a dataset like SNLI, which
is known to be challenging even for human anno-
tators, the presence of label noise does not reduce
the performance to a great extent compared to the
other datasets. This may suggest that the noising
scheme is compatible with the inherent difficulty
or label ambiguity of the task, and any attempts to
detect or discard the noise will not necessarily im-
prove the performance using stringent metrics such
as accuracy. Recent efforts to embrace annotator
disagreements and incorporate them in the training
process (Zhang et al., 2021) rather than relying on

a single gold label may be more suitable to handle
this kind of labeling inconsistencies.

Overall, the results indicate that handling realis-
tic label noise in text classification remains a chal-
lenging task, and none of the noise-handling tech-
niques examined so far has shown consistent per-
formance improvements across multiple datasets.

Limitations

The work described in this paper is limited by the
small number of datasets that contain both noisy
and clean versions in the text classification domain,
which are needed for evaluating noise-handling
methods. While we observed positive results from
at least two approaches, any conclusions we make
about their effectiveness are drawn from a sample
of two datasets, and may not necessarily general-
ize to other cases. For the pseudo-real-world label
noise category, it is unclear whether the noise rep-
resents true errors or inherent ambiguity in the task.
The mixed results we observe could also be a result
of ambiguities in the presumed ‘clean’ test set.
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Abstract

Existing discourse formalisms use different tax-
onomies of discourse relations, which require
expert knowledge to understand, posing a chal-
lenge for annotation and automatic classifica-
tion. We show that discourse relations can be
effectively captured by some simple cognitively
inspired dimensions proposed by Sanders et al.
(2018). Our experiments on cross-framework
discourse relation classification (PDTB & RST)
demonstrate that it is possible to transfer knowl-
edge of discourse relations for one framework
to another framework by means of these di-
mensions, in spite of differences in discourse
segmentation of the two frameworks. This man-
ifests the effectiveness of these dimensions in
characterizing discourse relations across frame-
works. Ablation studies reveal that different di-
mensions influence different types of discourse
relations. The patterns can be explained by the
role of dimensions in characterizing and distin-
guishing different relations. We also report our
experimental results on automatic prediction of
these dimensions.

1 Introduction

Discourse relations are useful for various down-
stream NLP tasks, such as text generation (Ji and
Huang, 2021) and machine translation (Sim Smith,
2017). However, discourse relations are shaped by
multiple sources of information and require expert
knowledge for annotation. Since the release of the
Penn Discourse Treebank 2.0 (PDTB 2.0) (Prasad
et al., 2008), less than 8% improvement has been
made in English implicit relation classification in
more than ten years (Atwell et al., 2021). Even
with the development of contextualized embed-
dings, this task shows the least improvement in
performance compared with other NLP tasks.
Another issue is that existing studies on dis-
course relation classification are separated into sev-
eral independent strands of work (Zeldes et al.,
2021). The complex nature of discourse gives rise

to discourse annotation frameworks which vary
in assumptions and definitions of fundamental as-
pects of discourse, such as what constitutes a dis-
course relation, what is a basic discourse unit, full-
coverage or shallow discourse annotation, and how
discourse structure is represented (Fu, 2022).

The leading examples of these annotation
frameworks include the Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988),
the Segmented Discourse Representation Theory
(SDRT) (Asher and Lascarides, 2003) and the Dis-
course Lexicalized Tree-Adjoining Grammar (D-
LTAG) (Forbes et al., 2003). These three frame-
works have been used in various discourse annota-
tion projects covering different languages. Based
on the RST framework, the Rhetorical Structure
Theory Discourse Treebank (RST-DT) (Carlson
et al., 2001) is developed. SDRT forms the theo-
retical framework for the ANNODIS corpus (Afan-
tenos et al., 2012), the STAC corpus (Asher et al.,
2016) and so on, and D-LTAG is the theoretical
foundation for PDTB (Prasad et al., 2008, 2018),
which is the largest corpus annotated with discourse
relations.

To enable different strands of research to come
together and benefit from data across frameworks,
we need an interface with which discourse rela-
tion classification tasks under different frameworks
can be formulated in similar terms, independent
of the underlying theoretical assumptions (Zeldes
etal., 2021). The UniDim proposal by Sanders et al.
(2018) represents one of the influential approaches
for this task. The intuition is that discourse rela-
tions of different frameworks can be decomposed
into cognitive primitives rooted in the Cognitive ap-
proach to Coherence Relations (CCR) (Sanders
et al., 1992, 1993) (hence denoted as the CCR
framework), and people can make use of these el-
ementary notions to relate and compare discourse
relations. These primitives are not intended to
form a complete and descriptively adequate ac-
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count of discourse relations but are targeted at a
psychologically plausible theory of discourse rela-
tions (Sanders et al., 1992). Additional primitives
are added in later studies to reach better linguistic
and cognitive coverage (Crible and Degand, 2019).

Sanders et al. (2018) and other researchers such
as Rehbein et al. (2016) try to test if discourse re-
lations annotated based on the CCR framework are
consistently categorized into relations under other
frameworks. Their investigation reveals that dis-
crepancies between frameworks arise due to vari-
ations in how coherence relations are defined, the
methods used to perform the annotation, and the
rules governing segmentation, and the alignment
of discourse relations is generally many-to-many.

In this study, we aim to assess to what extent
these CCR dimensions provide information about
discourse relations of different frameworks. We as-
sume that CCR dimensions are annotated in parallel
to discourse relation annotations of other frame-
works and utilize these dimensions as features in
discourse relation classification tasks. The improve-
ment/degradation of performance relative to the
case without such features as a measure of the in-
formation that these dimensions provide. In this
way, we show empirical evidence of the effective-
ness of the UniDim proposal in representing and
bridging discourse relations of different discourse
annotation schemes.

Our contributions include:

* We show that the dimensions of the UniDim
proposal effectively capture discourse rela-
tions and are useful for training computational
systems for discourse relation classification,
both for RST relation classification and PDTB
explicit and implicit relation classification,
yielding significant performance gains. Such
elementary cognitive dimensions can be use-
ful features for the challenging task of dis-
course relation classification.

* We demonstrate that these dimensions can
work as an interface for discourse relations
across different frameworks. It is possible
to train one discourse relation classification
model on PDTB and apply the model to the
discourse relation classification task in RST
with transfer learning and the performance is
as high as training a model specifically for
RST relation classification, in spite of differ-
ences in discourse segmentation between the

two frameworks. The CCR dimensions pro-
vide an effective means of bridging discourse
relations of different frameworks.

* We report experimental results on automatic
prediction of these dimensions with RST-DT,
PDTB 3.0 and a combination of the two cor-
pora.

2 Related Work

2.1 Mapping Discourse Relations of Different

Frameworks

Prior studies on mapping discourse relations of dif-
ferent frameworks adopt varied approaches. Some
researchers propose common inventories of rela-
tions that are created based on analysis of discourse
relations of different frameworks (Benamara and
Taboada, 2015; Bunt and Prasad, 2016). Alterna-
tively, an intermediate representation may be used
to reduce the number of mappings necessary to
harmonize different frameworks (Chiarcos, 2014;
Sanders et al., 2018). As there are corpora that
contain parallel annotations under different frame-
works on the same texts, these corpora are used
to identify mappings between discourse relations.
Since this approach relies on textual matching, dif-
ferences in discourse segmentation would hinder
relation mapping, leaving only a small number of
relations successfully mapped between different
frameworks (Bourgonje and Zolotarenko, 2019;
Scheffler and Stede, 2016). The study by Dem-
berg et al. (2019) employs the strong nuclearity
hypothesis (Marcu, 2000) to mitigate this problem.
Demberg et al. (2019) show that the Unified Dimen-
sion (UniDim) approach is relatively successful in
mapping relations between RST-DT and PDTB 2.0.
Roze et al. (2019) investigates the possibility of
predicting CCR dimensions automatically. They
achieve an accuracy above the baseline of majority
class guessing. Furthermore, they try to predict re-
lations of PDTB 2.0 from these dimensions, and it
is shown that the accuracy is much lower than that
of training a model for predicting PDTB relations
directly. The low performance may be attributed
to the high level of under-specification in the map-
ping from PDTB relations to these dimensions and
the reverse mapping from dimension combinations
to the hierarchical PDTB sense labels, especially
when the mapping is not necessarily one-to-one.
Recent studies propose to represent discourse
relations as question-answering (QA) pairs (Ko
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et al., 2022; Pyatkin et al., 2020). While this ap-
proach is designed to simplify discourse relation
labelling, some relations cannot be expressed by
QA pairs (Pyatkin et al., 2020), and evaluation is
difficult. Moreover, open-ended QA leads to anno-
tations similar to the GraphBank (Wolf and Gibson,
2004), which has higher complexity than the other
frameworks.

2.2 Dimensions in UniDim Proposal

The main approach adopted in the UniDim pro-
posal is to use cognitively inspired dimensions as
an intermediate representation and decompose dis-
course relations of different frameworks into these
dimensions so that they can be related and com-
pared. The result contains five dimensions which
are rooted in the Cognitive approach to Coherence
Relations (CCR) (Sanders et al., 1992, 1993) and
some additional dimensions that are added to allow
more relations to be better represented (collectively
referred to as “UniDim dimensions” or “dimen-
sions of the UniDim proposal” in the following).
We give an overview of these dimensions here.

Two segments that may stand in a discourse re-
lation are identified first, the two segments being
denoted as S7 and Sy in linear order, and the un-
derlying propositions being denoted as P and () in
linear order.

The first dimension is basic operation, which
has two values: causal and additive. A causal re-
lation means that the two segments are strongly
connected and typically, an implication relation
P — (@ can be deduced. In (1), S5 shows the cause
and S gives the consequent. If the two segments
are just loosely connected and only a conjunction
relation P A () can be inferred, the value at this
dimension is additive, as shown in (2).

(1) [He immigrated to the US,]s, because [his
natural parents were believed to live there.]g,

(2) [She is a painter]g, and [her studio is a few
blocks away.]s,

As indicated in Sanders et al. (2018), basic op-
eration can be used to distinguish causal relations
or conditional relations from additive relations or
temporal relations.

The second dimension is source of coherence. It
has two values: semantic and pragmatic in the orig-
inal proposal (Sanders et al., 1992), later renamed
as objective and subjective in Maat and Sanders
(2000), respectively. A relation is objective if the
segments are connected because of their proposi-

tional content, and the relation holds because the
connection is coherent based on world knowledge,
as shown in (3). A relation is subjective if the
speaker’s reasoning or the pragmatic effect of the
relation is prominent. (4) shows a claim in .S; and
S1 is an argument that supports it.

(3) [It was dark outside,]s, so [he lit up a
candle.]g,

(4) [Smoking is unhealthy]g, and [we should put
a limit on it.] g,

This dimension can be used to distinguish re-
lations that are related to real-world situations,
such as temporal sequence, and cause-consequence,
from argumentative relations, such as claim-
argument or evidence-justification (Sanders et al.,
2018).

The third dimension is implication order. This
dimension distinguishes between non-basic and ba-
sic orders of causal relations, and does not apply
to additive relations, which are generally symmet-
ric. For a causal relation characterized by P — @,
if Sp expresses P and S5 expresses () (note that S
and S5 are in linear order), then this relation is
in basic order, as shown in (6). If S, actually ex-
presses P while S; expresses (), this relation is in
non-basic order, as shown in (5).

(5) [He did not attend the conference,]s, because
[he received a message telling him not to go.]s,

(6) Because [he received a warning message,]s,
[he did not attend the conference.]g,

It is clear to see that the implication order dimen-
sion is mainly used to distinguish relations with di-
rectionality, such as cause-result and cause-reason.

The fourth dimension is polarity. A relation
is characterized by positive polarity if the propo-
sitions P and @), expressed by 57 and .S, respec-
tively, have the same logical polarity and support
each other, as shown in (7). A relation is of negative
polarity if the relation involves the juxtaposition of
=P and P or =@ and @ in the two segments, as
shown in (8). In this example, a positive polarity
would require a reason or result that supports the
decision of closing the library.

(7) [We like the garden]s, because [it is
pretty.]s,

(8) [The university library was closed]g, al-
though [students wanted more space for study.]g,

This dimension is wuseful for capturing
contrastive, adversative and concession rela-
tions (Sanders et al., 2018).

The fifth dimension is temporality, which dis-
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tinguishes between temporal and non-temporal re-
lations. Under temporal relations, temporality has
three values: synchronous, chronological and anti-
chronological. Synchronous relations are those
temporal relations which feature simultaneous oc-
currence of events. If events described in the
segments happen in temporal order, then the re-
lation is chronological, otherwise the relation is
anti-chronological.

In order to characterize more relations, addi-
tional dimensions are introduced, including speci-
ficity, lists and alternatives for additive relations,
and conditionals and goal-oriented relations for
causal relations (denoted collectively as “additional
dimensions” in the following).

3 Methodology

Since RST-DT and PDTB both use the WSJ arti-
cles of the Penn Treebank, cross-framework rela-
tion classification of RST and PDTB by automatic
means would be less influenced by domain shift.
Therefore, we focus on the two frameworks. For
PDTB, we use PDTB 3.0, which is newer and in-
troduced systematic changes.

As we are primarily interested in the effective-
ness of UniDim dimensions rather than improving
algorithms for discourse relation classification, sim-
ple models are implemented in the experiments.

3.1 Discourse Relation Classification

Discourse relation classification is a typical multi-
class classification task. Given a span/argument
pair with tokens S = [C'LS], Sfl) I [SEP],
SF) (2)

... Sy, 7, we obtain the representation of the

sequence from a pre-trained language model, de-
noted as fprar(5), and the embeddings of the di-
mensions F are obtained from embedding layers,
where the embeddings are initialized from uniform
distributions and trainable. The representation of
the input and the embeddings of dimensions are
concatenated:

hs = froam(S) @ Edimpy @ Edimpe, ® ... (1)

The dim,,, and diny,,, ... represents the UniDim
dimensions, including polarity, basic operation, im-
plication order, source of coherence, temporaltiy,
specificity, alternative, conditional and goal.

The representation is fed to two two-layer feed-
forward networks (FFNs) with LeakyReL.U as acti-
vation functions:

~

h = gg(Wz * 91(W1 * hS)) (2)

where g1 and g» represent the non-linear activation
functions of first and the second FFNs, respectively.
W1 and Wy denote weights of the first layers of the
two FFNSs, and bias terms are omitted for clarity.

A classifier layer is configured on top of the
second FFN. The predicted result ¢ is obtained
with:

§ = softmazx(Ws * h) 3)

Cross-entropy loss is used in the loss function:

N C ‘ '
Lo==Y"> cilogp(c)

i=1 l=1

“)

where N is the batch size, C' is the total number of
classes, and p(c}) is the probability predicted for a
class c.

In this design, we take our experiments with
transfer learning for cross-framework discourse re-
lation classification into consideration, as we try to
keep the architecture and only replace the last clas-
sifier layer to fit the model on new data. Moreover,
our preliminary experiments indicate that removing
the second FFN causes a significant performance
drop.

Baseline model The BertForSequenceClassifi-
cation model from the Transformers library (Wolf
et al., 2020) is used as the baseline model, in which
a classifier layer is added on top of the contextu-
alized embeddings of the input sequence. For an
input sequence S, its representation is obtained
with:

hs = frrum(S) &)
The predicted result 4 is obtained with:
g = softmax(Wy x hg) (6)

As shown in Kim et al. (2020), this model is
a strong baseline. We use the bert-base-uncased
BERT model in all our experiments for comparison
of experimental results.

3.2 Cross-framework Discourse Relation
Classification

We hypothesize that if UniDim dimensions form an
effective “interlingua” of discourse relations from
different frameworks, we can train a model for dis-
course relation classification in one framework and
apply the model for relation classification in an-
other framework without much modification. The
transfer learning framework can be used for this
experiment.
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As PDTB 3.0 is much larger than RST-DT, a
natural choice would be to treat PDTB relation
classification as the source task and RST relation
classification as the target task (Wang et al., 2019).

We first train a model as described in section 3.1
on all the PDTB data, and freeze all the layers but
the last classifier layer so that the model can be fit
on RST data.

Formally, for a pair of PDTB arguments P =
(cLs), AV . AR [SEP), A .. AP, we ob-
tain the representation of sequence P with equation
(1). Through training, the parameters in equation
(2) are learnt for the PDTB relation classification
task. With these parameters, for an RST span pair
R = [cLS), RV, .. .RY, [SEP,R?, . RY,
we first obtain the representation of sequence R
with equation (1), denoted as hp, and with the pa-
rameters learnt for PDTB relation classification, we
obtain the representation f/L;gZ

o~

hr = g2(Wa x g1 (W1 * hg)) @)

The predicted result ¢ for RST relation classifi-
cation is obtained with:

g = softmax(W, x l;l\%) 8)

where W, is the weight to be learnt for RST relation
classification.

Baseline model As we transfer knowledge from
PDTB relation classification to RST relation clas-
sification, the baseline model is a model trained
specifically for RST relation classification with
BERT embeddings and UniDim dimensions as in-
put. For the baseline model in section 3.1, where
only BERT embeddings are used, we train a model
for PDTB relation classification and apply the
model to RST relation classification without us-
ing UniDim dimensions.

3.3 Automatic UniDim Dimension Prediction

Since the dimensions may be related to each other,
we train one model for predicting the nine dimen-
sions in equation 1 together.

For an input sequence .S, we obtain its repre-
sentation hg with equation 5. A two-layer FFN
f with LeakyReLU activation function is applied
to hg before nine classification layers ¢;;;—;. g are
applied:

g = softmax(We, * f(hg)) )

We train the model on PDTB, RST and the combi-
nation of PDTB and RST data, respectively. The

results reported in Roze et al. (2019) are our base-
line.

4 Experiments

We use the mapping table given in Sanders et al.
(2018) (Appendix A) for obtaining the dimension
values for relation labels of RST-DT. As no map-
ping table is provided for PDTB 3.0, we create the
mapping table by ourselves (Appendix B).

4.1 Data Preprocessing

We binarize the RST trees based on the procedure
in Ji and Eisenstein (2014) and extract pairs of
spans that are connected by a relation. Follow-
ing Sanders et al. (2018), we exclude Same-Unit
and Attribution relations from RST-DT, leaving 16
relations. We use the standard split of the corpus
and take 20% from the training set for validation.

Since PDTB level-2 relations carry specific and
generally more useful information, we focus on
level-2 relation classification for PDTB. We ex-
clude relations that have fewer than 100 instances
to alleviate data imbalance, as suggested in Kim
et al. (2020). We follow the data split in Ji and
Eisenstein (2015), using sections 2-20 for training,
0-1 for validation and 21-22 for testing.

We use the pre-trained BERT model (Devlin
et al., 2019) for obtaining contextualized embed-
dings and the [CLS] and [SEP] tokens are inserted
following the settings of the BERT model, which
is shown to benefit inter-sentential (Shi and Dem-
berg, 2019) and intra-sentential (Zhao and Webber,
2021) implicit discourse relation classification.

Among the UniDim dimensions, we exclude list
because this dimension is proposed for represent-
ing the List relation in PDTB, which has been
removed from the sense hierarchy in PDTB 3.0.
Following Roze et al. (2019), we merge specificity-
example and specificity-equivalence into specificity,
and add the NS label in cases of ambiguity or under-
specification. The N.A. label is kept when it appears
on its own to reflect the fact that some dimensions
do not apply to certain types of relations. The
default values of additional dimensions are set to
negative because they are only applicable to some
relations and typically have binary values.

On the whole, the dimensions are heavily imbal-
anced and have high degree of under-specification.
Statistics for the distribution of these dimensions
are shown in Appendix C. Hyper-parameter set-
tings and model training details are described in
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Appendix D.

4.2 Evaluation

For RST relation classification, the settings of the
DISRPT 2021 shared task on relation classifica-
tion (Zeldes et al., 2021) are the closest to ours.
We report their best accuracy on RST-DT (Gessler
et al., 2021) alongside our baseline model results
for comparison.

After preprocessing, we perform 12-way explicit
relation classification and 14-way implicit relation
classification for PDTB. While most of the previ-
ous studies use PDTB 2.0 and recent studies on
PDTB 3.0 only focus on implicit relation classifica-
tion, when settings of previous studies are close to
ours, we report their results alongside our baseline
results’.

4.3 Results and Discussion

We report our experimental results on the test
sets, which are computed with the Scikit-Learn
library (Pedregosa et al., 2011). We can expect that
RST and PDTB data show different patterns. For
RST, the dimension values for end labels may be
clear, but when end labels are grouped into a class,
the values could be rather mixed. For PDTB, as
L2 sense classification is performed, the process of
grouping relations into broader classes happens at
L3, which only encodes directionality, and dimen-
sions that are related to directionality are affected,
such as implication order, but the other dimensions
are not influenced. Therefore, dimension values for
PDTB classes tend to be less ambiguous. Moreover,
data amount differences are likely to have notable
influence on the results. We do not report the re-
sults of additional dimensions separately because
their individual effects are not obvious.

4.3.1 RST Relation Classification

Table 1 shows results on RST-DT. When UniDim
dimensions are added as features, a significant per-
formance gain can be obtained. Some relations
can be recognized with 100% accuracy. However,
relations including Comparison, Manner-means,
Summary and Textual-Organization cannot be rec-
ognized. From Fig. 3 in Appendix E, it is clear that
these relations have small amounts of training data.
As we focus on broader classes rather than end
labels in relation classification, we can see from
the mapping table in Appendix A that dimension

'We build and run all the baseline models mentioned in
section 3.1 and section 3.2 by ourselves.

2 R F1 Py, Ry, F1,, C.
Background | 1.00 1.00 1.00 0.47 0.35 0.40 111
Cause 0.92 0.70 0.79 0.50 0.17 0.25 82
Comparison | 0.00 0.00 0.00 0.61 0.38 0.47 29
Condition 1.00 1.00 1.00 0.79 0.71 0.75 48
Contrast 0.99 1.00 0.99 0.75 0.68 0.72 146
Elaboration | 0.75 1.00 0.86 0.65 0.88 0.75 796
Enablement | 0.92 1.00 0.96 0.61 0.85 0.71 46
Evaluation 0.99 1.00 0.99 0.29 0.14 0.19 80
Explanation | 0.72 0.97 0.83 0.46 0.27 0.34 110
Joint 1.00 0.03 0.06 0.67 0.62 0.64 212
Manner- 0.00 0.00 0.00 0.68 0.48 0.57 27
Means
Summary 0.00 0.00 0.00 0.88 0.47 0.61 32
Temporal 1.00 1.00 1.00 0.74 0.27 0.40 73
Textual- 0.00 0.00 0.00 0.44 0.44 0.44 9
Organization
Topic- 0.28 1.00 0.44 0.28 0.38 0.32 13
Change
Topic- 0.71 0.21 0.32 0.00 0.00 0.00 24
Comment
Acc. 0.81 0.63 (vs DISRPT 2021: 0.67)
Macro-F1 0.64 | 0.62 | 0.58 055 [ 044 ] 047 [ 1838

Table 1: Results of RST relation classification. The columns
in blue show the results of our method and uncolored columns
show the results of the baseline model, and the last column
shows the count of occurrences of each relation in the test set.
We use this convention in reporting the results.

values under these classes are mixed. It is difficult
for the model to learn patterns from the data.

To have a better understanding of the influence
of each dimension on the results, we performed ab-
lation studies and the results are shown in Table 2.

Acc P R F1

Total 0.81 0.64 0.62 0.58
-Pol. 0.74 0.49 0.48 0.48
-Basic Op. 0.78 0.52 0.58 0.53
-SoC. 0.78 0.52 0.58 0.53
-Impl. order 0.81 0.58 0.60 0.55
-Temp. 0.80 0.59 0.60 0.55
-Add. 0.80 0.52 0.59 0.54

Table 2: Results of ablation studies for RST relation classi-
fication, showing the overall accuracy (Acc), precision (P),
recall(R) and macro-averaged F1 (F'1) for dimensions of po-
larity (Pol.), basic operation (Basic Op.), source of coherence
(SoC.), implication order (Impl. order), temporality (Temp.)
and additional dimensions (Add.), respectively.

As shown in Table 2, removing the polarity di-
mension causes the biggest performance drop in
macro-averaged F1. By examining the detailed
results (Table 33, Appendix L), we find that re-
moving this dimension has noticeable influence on
the recognition of Contrast({ 0.41), Evaluation(|
0.26), Topic-Change(| 0.44) and Topic-Comment(|
0.32). The correlation between Contrast and this
dimension is self-evident. Examination of the map-
ping table suggests that the rest of these relations
have ambiguous or mixed values in the other di-
mensions and their data amounts are small, making
it difficult for the model to learn any patterns.

4.3.2 PDTB Explicit Relation Classification

Table 3 shows the results of 12-way explicit re-
lation classification. The overall accuracy score
is high and the majority of the relations can be
recognized with near perfect performance, which
means that the UniDim dimensions are effective
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in characterizing most of the PDTB explicit re-
lations. However, in spite of the noticeable im-
provement in overall accuracy, our method does
not show improvement over the baseline model in
macro-averaged F1 score. This is likely due to
the strong reliance of pre-trained language models
on lexical cues in discourse relation classification
tasks (Kim et al., 2020) and these lexical cues are
effective features for this task. Moreover, with our
approach, the Level-of-detail and Substitution rela-
tions cannot be recognized. The two relations have
the smallest data amount, and in terms of dimen-
sion values, Substitution is similar to Concession
and Level-of-detail is similar to Manner. It is possi-
ble that the model predicts Manner for instances of
Level-of-detail, which explains the lower precision
for Manner.

12 R F1 Py, Ry, Fly, C.

Asynchronous 1.00 1.00 1.00 0.97 0.87 0.92 127
Cause 1.00 1.00 1.00 0.82 0.89 0.85 115
Concession 0.96 1.00 0.98 0.89 0.95 0.92 285
Condition 1.00 1.00 1.00 0.93 0.92 0.93 61
Conjunction 1.00 1.00 1.00 0.97 0.96 0.96 516
Contrast 1.00 1.00 1.00 0.52 0.48 0.50 50
Disjunction 1.00 1.00 1.00 0.90 1.00 0.95 18
Level-of-detail 0.00 0.00 0.00 0.71 0.75 0.73 20
Manner 0.35 1.00 0.52 0.42 0.91 0.57 11
Purpose 1.00 1.00 1.00 0.62 0.45 0.52 29
Substitution 0.00 0.00 0.00 1.00 0.92 0.96 13
Synchronous 1.00 1.00 1.00 0.81 0.71 0.76 126

Acc. 0.98 0.89

Macro-F1 078 | 0.83 [ 0.79 080 [ 082 [ 080 [ 1371

Table 3: Results of PDTB explicit relation classification.

The results of ablation studies are shown in Ta-
ble 4. Removing the source of coherence dimen-
sion causes the biggest performance drop in macro-
averaged F1. Through examining the detailed re-
sults, we find that without this dimension, the Dis-
Jjunction relation cannot be recognized. Meanwhile,
removing this dimension causes a drop of 0.15 for
identifying the Contrast relation and a drop of 0.14
for recognizing the Synchronous relation. The Dis-
Jjunction relation has a small data amount, and the
model might predict Contrast for instances of Dis-
Jjunction, since they are similar in the absence of
this dimension, which may account for the lower
precision for Contrast.

Acc P R F1

Total 0.98 0.78 0.83 0.79
-Pol. 0.95 0.74 0.81 0.76
-Basic Op. 0.98 0.78 0.83 0.79
-SoC. 0.94 0.67 0.73 0.68
-Impl. order 0.98 0.78 0.83 0.79
-Temp. 0.95 0.76 0.81 0.77
-Add. 0.96 0.73 0.73 0.73

Table 4: Results of ablation studies for PDTB explicit relation
classification.

4.3.3 PDTB Implicit Relation Classification

Table 5 shows the results of 14-way implicit rela-
tion classification. The previous best result under
similar settings is 0.64 in overall accuracy (Kim

et al., 2020), which is achieved with large-cased
XLNet (Yang et al., 2019). Our baseline 56% ac-
curacy is consistent with the results in Kim et al.
(2020).

P R F1 | P, | Ry | Flp C.
Asynchronous | 1.00 | 1.00 | 1.00 | 062 | 0.6l 062 95
Cause 100 | 100 | 100 | 060 | 0.63 0.61 366
Cause+Belief | 1.00 | 042 | 059 [ 000 [ 0.00 | 000 2
Concession 1.00 0.92 0.96 0.44 0.40 0.42 84
Condition 100 | 100 | 1.00 [07T [ 042 053 2
Conjunction 090 | 1.00 | 095 [ 049 | 0.61 054 221
Contrast 098 | 100 | 099 | 045 | 042 043 50
Equivalence 000 [ 000 [ 000 | 0.2 | 004 | 006 24
Tnstantiation 000 [ 000 [ 000 | 0.77 | 054 0.64 107
Level-of-detail | 060 | 100 | 075 | 045 | 048 046 180
Manner 000 | 000 | 000 | 038 | 060 | 046 15
Purpose 092 094 [ 093 | 092 | 098 095 88
Substitution 075 | 1.00 | 086 [ 043 | 048 045 21
Synchronous 0.87 0.97 0.92 0.27 0.10 0.15 40
Acc. 0.87 0.56
Macro-F1 072 | 073 | 071 [[048 [ 045 | 045 | 1315

Table 5: Results of PDTB implicit relation classification.

As is shown in Table 5, adding UniDim di-
mensions brings significant performance gain for
this task, which is challenging for the baseline
model. Meanwhile, we notice that relations in-
cluding Equivalence, Instantiation and Manner are
difficult to recognize. In terms of dimension values,
Equivalence is similar to Conjunction, which has
a much larger amount of data. It is likely that the
model predicts Conjunction for Equivalence, hence
the lower precision for Conjunction. Instantiation,
Manner and Level-of-detail have the same dimen-
sion values, and as the data amount for Level-of-
detail is much larger, the model may predict Level-
of-detail for instances of the other two relations,
causing the precision score for Level-of-detail to
go down.

The results of ablation studies are shown in Ta-
ble 6. Both the implication order dimension and
the additional dimensions have substantial influ-
ence on the F1 score. Removing the implication
order dimension does not cause much decrease in
the overall accuracy score but mainly lowers the F1
score, while removing the additional dimensions
reduces both the overall accuracy score and the F1
score.

Acc P R F1

Total 0.87 0.72 0.73 0.71
-Pol. 0.87 0.71 0.71 0.70
-Basic Op. 0.87 0.72 0.73 0.71
-SoC. 0.87 0.72 0.73 0.71
-Impl. order 0.86 0.57 0.64 0.60
-Temp. 0.87 0.72 0.73 0.71
-Add. 0.73 0.64 0.64 0.62

Table 6: Results of ablation studies for PDTB implicit relation
classification.

Detailed results (Table 26 in Appendix J) show
that removing the implication order dimension
causes a drop of 0.07 in recognizing Concession,
a drop of 0.86 in recognizing Substitution and a
drop of 0.59 in recognizing Cause+Belief. As the
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last two relations cannot be recognized, the macro-
averaged F1 shows a significant decrease. Sim-
ilarly, this is associated with differences in data
amount and how different relations can be distin-
guished from each other without the dimension, for
instance, Substitution has a small data amount, and
without the implication order dimension, the model
might confuse this relation with Concession and
predict Concession for instances of both relations,
which may explain the lower precision for Conces-
sion. If the additional dimensions are removed, ma-
jor relations that are impacted include Condition(],
0.14), Conjunction(| 0.37), and Level-of-detail(]
0.75). In this case, the Level-of-detail relation can-
not be identified. Without this dimension, Level-of-
detail has the same dimension values as Conjunc-
tion, which has a larger data amount. The model
may predict Conjunction for both classes, which
causes precision for Conjunction to decrease.

4.3.4 Cross-Framework Discourse Relation
Classification

As RST does not distinguish explicit and implicit
relations, we train a model on the whole PDTB
data for the source task. We show the overall per-
formance of transfer learning from PDTB to RST
in Table 7. The settings of the DISRPT 2021 shared
task are the closest to our experiments, and their
best results (Gessler et al., 2021) are shown along-
side the baseline model for comparison. As is clear
from the table, the results of transfer learning based
on the baseline BERT model show noticeable ef-
fect of negative transfer (0.63 — 0.58 in overall
accuracy and 0.47 — 0.33 in F1 score), while with
our method, the overall accuracy does not show
any decrease and the F1 score is only 1% lower.
This shows that the UniDim dimensions may serve
as an effective interface for relations of different
frameworks. The detailed results for the source
and target tasks are shown in Tables 39 and 40 in
Appendix M.

Task Acc. Macro-F1
target RST (BERT+Dim) 0.81 0.57
RST-specific (BERT+Dim) 0.81 0.58
from Table 1

src PDTB total (BERT+Dim) 0.86 0.67
target RST (BERT only) 0.58 0.33
RST-specific (BERT only) 0.63 0.47
from Table 1

src PDTB total (BERT only) 0.71 (vs. DISRPT 0.61

2021: 0.74)

Table 7: Results of transfer learning from PDTB to RST.

4.3.5 Automatic Dimension Prediction

We show our experimental results of automatic pre-
diction of UniDim dimensions in Table 8. As is

clear from the table, reasonable performance for
this task can be achieved. Note that the baseline
results are based on PDTB 2.0 and separate classi-
fiers are trained for each dimension.

The performance on PDTB is higher than on
RST data with the exception of Temporality and
Goal. As PDTB allows multi-sense annotation,
instances labeled with temporal relations might
be annotated with labels of causal relations, and
instances for which a Purpose relation can be in-
ferred (captured by the Goal dimension), a Manner
relation is also possible (not involving the Goal
dimension), which poses a challenge for machine
learning systems.

Moreover, combining the two corpora to aug-
ment training data does not improve the perfor-
mance over using PDTB data alone but it is helpful
for improving performance on RST data. RST data
amount is much smaller and adding more data is
beneficial. As relations of the two frameworks may
not be completely compatible and combining the
two corpora might introduce inconsistent and re-
dundant data, combining the datasets is likely to be
more useful in low-resource settings.

PDTB RST PDTB+RST Baseline
Acc. | Macro- | Acc. | Macro- | Acc. | Macro- | Acc. | Macro-
Fl Fl F1 Fl
Pol. 092 [ 0.57 0.85 [ 0.58 0.89 [ 0.56 0.82 [ 0.50

Basic 0.80 | 052 0.76 | 0.45 0.77 | 0.50 0.76 | 0.38
Op.
SoC. 075 | 0.72 0.67 | 045 0.70 | 0.59 0.68 | 0.50

Impl. 0.76 0.50 0.75 0.38 0.75 0.48 0.78 0.41
order
Temp. 0.79 0.59 0.86 0.30 0.82 0.43 0.73 0.48
Spec. | 0.87 | 0.65 | 080 | 072 | 083 | 066 | 085 | -
Alter. 1.00 0.95 1.00 0.50 1.00 0.95 0.99
Cond. 0.99 0.86 0.98 0.83 0.98 0.83 0.99
Goal | 091 | 075 | 097 | 075 | 093 | 074 | -
Table 8: Results of UniDim dimension prediction. Blue

columns show classification accuracy and grey columns show
macro-averaged F1.

5 Conclusion and Future Work

By incorporating the UniDim dimensions proposed
in Sanders et al. (2018) in discourse relation clas-
sification tasks, we obtain quantitative results of
the effectiveness of these dimensions in capturing
discourse relations of different frameworks and
bridging discourse relations across frameworks.
Ablation studies reveal the influence of these di-
mensions on different types of discourse relations.
Meanwhile, we show that these dimensions can
be predicted automatically with a simple model.
These dimensions are potentially useful features for
discourse relation classification across frameworks.
Therefore, in future work, we plan to incorporate
automatically predicted dimensions in our models.
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6 Limitations

Since we need to create the mapping table for
PDTB 3.0 by ourselves, it is unavoidable that there
may be errors and inconsistencies with existing
mapping tables for the other frameworks.

Meanwhile, in the mapping table provided
in Sanders et al. (2018), to obtain the values of
the dimensions, we need all the information of a
relation label, for instance, to represent an RST rela-
tion label with dimensions, we need the nuclearity
label and whether the relation is mono-nuclear or
multi-nuclear in addition to the relation label itself,
and in the case of a PDTB relation, we need the
relation label and the order of the arguments. This
is because these dimensions are not incorporated in
the annotation process of RST-DT and PDTB, and
only a general mapping is possible. We consider
the resultant ambiguity and under-specification un-
avoidable.

7 Ethics Statement

This study does not involve special ethical consider-
ations. The potential impact may include providing
computational evidence of the validity of cognitive
study of discourse relations and attracting attention
to cognitive frameworks of discourse, which may
spur fine-grained research on the correlation be-
tween cognitive dimensions and different discourse
relations and how different language models per-
form from this perspective.
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A RST to UniDim Dimension Mapping Table
Table 9 shows the mapping of RST-DT relation labels to UniDim dimensions.

Class End label Nuc. N-S Pol. Basic Op. Impl. order SoC Temp. Add. features
Background Background Mono N-S pos/neg add N.A. ob anti/N.A.
Background Mono S-N pos/neg add N.A. ob chron/N.A.
Circumstance Mono pos/neg add N.A. ob syn/N.A.
Cause Cause Mono N-S pos cau bas ob) chron
Cause Mono S-N pos cau non-b ob anti
Cause-result Multi pos cau bas/non-b ob chron/anti
Result Mono N-S pos cau non-b ob) anti
Result Mono S-N pos cau bas ob) chron
Consequence-n Mono N-S pos cau non-b ob anti
Consequence-n Mono S-N pos cau bas ob chron
Consequence-s Mono N-S pos cau bas ob chron
Consequence-s Mono S-N pos cau non-b ob anti
Consequence Multi pos cau bas/non-b ob chron/anti
Comparison Comparison Both pos add N.A. obj/sub N.A.
Preference Mono neg add N.A. obj/sub N.A.
Analogy Both pos add N.A. sub N.A.
Proportion Multi pos add/cau any obj/sub any
Conditional Condition Mono N-S pos/neg cau non-b obj/sub anti/N.A. conditional
Condition Mono S-N pos/neg cau bas obj/sub chron/N.A. conditional
Hypothetical Mono N-S pos cau non-b sub N.A. conditional
Hypothetical Mono S-N pos cau bas sub N.A conditional
Contingency Mono N-S pos/neg cau non-b ob) anti conditional
Contingency Mono S-N pos/neg cau bas ob chron conditional
Otherwise Mono N-S neg cau bas obj/sub chron/N.A. conditional
Otherwise Multi neg cau bas obj/sub chron/N.A. conditional
Contrast Contrast Multi neg add N.A. obj/sub any
Concession Mono N-S neg cau non-b obj/sub anti/N.A.
Concession Mono S-N neg cau bas obj/sub chron/N.A.
Antithesis Mono neg add/cau any obj/sub any
Elaboration El.-additional Mono pos add N.A. obj/sub N.A.
El.-gen.-spec. Mono pos add N.A. obj/sub N.A. specificity
El.-part-whole Mono pos add N.A. ob N.A. specificity
El-process-step Mono pos add N.A. ob N.A. specificity
El.-object-attr. Mono pos add N.A. ob N.A. specificity
El-set-member Mono pos add N.A. ob N.A. spec.-ex.
Example Mono pos add N.A. ob N.A. Spec.-ex.
Definition Mono pos add N.A. ob N.A. specificity
Enablement Purpose Mono N-S pos cau bas obj/sub chron/N.A. goal
Purpose Mono S-N pos cau non-b obj/sub anti/N.A. goal
Enablement Mono N-S pos cau non-b obj/sub anti/N.A. goal
Enablement Mono S-N pos cau bas obj/sub chron/N.A. goal
Evaluation Evaluation Both pos add/cau any sub N.A. specificity
Interpretation Both pos add/cau any sub N.A. specificity
Conclusion Mono N-S pos cau bas sub N.A. specificity
Conclusion Mono S-N pos cau non-b sub N.A. specificity
Conclusion Multi pos cau bas/non-b sub N.A. specificity
Comment Mono pos add N.A. sub N.A. specificity
Explanation Evidence Mono N-S pos cau non-b sub anti
Evidence Mono S-N pos cau bas sub chron
Exp.-argument. Mono N-S pos cau non-b ob anti
Exp.-argument. Mono S-N pos cau bas ob chron
Reason Mono N-S pos cau non-b ob anti
Reason Mono S-N pos cau bas ob) chron
Reason Multi pos cau bas/non-b ob) chron/anti
Joint List Multi pos add N.A. obj/sub syn/chron/N.A. list
Disjunction Multi pos/neg add N.A. obj/sub syn/N.A. alternative
Summary Summary Mono pos add N.A. ob N.A. specificity
Restatement Mono pos add N.A. ob N.A. spec.-equiv.
Temporal Temp.-before Mono N-S pos add N.A. ob chron
Temp.-before Mono S-N pos add N.A. ob; anti
Temp.-after Mono N-S pos add N.A. ob anti
Temp.-after Mono S-N pos add N.A. ob chron
Temp.-same-time Both pos add N.A. ob syn
Sequence Multi pos add N.A. ob) chron
Inverted-seq. Multi pos add N.A. ob) anti
Manner-Means Means Mono N-S pos cau non-b ob anti
Means Mono S-N pos cau bas ob chron goal
Topic-Comment Problem-sol.-n Mono N-S pos cau non-b obj/sub anti/N.A. goal
Problem-sol.-n Mono S-N pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono N-S pos cau bas obj/sub chron/N.A. goal
Problem-sol.-s Mono S-N pos cau non-b obj/sub anti/N.A. goal
Problem-sol. Multi pos cau bas/non-b obj/sub achron/anti/N.A. goal

Table 9: Mapping of RST relations to UniDim dimensions, taken from Sanders et al. (2018)

Table 9 is the mapping table of relation labels of RST-DT to UniDim dimensions. Nuc. means the
nuclearity of a relation. N-S means whether the nuclearity is Nucleus-Satellite (N-S) or Satellite-Nucleus
(S-N) or Nucleus-Nucleus (N-N). Pol., Basic Op., Impl. order, Basic Op., SoC, Temp., and Add. features
denote polarity, basic operation, source of coherence, temporality and additional features, respectively.
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B Relation Labels of PDTB 3.0 to UniDim Dimension Mapping Table
Table 10 shows the mapping of relation labels of PDTB 3.0 to UniDim dimensions.

Class_type End label Al1-A2 Pol. Basic Op. Impl. order SoC Temp. Add. features
Temporal
Synchronous pos add N.A. ob; sync
Asynchronous Precedence Al-A2 pos add N.A. ob; chron
Precedence A2-Al pos add N.A. ob; anti
Succession Al-A2 pos add N.A. ob; anti
Succession A2-Al pos add N.A. ob; chron
Contingency
Cause Reason Al-A2 pos cau non-b ob; anti
Reason A2-Al pos cau bas ob; chron
Result Al-A2 pos cau bas ob; chron goal
Result Al-A2 pos cau bas ob; chron goal
NegResult neg cau bas ob; chron
Cause+Belief Reason+Belief Al-A2 pos cau non-b sub NS
Reason+Belief A2-Al pos cau bas sub NS
Result+Belief Al-A2 pos cau bas sub NS
Result+Belief A2-Al pos cau non-b sub NS
+SpcezlvlcsheAct Reason+SpeechAct Al-A2 pos cau non-b sub NS
Reason+SpeechAct A2-Al pos cau bas sub NS
Result+SpeechAct Al-A2 pos cau bas sub NS
Result+SpeechAct A2-Al pos cau non-b sub NS
Purpose argl-as-goal Al-A2 pos cau non-b obj/sub NS goal
argl-as-goal A2-Al pos cau bas obj/sub NS goal
arg2-as-goal Al-A2 pos cau bas sub NS goal
Condition argl-as-cond Al-A2 pos cau bas obj/sub NS conditional
argl-as-cond A2-Al pos cau non-b obj/sub NS conditional
arg2-as-cond Al-A2 pos cau non-b obj/sub NS conditional
arg2-as-cond A2-Al pos cau bas obj/sub NS conditional
+§g:§$2‘; pos cau bas sub NS conditional
_ggig::;n argl-as-negcond Al-A2 neg cau bas sub NS conditional
argl-as-negcond A2-Al neg cau non-b sub NS conditional
arg2-as-negcond Al-A2 neg cau non-b sub NS conditional
arg2-as-negcond A2-Al neg cau bas sub NS conditional
Negative-
Condition+ neg cau bas sub NS conditional
SpeechAct
Comparison
Concession argl-as-denier Al-A2 neg cau non-b obj/sub NS
argl-as-denier A2-Al neg cau bas obj/sub NS
arg2-as-denier Al-A2 neg cau bas obj/sub NS
arg2-as-denier A2-Al neg cau non-b obj/sub NS
f;;::j;:’:l neg cau bas sub NS
Contrast neg add NA obj NS
Similarity pos add NA obj NS
Ex i
Conjunction pos add NA obj/sub NS
Disjunction neg add NA obj/sub NS alternative
Equivalence pos add NA obj/sub NS
Exception argl-as-excpt neg add NA obj/sub NS
arg2-as-excpt neg add NA obj/sub NS
Instantiation argl-as-instance pos add NA obj/sub NS specificity
arg2-as-instance pos add NA obj/sub NS specificity
Level-of-detail argl-as-detail pos add NA obj/sub NS specificity
arg2-as-detail pos add NA obj/sub NS specificity
Manner argl-as-manner Al-A2 pos add NA obj/sub NS specificity
arg2-as-manner pos add NA obj/sub NS specificity
Substitution argl-as-subst A1-A2 neg cau bas obj/sub NS
argl-as-subst A2-Al neg cau non-b obj/sub NS
arg2-as-subst Al-A2 neg cau non-b obj/sub NS
arg2-as-subst A2-Al neg cau bas obj/sub NS

Table 10: Mapping of relations labels of PDTB 3.0 to UniDim dimensions.

Table 10 is the mapping table of relation labels of PDTB 3.0 to UniDim dimensions. A1-A2 means
Argument 1 precedes Argument 2 and A2-A1 means Argument 2 precedes Argument 1 in the original
text. The abbreviations are interpreted in the same way as in Table 9.
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C Distribution of UniDim dimensions in RST-DT and PDTB 3.0

Figure 1 shows distribution of the polarity, basic operation, implication order, source of coherence,
temporality and additional dimensions used in this paper.
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Figure 1: Distribution of the polarity, basic operation, and implication order dimensions (upper row, from left to right,
respectively), and source of coherence, temporality and additional dimensions (lower row, from left to right, respectively) in the
training sets of RST-DT and PDTB 3.0. We divide PDTB 3.0 based on explicit and implicit relation types.
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D Hyper-parameters

For discourse relation classification described in
section 3.1, the model is configured with a dropout
rate of 0.2. The size of the output of the first MLP
is set to 256 and the size of the second MLP output
is 128. The model is trained with the AdamW
optimizer (Loshchilov and Hutter, 2019), with a
learning rate of 5e — 5. The batch size is set to 4
and the maximum norm of gradient clipping is set
to 1. We use get_linear_schedule_with_warmup
from the Transformers library as the learning rate
scheduler. The maximum training epoch number is
set to 10. The same setting is used in training the
model for UniDim dimension prediction, the only
exception being the learning rate, which is set to
le — 5 to obtain good performance for this task.

For the cross-framework discourse relation clas-
sification task, the learning rate for transfer learning
is le — 5 and as only parameters of the classifier
layer are learnable, the maximum training epoch
number is set to 50. The other hyper-parameters
are the same as above.

We choose the best-performing model based on
the performance at the validation set. The PyTorch
library (Paszke et al., 2019) is used for implementa-
tion. The models are trained on an RTX2060 Super
GPU.

The model for PDTB relation classification has
109,753,388 parameters and the training process
took 6:25:23 (h:mm:ss) GPU hours for PDTB to-
tal relation classification, 2:56:58 GPU hours for
PDTB explicit relation classification and 3:13:13
GPU hours for PDTB implicit relation classifica-
tion. The model for RST relation classification has
109,494,544 parameters and the training process
took 2:28:44 GPU hours. The number of parame-
ters in the model for transfer learning is 2,064 and
the training process took 4:38:43 GPU hours.

35



E Distribution of Relations in Training Data

Figures 2, 3, 4 and 5 shows the distribution of relations in the training sets used in the experiments, sorted
in descending order.
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Figure 2: Distribution of PDTB relations in the experiment on PDTB where data of explicit and implicit relations are combined.
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Figure 3: Distribution of RST relations in the training set.
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Figure 4: Distribution of PDTB explicit relations in the training set.
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Figure 5: Distribution of PDTB implicit relations in the training set.

37



F PDTB Total Data Relation
Classification

Table 11 shows the classification report on PDTB
3.0 (combining explicit and implicit relations) with
BERT embeddings and UniDim dimensions as in-
put features.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 232
Cause 1.00 1.00 1.00 538
Cause+Belief 1.00 1.00 1.00 13
Concession 0.99 0.96 0.98 371
Condition 1.00 1.00 1.00 79
Conjunction 0.97 1.00 0.98 745
Contrast 1.00 1.00 1.00 102
Disjunction 1.00 1.00 1.00 20
Equivalence 0.00 0.00 0.00 25
Instantiation 0.00 0.00 0.00 117
Level-of-detail 0.00 0.00 0.00 202
Manner 0.07 0.96 0.14 26
Purpose 1.00 0.96 0.98 118
Similarity 0.00 0.00 0.00 12
Substitution 0.68 0.91 0.78 35
Synchronous 0.90 1.00 0.95 170
Accuracy 0.8
Macro-F1 0.66 [ 0.74 [ 0.67 [ 2805

Table 11: PDTB relation classification with BERT embed-
dings and UniDim dimensions as features.

Table 12 shows the classification report on
PDTB 3.0 (combining explicit and implicit rela-
tions) with BERT embeddings as input.

Precision Recall Fl1 Support
Asynchronous 0.79 0.65 0.71 232
Cause 0.71 0.62 0.66 538
Cause+Belief 0.00 0.00 0.00 13
Concession 0.78 0.83 0.80 371
Condition 0.92 0.87 0.90 79
Conjunction 0.71 0.85 0.77 745
Contrast 0.48 0.40 0.44 102
Disjunction 0.86 0.90 0.88 20
Equivalence 0.36 0.16 0.22 25
Instantiation 0.70 0.57 0.63 117
Level-of-detail 0.48 0.53 0.50 202
Manner 0.41 0.62 0.49 26
Purpose 0.87 0.84 0.85 118
Similarity 0.78 0.58 0.67 12
Substitution 0.53 0.49 0.51 35
Synchronous 0.74 0.64 0.68 170
Accuracy 0.7
Macro-F1 0.63 [ 060 T 0.61 ] 2805

Table 12: PDTB relation classification with BERT embed-
dings as features.

G PDTB Explicit Relation Classification

Table 13 shows the classification report on PDTB
3.0 (explicit relations only) with BERT embeddings
and UniDim dimensions as input features.

Precision Recall Fl1 Support

Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.9

Macro-F1 0.78 [ 0.83 [ 0.79 [ 1371

Table 13: Classification report of PDTB explicit relations
with BERT embeddings and UniDim dimensions as features.

Table 14 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings as input features.

Precision Recall F1 Support
Asynchronous 0.97 0.87 0.92 127
Cause 0.82 0.89 0.85 115
Concession 0.89 0.95 0.92 285
Condition 0.93 0.92 0.93 61
Conjunction 0.97 0.96 0.96 516
Contrast 0.52 0.48 0.50 50
Disjunction 0.90 1.00 0.95 18
Level-of-detail 0.71 0.75 0.73 20
Manner 0.42 0.91 0.57 11
Purpose 0.62 0.45 0.52 29
Substitution 1.00 0.92 0.96 13
Synchronous 0.81 0.71 0.76 126
Accuracy 0.8
Macro-F1 0.80 [ 0.82 [ 0.80 [ 1371

Table 14: Classification report of PDTB explicit relations
with BERT embeddings as features.

H PDTB Explicit Relation Classification
Ablation Studies

Table 15 shows the classification report on PDTB
3.0 (explicit relations only) with BERT embeddings
and UniDim dimensions as input features, the po-
larity dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 0.62 1.00 0.76 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 0.75 0.86 126
Accuracy 0.95
Macro-F1 0.74 [ 081 T 076 ] 1371

Table 15: Classification report of PDTB explicit relations,
with the polarity dimension removed.

Table 16 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the basic operation dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.9:
Macro-F1 0.78 [ 0.83 [ 0.79 [ 1371

Table 16: Classification report of PDTB explicit relations,
with the basic operation dimension removed.

Table 17 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the source of coherence dimension being removed.
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Precision Recall F1 Support

Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 0.94 1.00 0.97 516
Contrast 0.74 1.00 0.85 50
Disjunction 0.00 0.00 0.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 0.75 0.86 126
Accuracy 0.94

Macro-F1 0.67 [ 073 T 068 [ 1371

Table 17: Classification report of PDTB explicit relations,
with the source of coherence dimension removed.

Table 18 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the implication order dimension being removed.

Precision Recall Fl Support
Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.9
Macro-F1 0.78 [ 083 T 079 T 1371

Table 18: Classification report of PDTB explicit relations,
with the implication order dimension removed.

Table 19 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the temporality dimension being removed.

Precision Recall F1 Support
Asynchronous 0.80 1.00 0.89 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 1.00 1.00 1.00 61
Conjunction 1.00 1.00 1.00 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.35 1.00 0.52 11
Purpose 1.00 1.00 1.00 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 0.75 0.86 126
Accuracy 0.9:
Macro-F1 0.76 [ 0.81 [ 0.77 [ 1371

Table 19: Classification report of PDTB explicit relations,
with the temporality dimension removed.

Table 20 shows the classification report on
PDTB 3.0 (explicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the additional dimensions being removed.

Precision Recall F1 Support

Asynchronous 1.00 1.00 1.00 127
Cause 1.00 1.00 1.00 115
Concession 0.96 1.00 0.98 285
Condition 0.88 1.00 0.94 61
Conjunction 0.94 1.00 0.97 516
Contrast 1.00 1.00 1.00 50
Disjunction 1.00 1.00 1.00 18
Level-of-detail 0.00 0.00 0.00 20
Manner 0.00 0.00 0.00 11
Purpose 1.00 0.72 0.84 29
Substitution 0.00 0.00 0.00 13
Synchronous 1.00 1.00 1.00 126
Accuracy 0.9

Macro-F1 0.73 [ 073 T 073 ] 1371

Table 20: Classification report of PDTB explicit relations,
with the additional dimensions removed.

I PDTB Implicit Relation Classification

Table 21 shows the classification report on PDTB
3.0 (implicit relations only) with BERT embed-
dings and UniDim dimensions as input features.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 0.98 1.00 0.99 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.72 [ 0.73 [ 0.71 [ 1315

Table 21: Classification report of implicit PDTB relations
with BERT embeddings and UniDim dimensions as features.

Table 22 shows the classification report on
PDTB 3.0 (implicit relations only) with only BERT
embeddings as input features.

Precision Recall F1 Support
Asynchronous 0.62 0.61 0.62 95
Cause 0.60 0.63 0.61 366
Cause+Belief 0.00 0.00 0.00 12
Concession 0.44 0.40 0.42 84
Condition 0.71 0.42 0.53 12
Conjunction 0.49 0.61 0.54 221
Contrast 0.45 0.42 0.43 50
Equivalence 0.12 0.04 0.06 24
Instantiation 0.77 0.54 0.64 107
Level-of-detail 0.45 0.48 0.46 180
Manner 0.38 0.60 0.46 15
Purpose 0.92 0.98 0.95 88
Substitution 0.43 0.48 0.45 21
Synchronous 0.27 0.10 0.15 40
Accuracy 0.56
Macro-F1 0.48 [ 045 T 045 ] 1315

Table 22: Classification report of PDTB implicit relations
with only BERT embeddings as features.

J PDTB Implicit Relation Classification
Ablation Studies

Table 23 shows the classification report on PDTB
3.0 (implicit relations only) with BERT embed-
dings and UniDim dimensions as input features,
the polarity dimension being removed.
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Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 0.96 0.92 0.94 84
Condition 1.00 0.75 0.86 12
Conjunction 0.90 1.00 0.95 221
Contrast 0.98 1.00 0.99 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.8
Macro-F1 0.71 [071 T 070 T 1315

Table 23: Classification report of PDTB implicit relations,
with the polarity dimension removed.

Table 24 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the basic operation dimension being removed.

Precision Recall Fl1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.8
Macro-F1 0.72 [ 0.73 [ 0.71 [ 1315

Table 24: Classification report of PDTB implicit relations,
with the basic operation dimension removed.

Table 25 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the source of coherence dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.8
Macro-F1 0.72 [ 073 T 071 [ 1315

Table 25: Classification report of PDTB implicit relations,
with the source of coherence dimension removed. The result
is the same as Table 24, where the basic operation dimension
is removed.

Table 26 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the implication order dimension being removed.

Precision Recall F1 Support
Asynchronous 1.00 1.00 1.00 95
Cause 1.00 1.00 1.00 366
Cause+Belief 0.00 0.00 0.00 12
Concession 0.80 1.00 0.89 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 0.98 1.00 0.99 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.87 0.94 0.91 88
Substitution 0.00 0.00 0.00 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.86
Macro-F1 0.57 [ 064 T 060 [ 1315

Table 26: Classification report of PDTB implicit relations,
with the implication order dimension removed.

Table 27 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the temporality dimension being removed.

Precision Recall Fl1 Support
Asynchronous 0.99 1.00 0.99 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 1.00 0.92 0.96 84
Condition 1.00 1.00 1.00 12
Conjunction 0.90 1.00 0.95 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.60 1.00 0.75 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.87
Macro-F1 0.72 [ 0.73 [ 0.71 [ 1315

Table 27: Classification report of PDTB implicit relations,
with the temporality dimension removed.

Table 28 shows the classification report on
PDTB 3.0 (implicit relations only) with BERT em-
beddings and UniDim dimensions as input features,
the additional dimensions being removed.

Precision Recall F1 Support
Asynchronous 0.99 1.00 0.99 95
Cause 1.00 1.00 1.00 366
Cause+Belief 1.00 0.42 0.59 12
Concession 0.96 0.92 0.94 84
Condition 1.00 0.75 0.86 12
Conjunction 0.40 1.00 0.58 221
Contrast 1.00 1.00 1.00 50
Equivalence 0.00 0.00 0.00 24
Instantiation 0.00 0.00 0.00 107
Level-of-detail 0.00 0.00 0.00 180
Manner 0.00 0.00 0.00 15
Purpose 0.92 0.94 0.93 88
Substitution 0.75 1.00 0.86 21
Synchronous 0.87 0.97 0.92 40
Accuracy 0.73
Macro-F1 0.64 [ 064 T 062 | 1315

Table 28: Classification report of PDTB implicit relations,
with the additional dimensions removed.

K RST Relation Classification

Table 29 shows RST relation classification report
with BERT embeddings and UniDim dimensions
as input features.

Table 30 shows RST relation classification report
with BERT embeddings as input features.
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Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.92 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 1.00 1.00 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.92 1.00 0.96 46
Evaluation 0.99 1.00 0.99 80
Explanation 0.72 0.97 0.83 110
Joint 1.00 0.03 0.06 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.71 0.21 0.32 24
Accuracy 0.8
Macro-F1 0.64 [ 062 T 058 | 1838

Table 29: RST relation classification report with BERT em-
beddings and UniDim dimensions as features.

Precision Recall F1 Support
Background 0.47 0.35 0.40 111
Cause 0.50 0.17 0.25 82
Comparison 0.61 0.38 0.47 29
Condition 0.79 0.71 0.75 48
Contrast 0.75 0.68 0.72 146
Elaboration 0.65 0.88 0.75 796
Enablement 0.61 0.85 0.71 46
Evaluation 0.29 0.14 0.19 80
Explanation 0.46 0.27 0.34 110
Joint 0.67 0.62 0.64 212
Manner-Means 0.68 0.48 0.57 27
Summary 0.88 0.47 0.61 32
Temporal 0.74 0.27 0.40 73
Textual-Organization 0.44 0.44 0.44 9
Topic-Change 0.28 0.38 0.32 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.6.
Macro-F1 0.55 [ 0.44 [ 0.47 [ 1838

Table 30: RST relation classification report using pre-trained
BERT model.

Table 31 shows RST relation classification re-
port using transfer learning from the PDTB relation
classification model (combining PDTB explicit and
implicit relation data during training) with BERT
embeddings and UnDim dimensions as input fea-
tures.

Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.92 1.00 0.96 46
Evaluation 1.00 1.00 1.00 80
Explanation 0.72 0.97 0.83 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.71 0.21 0.32 24
Accuracy 0.8
Macro-F1 0.58 [ 0.62 [ 0.57 [ 1838

Table 31: Transfer learning for RST relation classification
with the PDTB relation classification model with BERT em-
beddings and UniDim dimensions as input features.

Table 32 shows RST relation classification re-
port using transfer learning from the pre-trained
BERT model fine-tuned on PDTB relation classifi-
cation task (combining PDTB explicit and implicit
relation data).

Precision Recall F1 Support

Background 0.51 0.27 0.35 111
Cause 0.17 0.07 0.10 82
Comparison 0.42 0.38 0.40 29
Condition 0.80 0.67 0.73 48
Contrast 0.75 0.73 0.74 146
Elaboration 0.60 0.82 0.69 796
Enablement 0.48 0.78 0.60 46
Evaluation 0.00 0.00 0.00 80
Explanation 0.40 0.15 0.22 110
Joint 0.57 0.66 0.61 212
Manner-Means 0.43 0.33 0.38 27
Summary 0.00 0.00 0.00 32
Temporal 0.53 0.36 0.43 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.00 0.00 0.00 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.58

Macro-F1 0.35 [ 033 T 033 ] 1838

Table 32: Transfer learning for RST relation classification

using BERT embeddings as input.

L RST Relation Classification Ablation
Studies

Table 33 shows the classification report on RST-DT
with BERT embeddings and UniDim dimensions
as input features, the polarity dimension being re-
moved.

Precision Recall F1 Support
Background 1.00 1.00 1.00 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.94 0.97 48
Contrast 0.61 0.56 0.58 146
Elaboration 0.68 1.00 0.81 796
Enablement 0.92 1.00 0.96 46
Evaluation 1.00 0.57 0.73 80
Explanation 0.71 0.97 0.82 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-organization 0.00 0.00 0.00 9
Topic-Change 0.00 0.00 0.00 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.74
Macro-F1 0.49 [ 048 T 048 ] 1838

Table 33: Classification report for RST, with the polarity
dimension removed.

Table 34 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
sions as input features, the basic operation dimen-
sion being removed.

Precision Recall F1 Support
Background 0.95 1.00 0.97 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.73 1.00 0.84 796
Enablement 0.92 1.00 0.96 46
Evaluation 0.87 0.57 0.69 80
Explanation 0.72 0.97 0.83 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.7
Macro-F1 0.52 [ 0.58 [ 0.53 [ 1838

Table 34: Classification report for RST, with the basic opera-
tion dimension removed.

Table 35 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
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sions as input features, the source of coherence
dimension being removed.

Precision Recall F1 Support
Background 0.95 1.00 0.97 111
Cause 0.84 0.70 0.76 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.73 1.00 0.84 796
Enablement 0.92 1.00 0.96 46
Evaluation 0.96 0.57 0.72 80
Explanation 0.72 0.97 0.83 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.78
Macro-F1 0.52 [ 058 T 053 ] 1838

Table 35: Classification report for RST, with the source of
coherence dimension removed.

Table 36 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
sions as input features, the implication order di-
mension being removed.

Precision Recall Fl1 Support
Background 1.00 1.00 1.00 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.98 0.99 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.84 1.00 0.91 46
Evaluation 0.99 1.00 0.99 80
Explanation 0.72 0.97 0.83 110
Joint 0.75 0.03 0.05 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.8
Macro-F1 0.58 [ 060 T 055 ] 1838

Table 36: Classification report for RST, with the implication
order dimension removed.

Table 37 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-
sions as input features, the temporality dimension
being removed.

Precision Recall Fl1 Support
Background 1.00 1.00 1.00 111
Cause 0.92 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.88 0.93 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.84 1.00 0.91 46
Evaluation 0.99 1.00 0.99 80
Explanation 0.69 0.97 0.81 110
Joint 1.00 0.03 0.06 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.8
Macro-F1 0.59 [ 060 T 055 ] 1838

Table 37: Classification report for RST, with the temporality
dimension removed.

Table 38 shows the classification report on RST-
DT with BERT embeddings and UniDim dimen-

sions as input features, the additional dimensions
being removed.

Precision Recall F1 Support
Background 0.95 1.00 0.97 111
Cause 0.90 0.70 0.79 82
Comparison 0.00 0.00 0.00 29
Condition 1.00 0.81 0.90 48
Contrast 0.99 1.00 0.99 146
Elaboration 0.75 1.00 0.86 796
Enablement 0.84 1.00 0.91 46
Evaluation 0.90 1.00 0.95 80
Explanation 0.71 0.97 0.82 110
Joint 0.00 0.00 0.00 212
Manner-Means 0.00 0.00 0.00 27
Summary 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 73
Textual-Organization 0.00 0.00 0.00 9
Topic-Change 0.28 1.00 0.44 13
Topic-Comment 0.00 0.00 0.00 24
Accuracy 0.8
Macro-F1 0.52 [ 0.59 [ 0.54 [ 1838

Table 38: Classification report for RST, with the additional

dimensions removed.

M Cross-framework Discourse Relation
Classification

Table 39 shows the classification report of the ex-
periment using total PDTB data, where PDTB rela-
tion classification is the source task.

P R F1 [ P, | Ry | FI,, | C.
Asynchronous | _1.00 | 100 __1.00 | 0.9 | 065 | 071 732
Cause 1.00 1.00 1.00 0.71 0.62 0.66 538
Cause+Belief | 1.00 | 1.00 100 | 000 | 0.00 | 0.00 13
Concession | 099 | 096 098 | 078 | 083 | 080 | 371
Condition T00 | 100  1.00 | 092 | 087 | 090 7
Conj i 0.97 100 098 0.71 0.85 0.77 745
Contrast T00 | 100 100 | 048 | 040 | 044 | 102
Disjunction T00 | 100 1.00 | 0.86 | 090 | 088 20
Equivalence 0.00 0.00 0.00 0.36 0.16 0.22 25
fati 000 | 000 000 | 070 | 057 | 063 117
Level-of-detail | 000 | 000 000 | 048 | 053 | 050 | 202
Manner 007 | 096 014 | 041 | 062 | 049 %
Purpose 1.00 0.96 0.98 0.87 0.84 0.85 118
Similarity 000 | 000 000 | 078 | 058 | 067 [
Substitution | 0.68 | 091 078 | 053 | 049 | 051 35
Synchronous | 0.90 | 1.00 095 | 074 | 0.64 | 0.68 170
Acc. 0.86 0.71 (vs. DISRPT 2021: 0.74)
Macro-FI 066 | 074 0.67 | 063 | 060 | 061 | 2805

Table 39: Results of relation classification on total PDTB
data. Blue columns show our results and uncolored columns
show results of the baseline model.

Table 40 shows the classification report of the
target task, i.e. RST relation classification.

P R F1 | P, | Ry | Fly. C.
Background | 1.00 1.00 1.00 0.51 0.27 0.35 111
Cause 0.90 0.70 0.79 0.17 0.07 0.10 82
Comparison | 0.00 0.00 0.00 0.42 0.38 0.40 29
Condition 1.00 0.98 0.99 0.80 0.67 0.73 48
Contrast 0.99 1.00 0.99 0.75 0.73 0.74 146
Elaboration 0.75 1.00 0.86 0.60 0.82 0.69 796
E; 0.92 1.00 0.96 0.48 0.78 0.60 46
Evaluation 1.00 1.00 1.00 0.00 0.00 0.00 80
E. i 0.72 0.97 0.83 0.40 0.15 0.22 110
Joint 0.00 0.00 0.00 0.57 0.66 0.61 212
Manner- 0.00 0.00 0.00 043 033 0.38 27
Means
Summary 0.00 0.00 0.00 0.00 0.00 0.00 32
Temporal 1.00 1.00 1.00 0.53 0.36 0.43 73
Textual- 0.00 0.00 0.00 0.00 0.00 0.00 9
Organization
Topic- 0.28 1.00 0.44 0.00 0.00 0.00 13
Change
Topic- 0.71 0.21 0.32 0.00 0.00 0.00 24
Comment
Acc. 0.81 0.58
Macro-F1 0.58 | 0.62 [ 057 035 [ 033 [ 033 [ 1838
RST acc 0.81 0.63
RST 0.64 0.62 0.58 0.55 0.44 0.47 1838
Macro-F1 ‘ ‘ ‘ ‘ ‘

Table 40: Results of the target task. The results of training
a model specifically for RST relation classification with our
method are shown in blue columns and the uncolored columns
show results of the baseline model.
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Abstract

We present a method for effective title encoding
for hierarchical classification in a large taxon-
omy. The method enables taxonomy-aware
encoding in pre-trained text encoders, such
as fastText and BERT, which are additionally
fine-tuned for the hierarchical classification.
The embeddings produced using our method
perform well when applied to nearest neigh-
bor classification. They allow for controllable
and sufficient hierarchical classification based
solely on the title.

1 Introduction

Hierarchical classification is the task of organizing
data into a hierarchy of categories, where each cate-
gory is a subset of another category. This structure
can be thought of as a tree-like structure, where the
root node represents the most general category and
the leaf nodes represent the most specific categories.
In NLP, hierarchical text classification (HTC) is
widely used to organize large collections of doc-
uments (e.g. emails, patents, job advertisements,
digital libraries) or entities (e.g. product or service
titles in e-commerce). This work focuses on the
challenge of inferring fine-grained categories from
no other information but an entity name, which is
a specific challenge for hierarchical classification.

The deep hierarchical classification approaches
developed over the past years (Yang et al., 2020;
Gao, 2020; Gong et al., 2023) have three major
limitations:

 Entity HTC models are often developed for e-
commerce and use multiple attributes for the
input entity including detailed descriptions,
tags, or images. However, there are other situ-
ations where just the textual titles are available
for classification, like mapping diagnoses and
procedures to a clinical coding taxonomy (Li
et al., 2019; Chakraborty et al., 2023). Bet-
ter title representations can also be beneficial
when multiple attributes are present.

* Being mostly deep learning classification
methods, they are prone to class imbalance
and may not be able to handle large skewed
hierarchies with a few examples per leaf.

 Limited interpretation capabilities of the deep
hierarchical classifiers are another disadvan-
tage that can be critical in some practical ap-
plications.

To address these limitations, we propose a sim-
ple yet effective approach that encodes the textual
title using hierarchy-aware information to map an
object’s title to the relevant leaf in the taxonomy.
We show that our approach improves the classifi-
cation performance of deep models while making
the entity title classification easier to interpret and
control’.

2 Related Work

Hierarchical Entity Title Classification In hi-
erarchical classification, each object is associated
with a certain branch (labels path) in the hierarchy
tree. There are three fundamental approaches to hi-
erarchical classification: flat classification (object-
to-branch), global classification, and local classifi-
cation (Silla and Freitas, 2011). Global classifica-
tion predicts classes in the hierarchy using a single
model that considers class dependencies, whereas
local classification uses multiple separate models
for different hierarchy nodes or levels.

Previous approaches to HTC for e-commerce
mainly focus on title-plus-description classifica-
tion, and include flat classifiers (Skinner, 2018;
Suzuki et al., 2018), two-level pipelines (Cevahir
and Murakami, 2016; Gupta et al., 2016; Das et al.,
2017; Goumy and Mejri, 2018), multilabel classi-
fiers (Jia et al., 2018; Yu et al., 2018), and sequence-
to-sequence branch generation (Li et al., 2018).

'The code is available at https://github.com/
tchewik/entity_representation_learning
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Shared tasks often feature the systems investigat-
ing external ways to improve classification perfor-
mance, including model ensembling (Yang et al.,
2020; Yu et al., 2018; Jia et al., 2018), pseudo la-
beling (Yang et al., 2020), and collecting additional
data (Borst et al., 2020). Some approaches focus
on optimizing the classification model itself by con-
sidering the hierarchy of classes in the activation
(Yang et al., 2020) or loss (Gao, 2020) function.
Other methods involve matching an entity title with
a leaf title (Chen et al., 2021; Gong et al., 2023).
To improve entity title encoding for product classi-
fication and overcome the problem of domain shift,
Brinkmann and Bizer (2021) suggest additionally
pre-training the transformer on product offers from
Common Crawls.

In our method, we train a single global deep
classifier and utilize it to encode entity titles in a
complicated hierarchy for flat categorization. We
demonstrate that this approach excels in terms of
accuracy on the deepest levels of hierarchy, sim-
plicity, and controllability.

LLM Applications Large language models have
limited structured prediction capabilities. There
have been recent attempts to solve the HTC task
through hierarchy verbalization, however, they still
rely on pretrained BERT rather than LLMs and re-
quire model architecture modifications: Wang et al.
(2022) frame the problem as a hierarchy-aware
multi-label MLM task, adopting a Graph Attention
Network and a zero-bounded Multi-label Cross-
Entropy Loss, while Ji et al. (2023) address HTC
as flat classification solvable by verbalizing with
a hierarchy-aware decoder constraint. Although
promising, these methods are tailored and eval-
uated for elaborate texts in smaller taxonomies
(WOS, DBPedia, RCV1-V2).

While prompting LLMs for this task can be pos-
sible for flat entity title classification in a large
hierarchy, there are some major limitations:

e A large language model should memorize
an entire deep taxonomy with thousands of
branches and adhere to its complex structure
without deviation. This level of precision is
achievable by imposing low-level constraints
overriding the NLG capabilities of LLMs.
Constraining LL.Ms in this way erases their
main strength in favor of precise taxonomic
compliance — an outcome more efficiently
reached by fine-tuning text encoders.

* Few-shot learning is successful in many tasks,
but it is not suitable for the hierarchical clas-
sification in a large taxonomy. Exposing the
LLM to examples spanning all the taxonomy
branches, or fine-tuning on a large labeled
dataset, would be extremely resource- and
time-intensive.

* LLM predictions cannot be controlled or in-
terpreted precisely. This lack of transparency
makes LLMs unsuitable for settings requiring
controllable accuracy and recall.

3 Background

In this work, we compare nearest-neighbors clas-
sification, deep hierarchical classification, and our
hybrid method as three basic approaches to entity
title classification in a large taxonomy.

3.1 k-Nearest-Neighbor Classification

Given representations of entity titles in hierarchi-
cally organized data, the embedding of an input
entity is assigned to a leaf of the hierarchy based on
the leaves of its k nearest neighbors. The distance
between text embeddings is typically estimated as
a cosine distance, and & nearest neighbor classes
are weighted according to the distances.

Advantages: (1) The most interpretable method.
(2) With small & is immune to subclass imbalance
in a complex hierarchy.

Disadvantages: (1) Domain shift affects pre-
trained language models substantially, and domain
adaptation requires additional resources for data
collection and computation. (2) With small &,
highly sensitive to outliers. (3) Does not provide
any information about the taxonomy.

3.2 Deep Hierarchical Classification

The classifier predicts the most probable classes
for each level of the hierarchy and collects the fi-
nal prediction from a pool of weighted class labels.
The classifier can predict multiple labels in a multi-
label fashion or have n top outputs for all hierarchy
levels.

Advantages: (1) The internal representations of
texts in the neural model are influenced by both
their own surface forms and their position in the
hierarchy. (2) More robust to data noise. (3) Can
more or less adjust to specific domains while fine-
tuning.

Disadvantages: (1) Is highly affected by class
imbalance. (2) Has reduced interpretability. (3) As
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Figure 1: Overview of our framework with DBERT; _5 as a deep classifier. During training, the encoder is paired
with outputs for hierarchical classification. The classification part of the model is fine-tuned in conjunction with the
encoder to generate a sequence of subclass labels (levels 1-5). During inference, we encode the known data and
input entity using only the fine-tuned encoder and attempt to find the most similar entities in a complex taxonomy.
Finally, we assign the input entity to the hierarchy leaf with the most similar known entities.

a result of the previous point, it is more difficult to
control the precision of the model when implement-
ing it in real-world systems. Classifier confidence
is not transparent. (3) The model itself can pro-
duce contradictory labels (non-existing taxonomy
branches), and introducing hierarchical informa-
tion can require the implementation of additional
restrictions.

4 Methods

We compare multiple methods that follow the two
fundamental strategies introduced in Section 3. The
described HTC methods employing a single model
(FT1—5, DBERT;_5) are additionally probed in the
hybrid classification setting.

4.1 k-NN

The most similar titles in a hierarchy are found
using cosine distance. The out-of-the-box encoder
is not fine-tuned on task-related data. The title is
encoded as an average of token representations. We
probe two types of representations: fastText and
DeBERTa.

4.2

A deep classification model simultaneously pre-
dicts multiple labels denoting the nodes in a hierar-
chy. The final prediction assigns an entity title to
a taxonomy branch and is constructed from top-n
predicted node labels along with their probabilities.

Trainable Classification

FT1_5: To predict top-n possible nodes for levels
1-5, we use a one-vs-all multilabel classification
implemented in the fastText? library.

2https://fasttext.cc/

DBERT;_5 : We use an architecture of a deep
hierarchical classifier similar to that of Gao (2020).
The output layers for every level are added on top
of an encoding language model (DeBERTa). For
the title consisting of tokens wy, wa, ..., w,, the
representations are computed in encoder:

)]

The output for each hierarchy level ¢ is predicted
with a separate feedforward layer. Input for the
output layer ¢ > 1 is a concatenation of the text
embedding e and an output for the previous level:

FFz(e)
Y =
FF;(e ® yi—1),

e = Encoder(wyws...w;) € REM

if1 =1;

otherwise.

2

The probabilities of classes for a hierarchy level
1 are calculated by passing y; through the softmax
activation function. The class with the highest pre-
dicted probability is then predicted as y;. The loss
function is a weighted sum of the categorical cross-
entropy loss and hierarchical loss:

0 ifg; Cyi_1;
HLOSSi — Iy .yz 1
1 otherwise.

n " (3)
Loss = « Z CELoss; + Z B 'HLoss;
i=1 =2

where « and (3 are the weights controlling the im-
pact of hierarchical loss. The hyperparameter 3
(0 < B < 1) is used to scale the hierarchical loss.
The cross-entropy loss is weighted to handle the
class imbalance on each hierarchy level.
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Part Deduplicated  Unique Unique Classes of Each Level
Length Branches 1 2 3 4 5
Clothing Shoes and Jewelry 1988301 35710 11 253 953 5263 12371
Home and Kitchen 1203754 1671 13 136 539 695 292
Automotive 831549 2252 14 165 743 849 318
Sports and Outdoors 809999 3414 3 43 351 1102 1281
Electronics 584136 900 16 105 290 305 133
Tools and Home Improvement 488042 1152 13 98 435 427 172
Industrial and Scientific 132168 1796 25 301 970 496 93

Table 1: Statistics of the corpus.

4.3 Our hybrid approach

As a compromise between both of the described
methods, we propose a hybrid approach, in which
the out-of-the-box text encoder is additionally pre-
trained on hierarchical classification. The overall
framework is illustrated in Figure 1. The title en-
coder is fine-tuned as a part of a hierarchical clas-
sifier, and the nearest-neighbor classifier dealing
with flat (entity; leaf) pairs predicts the leaf with
most similar entities.

5 Experimental Setup
5.1 Dataset

Deep models with millions of parameters, such as
BERT, have a tendency to overfit to noise and out-
liers in e-commerce product classification data, as
noted by Zhang et al. (2021). They describe two
major challenges in e-commerce data: frequently
incomplete or misleading item descriptions and
confusing or non mutually exclusive labels in a
large taxonomy. Supervised learning faces a sig-
nificant obstacle when classifying images, descrip-
tions, or titles due to confusing and non-mutually
exclusive labels in a large taxonomy. To address
this issue, we thoroughly clean the data for our
experiments.

We only use the titles and hierarchy annotations
from the Amazon review dataset® (Ni et al., 2019);
HTML character references in both titles and cat-
egories are decoded into Unicode. We cut sub-
branches leaving only the nodes containing less
than 13 tokens* in name and keep only subbranches

3https://cseweb.ucsd.edu/~jmcauley/datasets/
amazon_v2/

*We considered the longer nodes noisy because they often
included non-taxonomy information, such as notes for cus-
tomers (e.g. “Please feel free to contact us if you have any
special requests or questions”) or lengthy keyword-stuffed
descriptions (e.g. “My Daily Styles Stainless Steel Black
Faux PU Leather Yellow Gold-Tone Latin Cross Religious
Adjustable Wristband Mens Bracelet”) hardly resembling sub-
classes.

appearing in the data at least 4 times. We have se-
lected seven major data subsets that have at least 90
classes annotated in the 5th level of the hierarchy.
The statistics of the obtained data are described
in Table 1. On each hierarchy level, we encode
classes independently of the previous levels. As
a result, on most subsets, the number of classes
decreases after level 4; instead, “missing” class re-
placement occurs most frequently. This denotes a
natural skew in the hierarchy.

5.2 Maetrics

We evaluate the hierarchical classification perfor-
mance with 5-fold stratified cross-validation. This
balances the distribution of branches in each fold.
Firstly, we calculate macro-averaged F1 for each
level of the hierarchy. Since this F1 reflects per-
formance for each level independently, we also
evaluate the accuracy for flat branch assignment
for each depth.

5.3 Implementation Details

fastText We use a fastText model described in
(Grave et al., 2018) that is pretrained on Common
Crawl and Wikipedia data. Hierarchical model
(FT1_5): The classifier is fine-tuned using the one-
vs-all scheme, with a learning rate of 1, character
n-gram range of (3, 10), and for 25 epochs. The
top 7 predicted nodes are used to assemble the full
branch after classification.

Contextual Embeddings As a pretrained trans-
former, we employ DeBERT2> (He et al., 2021).
Hierarchical model (DBERT;_5): The model is
fine-tuned with a learning rate of 2e-5, dropout rate
of 0.4, batch size of 128, o« = 1, 5 = 0.9, and the
cross-entropy loss for each level (CELoss; in (3))
is weighted based on the distribution of classes in
the subcorpus. The top 8 predicted nodes are used
to assemble the final branch.

Smicrosoft/deberta_v3_base
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6 Experimental Results

Table 2 compares all the investigated methods for
hierarchical classification. The statistics of macro
F1 calculated for each level independently are il-
lustrated in Figure 2.

6.1 Baselines

The results for kNN using out-of-the-box pre-
trained text encoders are denoted as KNN:FT for
fastText and KNN:DBERT for DeBERTa. The
fastText-based flat KNN classifier provides a strong
baseline across all subcorpora. The low perfor-
mance of the KNN:DBERT can be attributed to a
known issue with transformers: the feature extrac-
tion performance of the frozen model decreases
with increasing difference between pretraining and
target tasks (Peters et al., 2019).

6.2 Trainable Classifiers

The fastText- and DeBERTa-based classifiers are
denoted as FT;_5 and DBERT;_5, respectively.

According to the results in Table 2, the fastText-
based hierarchical classifier outperforms the kNN
baseline only across the smallest subcorpora, and
mostly for the higher levels of hierarchy. More-
over, for larger datasets, starting with “Sports and
Outdoors” multilabel fastText training becomes in-
creasingly more challenging and consuming. The
statistics of hierarchical labels are actually learned
by the model, which we’ll see by applying kNN
to its representations. However, collecting the tax-
onomy branch from top-n pool of predicted labels
using the direct approach is hardly applicable.

DBERT; _5 outperforms not only the correspond-
ing weak baseline but also the fasttext-based hybrid
classification KNN:FT;_5 on many datasets. It is
also worth noting that this method handles larger
data with larger class sets much better than multil-
abel fastText.

6.3 k-NN over the Tuned Representations

Applying kNN directly to the inner representa-
tions results in an improvement in classification
for all levels for both backbones (KNN:FT1_5 and
KNN:DBERT;_5). In addition to a considerable
improvement in the accuracy of full branch predic-
tion (A;_5 in Table 2) while preserving or improv-
ing the intra-level F1 (Figure 2), the purely vector-
based approach can also be significantly faster than
collecting known branches from a pool of predicted
labels for each entity.

Aq A2 Ai_3 Ay Ai_s
Clothing Shoes and Jewelry
KNN:EFT 855 814 71.0 55.3 44.4
FT1_5 84.1 76.8 64.1 454 31.1
KNN:FT;_5 86.8 83.1 73.3 57.8 45.9
KNN:DBERT 727 643 51.3 38.9 31.8
DBERT;_5 90.8 88.2 80.3 65.7 52.7
KNN:DBERT;—5 909 884  80.8 67.0 54.9
Home and Kitchen
KNN:FT 89.7 785 68.5 64.4 63.5
FT1_5 91.5 80.0 68.0 62.9 60.6
KNN:FT1_5 90.9 81.0 71.5 67.4 66.5
KNN:DBERT 64.5 49.6 42.2 39.8 39.8
DBERT]_5 933 85.0 76.5 72.7 71.6
KNN:DBERT;-5 93.6 85.6 77.6 740 73.1
Automotive
KNN:FT 89.4 82.1 76.1 72.7 72.0
FT1_5 88.5 80.1 72.9 67.9 66.6
KNN:FT1_5 91.8 86.0 80.7 77.4 76.7
KNN:DBERT 76.9 66.9 61.3 58.7 58.3
DBERT]_5 92.1 86.3 80.8 77.4 76.6
KNN:DBERT1_5 923 86.9 81.8 78.6 77.8
Sports and Outdoors
KNN:FT 91.8 81.7 73.0 64.2 59.3
FT1_5 90.3 78.0 67.1 56.7 50.3
KNN:FT1_5 933 852 77.5 69.2 64.6
KNN:DBERT 77.0 545 46.0 40.8 38.0
DBERT1_5 944 873 80.3 72.6 68.0
KNN:DBERT1_5 94.5 87.8 81.2 74.0 69.8
Electronics
KNN:FT 87.0 763 68.6 64.0 62.6
FT1_5 87.4 74.6 64.8 58.3 56.7
KNN:FT1_5 89.4 79.8 72.6 68.5 67.2
KNN:DBERT 639 503 43.6 40.4 39.6
DBERT1_5 89.8 80.1 72.5 68.1 66.9
KNN:DBERT1—5 90.1 80.8 73.7 69.5 68.3

Tools and Home Improvement

KNN:FT 88.3 78.9 68.4 64.3 62.9
FT1_5 89.9 79.8 69.2 63.7 62.1
KNN:FT;_5 91.9 843 75.2 70.9 69.6
KNN:DBERT 62.0 51.7 43.9 41.7 40.8
DBERT;_5 922 84.6 75.6 71.1 69.8
KNN:DBERT;1_5 924 85.2 76.5 72.2 70.9
Industrial and Scientific
KNN:EFT 820 71.8 63.6 60.6 60.2
FT1_5 85.1 74.1 64.7 60.3 59.7
KNN:FT1_5 879 79.1 71.4 68.2 67.8
KNN:DBERT 56.8 49.0 44.1 42.4 423
DBERT1_5 88.2 789 70.6 67.4 67.0
KNN:DBERT;_5 88.4 794 71.5 68.5 68.0

Table 2: Mean accuracy of the branch prediction. The
datasets are listed in descending order of size (see Ta-
ble 1).
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Figure 2: Macro F1 calculated for each level independently; two types of classifiers.

7 Conclusion

We present an approach for entity title hierarchical
classification that uses representation learning for
training hierarchy-informed embeddings. We apply
the obtained embeddings in kNN flat hierarchical
classification to demonstrate how these representa-
tions can be directly used in a controllable setting.
The baselines include pretrained encoders used as
the base encoders in the pipeline and hierarchical
classifiers built with the same encoders. The hybrid
approach outperforms the baselines on each part of
the large-taxonomy e-commerce corpus.
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Abstract

The swift surge of digital communication on
social media platforms has brought about an
increase in hate speech online, especially sex-
ism. Such content can have devastating effects
on the psychological well-being of the users,
and it becomes imperative to design automated
systems that can identify and flag such harmful
content. Human moderation alone is inade-
quate to manage the volume of content, neces-
sitating efficient technological solutions. In this
study, we explore the performance of different
modern techniques on Bert-based models for
detecting sexist text. We explore four such tech-
niques, namely, Domain Adaptive Pre-training
(DAP), Learning Rate Scheduling (LeR), Data
Augmentation (DAug), and an ensemble of all
three. The results show that each technique
improves performance differently on each task
due to their different approaches, which may
be suited to a certain problem more. The en-
semble model performs the best in all three
subtasks. These models are trained on a Se-
meval’23 shared task dataset, which includes
both sexist and non-sexist texts. All in all, this
study explores the potential of DAP-LeR-DAug
techniques in detecting sexist content. The re-
sults of this study highlight the strengths and
weaknesses of the three different techniques
with respect to each subtask. The results of
this study will be useful for researchers and
developers interested in developing systems for
identifying and flagging online hate speech.

1 Introduction

Text classification tasks have been around for a
long time, and so has online hate speech. Posting
without any consequences is stimulus enough for
people to be overly hurtful in their comments and
be ignorant of others’ feelings. Some might just do
it to "troll" someone, some out of pure hatred, and
some for channelling their inner frustration. With
time, the presence of hate speech prevalent online
increases too, and all the major social platforms

Radhika Mamidi
LTRC, International Institute of
Information Technology, Hyderabad
radhika.mamidi@iiit.ac.in

nowadays are trying to find ways to flag and curb it.
Sexism has been present since before the Internet,
and thus, there is no surprise that it is one of the
most used forms of hate speech online today.

In our study, we aim to develop an automated
system that can detect and classify sexism using
different techniques, namely, Domain Adaptive Pre-
training (DAP), Learning Rate Scheduling (LeR),
and Data Augmentation (DAug). For the same,
we use the dataset shared by the task organizers
of Task-10 of SemEval-2023 (Kirk et al., 2023).
The dataset contains data for the following three
subtasks:

* Subtask-A: binary classification task in which
systems must figure out whether a certain
piece of text is sexist or not

* Subtask-B: systems must classify the sexist
piece of content into its appropriate class from
the given 4 classes

* Subtask-C: systems must accurately classify
the sexist text into one of the listed 11 classes

Further details regarding sexism category names
can be seen in Figure-1. As visible from the defini-
tions discussed above, the complexity of the task
increases with each level. We go from dealing
with a simple binary classification task to an 11-
class multi-classification problem. This is precisely
why we tackle the task with three unique tech-
niques and an ensemble of all three combined tech-
niques. For implementing the these techniques we
use three BERT-based models, namely, ROBERTa,
HateBERT, and BERTweet. The best model for
each task is the ensemble model. This is because
each of the three techniques is beneficial in its own
way and using an ensemble model makes sure that
the advantages of all three techniques are utilized
simultaneously.

DAP boosts the scores most for Task-A, LeR
for Task-B, and DAug for Task-C thanks to their
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Task B

Task C

Threats of harm
Incitement and encouragement of harm

Derogation

Animosity

Descriptive attacks
Aggressive and emotive attacks

Dehumanisation and overt sexual objectification

Casual use of gendered slurs, profanities & insults
Immutable gender stereotypes
Backhanded gendered compliments

Condescending explanations or unwelcome advice

Supporting mistreatment of individual women

Prejudiced Discussion

Not Sexist

(1] .
L Rewire | 5o

Supporting systemic discrimination against women

Figure 1: The shared task categories. Image adopted from the organizers of Kirk et al. (2023)

unique approach which caters to the respective sub-
tasks. As a result of their ensemble model, our
system is comfortably able to beat the best base-
line model from the original task paper (Kirk et al.,
2023).

2 Related Work

Detection of online sexism has been a task that
many researchers have worked on over the past
many years. Some showed how we can use both
conventional and deep learning approaches to iden-
tify various forms of sexism in a multi-lingual set-
ting (Rodriguez-Sanchez et al., 2020) while others
have created their own datasets to examine differ-
ent forms of sexist content prevalent nowadays (see
Parikh et al. (2019), Samory et al. (2021)). In
our study, however, we stick to the dataset for the
EDOS task, so we can compare the performance
of our systems with other major baselines and top-
ranked systems.

There have also been important efforts when it
comes to adapting the models to a certain domain.
In our case that is adapting BERT-based models
(for BERT see Devlin et al. (2019)) to hate speech,
sexism to be specific. The authors of Gururangan
et al. (2020) have shown how models can improve
in performance by adapting a certain domain. For
this, first, the model is trained on a large unlabelled
dataset and then fine-tuned on the smaller labelled

dataset, which fits in line with our case. This is
where the motivation of the DAP technique comes
from.

Zhao et al. (2022) showcased how important it
is for the learning rates to adapt to the task so as to
achieve best performance in classification tasks.
This helps in faster convergence while training
which ultimately leads to better results. Similarly,
Data augmentation has always been shown to im-
prove performance generally in text classification
tasks. For instance, the EDA framework (Wei et al.,
2019), where simple updates like synonym replace-
ment, random insertion, random swap, and random
deletion improved classification performance by a
good extent. Likewise, there are other data augmen-
tation approaches such as stochastic replacement of
words in the sentence (Kobayashi, 2018), and using
Pre-trained Language Models to get diverse and se-
mantically correct text samples (Anaby-Tavor et al.,
2019). In our study, we choose to stick with the
simpler EDA approach.

3 System Overview

The system for our study can be broken up into 5
different parts. Firstly, we have the Bert-based mod-
els as it is, i.e., we do not employ any techniques
on them. Then, we have got our DAP-LeR-DAug
individual models to understand which technique
works best in which scenarios. Finally, we wrap it
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all up by having an X model, which is basically an
ensemble of all the three techniques discussed.

3.1 Baselines

As mentioned earlier, we will have three BERT-
based models as our baselines, namely, ROBERTa,
HateBERT, and BERTweet. RoBERTa (Liu et al.,
2019) is an advanced BERT-based pretraining ap-
proach that optimizes and enhances performance
on various natural language understanding tasks
through extensive training with larger batches and
more data, resulting in improved language repre-
sentations. HateBERT (Caselli et al., 2021), on
the other hand, is a specialized transformer-based
model tailored for detecting hate speech in text,
designed to provide accurate identification of of-
fensive content through fine-tuned representations
and focused training on hate speech data. Finally,
BERTweet (Nguyen et al., 2020) is an adaptation
of the BERT model specifically designed for pro-
cessing and understanding text from social media
platforms like Twitter, offering improved perfor-
mance on tasks involving informal language, hash-
tags, mentions, and other characteristics unique to
Twitter discourse.

It is evident from the description of the selected
BERT-based models as to why they are apt for our
experiment which is heavily focused on natural
language understanding and dealing with sexism, a
form of hate speech. For the baseline stage, we use
them as they are and fine-tune them on our shared
task dataset. Then we evaluate how they perform.

3.2 DAP

DAP refers to Domain Adaptive Pre-training. The
organizers of the task (Kirk et al., 2023) had
also provided a dataset of 2 million unlabelled
posts from Gab and Reddit. We utilize this enor-
mous dataset with the Masked Language Modelling
(MLM) objective as we believe this pairing would
hold the most promise for enhancing the perfor-
mance of our BERT-based models in classifying
sexist content. By being subjected to diverse and
extensive linguistic contexts from the unlabelled
dataset during MLLM pretraining, the models gain a
robust understanding of general language patterns
and nuances. This enriched linguistic foundation
forms the cornerstone for improved comprehension
of text, enabling the models to capture subtle lin-
guistic cues and contextual variations inherent in
sexist content.

During fine-tuning with labelled data, the mod-
els’ already adept language representations are
seamlessly adapted to the specific domain of sex-
ism detection. This dual-stage process harmonizes
its universal language understanding with domain-
specific features, resulting in heightened discrim-
inatory power to accurately identify and classify
sexist text instances. The fusion of pretraining’s
broad language expertise and fine-tuning’s task-
specific tailoring equips the models with a well-
rounded ability to identify and categorize nuanced
and varied forms of sexist content across the differ-
ent classes of sexist content.

3.3 LeR

LeR refers to Learning Rate Scheduling. Learning
rate scheduling enhances model performance by
dynamically adjusting the step size during train-
ing. This technique accelerates convergence by ini-
tially allowing larger parameter updates, ensuring
quicker progress towards the optimal solution. As
training advances, the learning rate is reduced, sta-
bilizing optimization and preventing overshooting.
By navigating the loss landscape more effectively,
learning rate scheduling helps evade local minima
and improves generalization by mitigating noise
fitting. Although this technique does not contribute
linguistically in terms of word embeddings, contex-
tual understanding of the domain, etc., it can still
prove to be very important.

This technique is particularly valuable for sta-
bilizing training with large batch sizes, adapting
to data characteristics, and achieving fine-tuned
results in transfer learning scenarios. In essence,
learning rate scheduling fine-tunes the learning pro-
cess itself, fostering quicker convergence, robust-
ness, and overall improved model performance.

3.4 DAug

DAug implies Data Augmentation. The dataset we
have is highly imbalanced for each subtask. For
example, the majority class in tasks A and B has
more than 3 times the number of data instances as
compared to the minority class. For task C, the
case is even worse. There are minority classes
with not even 100 instances while some majority
classes have more than 700 instances. A dataset
like this can make the best of classifying models
biased towards the majority class. There are vari-
ous different techniques to counter that, and Data
augmentation is certainly one of them. It concerns
itself with creating new data for classes with lim-
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ited data available. It can significantly enhance a
dataset with limited sexist posts by generating di-
verse variations of existing examples. Techniques
such as synonym replacement, paraphrasing, and
introducing minor textual perturbations help create
additional instances of sexist content. By simulat-
ing different linguistic expressions and contexts,
data augmentation enriches the dataset, which can,
in turn, improve the model generalization and per-
formance, even when original sexist instances are
sparse.

As discussed in earlier sections, we make use
of a similar approach as taken by authors of Easy
Data Augmentation (EDA) (Wei et al., 2019). By
introducing synonym replacement, random inser-
tion, random swap, and random deletion to the text,
the EDA framework generates diverse instances of
the original text. This augmented data enriches the
training dataset, improving model generalization
and performance. EDA is demonstrated to be re-
markably effective across various text classification
tasks, showcasing its ability to alleviate the chal-
lenges posed by limited training data and contribut-
ing to more robust and accurate text classification
models. This is why the EDA approach will be
helpful for us, for all three subtasks. We discuss
the exact setup details in the coming section.

35 X

The final or the X part of our system is basically a
combination or an ensemble of all the three unique
techniques we have discussed thus far. The en-
semble capitalizes on the complementary strengths
of each technique, effectively navigating linguis-

tic complexities through pre-trained domain un-
derstanding, fine-tuning with task-specific context,
and enriched data diversity. This holistic approach
promotes greater robustness to nuances in sexist
content and addresses challenges posed by limited
labelled data. Ideally, this should outperform the
individual technique models and ultimately lead to
the best performance when it comes to classifying
sexist content.

4 Experimental Setup

We discuss our experimental setup (see Figure-2)
in two forms: technique and fine-tuning specific.
Fine-tuning specific setup is applied to all the five
models irrespective of the technique being used.
We discuss the LeR setup in technique specific
section, but we must remember that it is applied
only while fine-tuning.

4.1 Technique specific

As discussed beforehand, one of the major prob-
lems we have is the class imbalance in the dataset.
For that, we use the Data Augmentation technique.
But, in order to do justice to other techniques so as
not to make their classifiers biased toward the ma-
jority class, we had to consider other approaches
for them like Undersampling and Oversampling.
In Undersampling, we remove a certain number of
data instances from the majority class to make sure
the classes are more or less balanced. However,
in Oversampling, we do the opposite. We repli-
cate data instances of the minority class until we
have achieved balance among all the classes in the
dataset. Undersampling has been shown to perform
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better for this shared task (Panwar and Mamidi,
2023), while Oversampling has been shown to per-
form worse than using the dataset as it is, i.e., im-
balanced. Therefore, for the model variations that
do not include data augmentation, i.e., Baseline,
DAP, and LeR, we use Undersampling to balance
the dataset.

Regarding the setup for Data Augmentation mod-
els, we implement the EDA framework (Wei et al.,
2019), as explained earlier. For generating data, we
decided to choose RoBERTa as it gave semantically
closer data to the actual data when compared with
the data generated by HateBERT and BERTweet.
We limit the augmentation probability to 0.3 as
above this threshold, the system generates very
noisy data, which can lead to loss of semantics
and an overall reduction in the performance of the
models.

For the Domain Adaptive Pre-training technique,
we use the Masked Language Modelling objective.
The first and foremost step is to obviously use the
correct tokenizers and pre-process tokens that may
not contribute semantically a lot to the sentence.
For example, tokens like [USER], [HASHTAGS],
[URLS], [MENTIONS], etc can be removed to
improve efficiency and accuracy. Then we create
the masked sentences, and we do so by randomly
masking a certain percentage of the sentence. Then,
the model learns by predicting the masked tokens
based on the surrounding context. The goal is to
minimize the loss between the actual masked and
predicted tokens. By gaining a better idea of the
contextual relationships from posts on sexist fo-
rums, the model should ideally perform better than
without DAP.

For the Learning Rate scheduling models, we
experimented primarily with four different types
of LRs: Step decay, Exponential decay, Cosine
annealing, and One-Cycle LR. They performed
more or less similarly, with the only difference be-
ing when it came to the X or the ensemble model.
In that case, cosine annealing edges out other ap-
proaches and this may be due to the fact that the
X model has a lot going underneath the layers.
Not only does it have more contextual embeddings
thanks to DAP, but it also has more data to work
with because of DAug. These rising complexities
require complex learning rate scheduling policies
like that of Cosine Annealing.

4.2 Fine-tuning specific

This part is very intuitive. We split the dataset
into 85:15 ratio with the former used for training
and the latter for validation. The authors of the
task have provided separate data for testing and we
believe it would be better to test our models on that
to compare how we stand with task paper baselines
and other top-ranked teams. During the training
phase, first, we do simple pre-processing. Most
of the pre-processing is handled comfortably with
the appropriate tokenizers of the different models
we have considered. However, we take care extra
care on our own end to remove tokens that do not
contribute semantically to the system. For example,
hashtags, emojis, noisy tokens like "heyyyyyy",
"yolooooooo", etc. For training our classifiers, we
set epochs as 10 and batch size as 16. After training
the classifiers, we proceed to evaluate them.

5 Results

For evaluation, we make use of macro average F-1
scores. This helps us to compare the performance
of our approach with that of the task paper base-
lines and other top-ranked teams. A major reason
for adopting macro average F-1 scores could be
that during evaluation it treats each class of the
dataset appropriately. This is very beneficial in
cases, where the dataset is highly imbalanced, like
in our case.

From the results in Table-1, we can see that the
ensemble model with ROBERTa as baseline per-
formed the best on the evaluation test. There can
be different reasons for that, but the primary rea-
son has to be the architecture of RoBERTa and
the fact that we have used RoBERTa-base in our
Data Augmentation phase. Models like HateBERT
and BERTweet have a good understanding of hate
speech beforehand, thanks to their architecture and
pre-training. It is possible that techniques like DAP
and DAug did not help these models as much as
they helped RoBERTa since they have been ex-
posed to a wide variety of hate speech data and
our techniques did not increase their contextual
understanding or vocabulary a whole lot.

Another important point to note is that the X
model performs the best for each baseline. All
three techniques that we decided upon, when em-
ployed together, can cause the model to perform
best. It is also intuitive as the X model is one
which has been pre-trained heavily on about 2 mil-
lion posts for adapting the sexist content domain,
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Model Task-A: 2 class | Task-B: 4 class | Task-C: 11 class
RoBERTa-base 83.22 59.77 34.01
RoBERTa-DAP 84.67 62.23 36.44
RoBERTa-LeR 82.45 63.97 38.21
RoBERTa-DAug 83.59 63.87 39.89
RoBERTa-X 85.09 65.89 40.23
HateBERT-base 82.13 60.56 33.84
HateBERT-DAP 82.55 62.23 35.19
HateBERT-LeR 82.14 64.12 37.77
HateBERT-DAug 82.34 64.01 38.09
HateBERT-X 82.78 64.53 38.34
BERTweet-base 84.01 61.12 30.01
BERTweet-DAP 84.33 62.01 32.71
BERTweet-LeR 84.03 62.89 34.66
BERTweet-DAug 84.12 62.88 34.81
BERTweet-X 84.39 63.45 35.22

Table 1: Macro Avg. F-1 Scores of Classifiers on all subtasks

has got augmented data with minority classes also
being represented adequately, and finally, can train
optimally thanks to the learning rate scheduling
technique. The three techniques complement each
other and bring out the best when used together.

We really notice the impact of individual tech-
niques when we look at the results task-wise. For
task A, we can see that the DAP technique im-
proves the score the most on the baseline. This is
intuitive as well because for a simple binary clas-
sification subtask, having more embeddings and
wider vocabulary to work with makes it even easier
for the model to figure out if the content is plain
sexist or not. The LeR approach works best with
increasing complexities of the task. It works better
for Tasks B and C than it does for Task A. The ef-
fect of optimal convergence is noticed more easily
when there are more classes involved in the task. It
performs the best for task B and is also good for
task C. It is not that its performance drops in task
C but that Data augmentation works too well for
task C and it outshines the LeR technique. We have
established multiple times in this study that the
dataset is imbalanced, and this imbalance increases
with the increasing complexity of the task. Under-
sampling can only work so well when we have to
deal with 11 classes in task C, and the majority
of them are very under-represented. This is where
Data Augmentation comes in handy. By creating
more data instances for the minority classes, we
are able to give the model more data to work with
and thus increase its performance in classification.

Model Task A | Task B | Task C
Best Baseline | 82.35 59.26 31.71
Top-ranked 87.46 | 73.26 | 56.06
RoBERTa-X 85.09 | 65.89 | 40.23

Table 2: Comparison of the performances of the Best
Baseline model in Task paper, the top-ranked sys-
tems for each subtask, and our best performing model:
RoBERTa-X

Lastly, we compare our best-performing model,
i.e., ROBERTa-X, with the best baseline model of
the task paper (Kirk et al., 2023) and the top-ranked
systems for each subtask. We are able to comfort-
ably beat the best baseline model in each of the
subtasks, thanks to the ensemble of our effective
techniques. We were not able to beat the top-ranked
system in any subtask, even though we came close.
However, we must note that for this shared task,
no single approach was the top-ranked among all
the three subtasks. The top-ranked system score
for each subtask in Table-2 is from a different team.
We were able to create a single approach that at
least beat the best baseline. Comparing our scores
with the task leaderboard, we would stand in the
top 30% submissions in task A, top 25% submis-
sions in task B, and top 40% submissions in task
C.

6 Conclusion

Through this study, we were able to explore the
effectiveness of the DAP-LeR-DAug techniques
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when it comes to classifying hate speech in the
form of sexism. We were able to demonstrate that
each technique works well with a specific subtask,
and when employed together in the form of an
ensemble, they perform the best, irrespective of the
BERT-based model being used. This goes on to
show that the scores achieved were not coincidental,
and the techniques indeed complement each other
in a good way.

Although the DAP-LeR-DAug techniques do not
perform the best for any specific subtask when
compared with top-ranked systems, it should be
pointed out that they do surpass the scores achieved
by the best baseline model in the original task paper
quite comfortably. Nevertheless, there are a lot of
ways to improve upon the scores achieved, which
we discuss in the next section.

Limitations

Like any other research study, ours, too, is filled
with limitations. Overcoming some of these would
directly result in better scores for each subtask
while some others may increase the training time
but nonetheless will improve the performance of
the models.

First of all, we have used only the base versions
of the BERT-based models. If not for the restraint
of computational resources, we could have used the
large, extra-large, versions of the baseline models.
The larger vocabulary and increased number of
parameters would directly help to achieve better
scores in all three subtasks.

Another way to improve our performance could
be using more data for DAP. The suggestion is
indeed greedy but will improve the performance
nonetheless. Similarly, we could experiment with
other forms of hyperparameter tuning apart from
LeR alone. Some of them could be optimizing the
dropout rate, loss functions, weight decay, and acti-
vation functions. The impact of tuning these may
not be very large but it will optimize our perfor-
mance.

We can also try to use different data augmen-
tation approaches. In our study, we have only
used the EDA approach but there are more com-
plex ways to augment data. For example, Back-
translation, in which we translate the English sen-
tence to a certain language and then back to En-
glish. This is an easy and effective way to generate
more samples for under-represented classes and
ultimately balance the dataset.

Lastly, we can try to improve our pre-processing
stage as well. In our pre-processing stage, we get
rid of all the emojis and hashtags but they have
been shown to improve the performance of clas-
sification tasks (Eisner et al., 2016). They can be
converted to vector embeddings and then combined
with our word embeddings to form custom vector
embeddings. This will directly improve the per-
formance of our model as emojis are used a lot on
social platforms nowadays and they contribute to
the context and semantics of the text.

References

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2019. Not enough
data? deep learning to the rescue! Computing Re-
search Repository, arXiv:1911.03118. Version 2.

Tommaso Caselli, Valerio Basile, Jelena Mitrovié¢, and
Michael Granitzer. 2021. HateBERT: Retraining
BERT for abusive language detection in English. In
Proceedings of the 5th Workshop on Online Abuse
and Harms (WOAH 2021), pages 17-25, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ben Eisner, Tim Rocktédschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from their
description. In Proceedings of the Fourth Interna-
tional Workshop on Natural Language Processing
for Social Media, pages 4854, Austin, TX, USA.
Association for Computational Linguistics.

Suchin Gururangan, Ana Marasovi’c, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.
Computing Research Repository, arXiv:2004.10964.
Version 3.

Hannah Rose Kirk, Wenjie Yin, Bertie Vidgen, and Paul
Rottger. 2023. SemEval-2023 Task 10: Explainable
Detection of Online Sexism. In Proceedings of the
17th International Workshop on Semantic Evaluation,
Toronto, Canada. Association for Computational Lin-
guistics.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of

57



the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452—457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqgi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach. Computing Research Repository,
arXiv:1907.11692. Version 1.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. BERTweet: A pre-trained language model
for English tweets. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 9—14, On-
line. Association for Computational Linguistics.

Jayant Panwar and Radhika Mamidi. 2023. Panwar-
Jayant at SemEval-2023 task 10: Exploring the effec-
tiveness of conventional machine learning techniques
for online sexism detection. In Proceedings of the
17th International Workshop on Semantic Evaluation
(SemEval-2023), pages 1531-1536, Toronto, Canada.
Association for Computational Linguistics.

Pulkit Parikh, Harika Abburi, Pinkesh Badjatiya, Rad-
hika Krishnan, Niyati Chhaya, Manish Gupta, and
Vasudeva Varma. 2019. Multi-label categorization
of accounts of sexism using a neural framework. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1642—
1652, Hong Kong, China. Association for Computa-
tional Linguistics.

Francisco Rodriguez-Sanchez, Jorge Carrillo-de Al-
bornoz, and Laura Plaza. 2020. Automatic classifica-
tion of sexism in social networks: An empirical study
on twitter data. IEEE Access, 8:219563-219576.

Mattia Samory, Indira Sen, Julian Kohne, Fabian
Floeck, and Claudia Wagner. 2021. "call me sex-
ist, but...": Revisiting sexism detection using psycho-
logical scales and adversarial samples. Computing
Research Repository, arXiv:2004.12764. Version 2.

Jason Wei, Kaiqing Zou, Mingxuan Chen, and Lei
Li. 2019. Eda: Easy data augmentation techniques
for boosting performance on text classification tasks.
Computing Research Repository, arXiv:1901.11196.
Version 2.

Kailin Zhao, Xiaolong Jin, Saiping Guan, Jiafeng
Guo, and Xueqi Cheng. 2022. MetaSLRCL: A
self-adaptive learning rate and curriculum learning
based framework for few-shot text classification. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 2065-2074,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

58



CommunityFish:
A Poisson-based Document Scaling With Hierarchical Clustering

Sami Diaf
Universitidt Hamburg
Department of Socioeconomics
sami.diaf@uni-hamburg.de

Abstract

Document scaling has been a key component of
modern text-as-data applications in social sci-
ences, particularly for political scientists, who
aim at uncovering differences between speak-
ers or parties with the help of probabilistic
and non-probabilistic approaches. Yet, most
of these techniques employ the bag-of-word
hypothesis and disregard semantic features or
use prior information borrowed from external
sources that may bias the results. This paper
presents CommunityFish as an augmented ver-
sion of Wordfish based on a prior hierarchical
clustering of the word space to retrieve seman-
tic n-grams, or communities, as signals emerg-
ing from the corpus to be used as an input to
Wordfish. Instead of considering all words in
the corpus as independent features, we empha-
size the interpretability of the results, since
communities have the ability to better scale
parties or speakers, and ensure a faster con-
vergence when considering a Poisson-based
ranking model. Aside from yielding commu-
nities assumed to be subtopics summarizing
the corpus’ narrative signals, the application of
this technique outperforms the classic Wordfish
model by emphasizing key historical develop-
ments in the U.S. State of the Union addresses
and was found to replicate the prevailing politi-
cal stance in Germany when using the corpus
of parties’ manifestos.

1 Introduction

Comparative politics has been a prominent domain
of application of what is currently known as text-
as-data field, featuring the use of text mining tech-
niques and machine learning algorithms to identify
patterns that differentiate documents or track dis-
parities at the meta-data level. Scaling techniques
typically comprise an array of unsupervised meth-
ods, both probabilistic and non-probabilistic, which
aim to extract one or multiple dimensions to enable
metadata comparisons, based on a set of assump-
tions conducted at the word-level.

Earlier scaling techniques used statistical learn-
ing approaches as for matrix factorization schemes
(Deerwester et al., 1990) and a probabilistic model
based on the Poisson distribution as for Wordfish
(Slapin and Proksch, 2008; Lowe and Benoit, 2013)
which ranks documents on a unidimensional scale
using word occurrences in the corpus. Further ex-
tensions of Poisson scaling models considered a
debate structure (Lauderdale and Herzog, 2016),
pre-trained embedding models (Nanni et al., 2019),
word variations (Vafa et al., 2020) and semantic
search strategies (Diaf and Fritsche, 2022b), pro-
viding an improved scaling of documents depend-
ing on several assumptions and use cases at the
word or document levels.

Regarding Wordfish, the Poisson scaling model
uses word counts to learn a hidden and normally-
distributed dimension, assumed to be a proxy of
partisanship among political parties when scaling
manifestos (Slapin and Proksch, 2008). However,
the Poisson distribution does not always pertain
(Lowe and Benoit, 2013), as frequent words are
likely to be normally distributed, while very rare
words tend to substantially deviate from the Pois-
son paradigm (Lo et al., 2016). Another disadvan-
tage is the dynamic word usage which needs time-
varying parameters for the Poisson ranking model
and further constraints on parameters to ensure its
stability (Jentsch et al., 2020), or to consider the
structure document-topic-word to get polarization
at the topic level using a hybrid supervised topic
model (Diaf and Fritsche, 2022a).

Although the choice of scaling techniques is
abundant, it may not always meet the expectation of
practitioners, as the inference is done at the word-
level, while the analysis often targets documents’
content in terms of groups of words that convey
the interest of researchers. The word contribution
to the built scale in Wordfish is static and cannot
be fully interpretable if the corpus has undergone
significant changes over time, in terms of word us-
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age, between parties/speakers (Jentsch et al., 2020).
Furthermore, the polarity of specific words could
be different from the position of documents they
are mostly related to, thus not in-line with experts’
assessments (Hjorth et al., 2015). This issue arises
from the bag-of-word assumption and the under-
lying agnostic hypothesis of word independence,
which prevents an accurate scaling of documents
based on semantic features (Nanni et al., 2019).

Advances in social network analysis indicated
that hierarchical clustering can reveal homoge-
neous and distinct groups of users, commonly re-
ferred to as communities, based on their interac-
tions, which could also be used in text mining to
identify independent, semantic groups of words,
in form of n-grams, that differentiate documents
by their occurrences while delivering informative
signals that outperform analyses based on single-
word usage. One popular algorithm for studying
social networks is the Louvain algorithm (Blondel
et al., 2008) which was applied to get word groups
that better represent the rhetoric used in a given
corpus (Bail, 2016) or to study the lexical shift
in the State Of The Union addresses (Rule et al.,
2015). Other hierarchical clustering schemes were
proposed as for Infomap (Rosvall and Bergstrom,
2008) which uses random walk map-equation in-
stead of optimizing the modularity as for Louvain
(Lancichinetti and Fortunato, 2009), and Leiden
(Traag et al., 2019) which was found to outperform
Louvain when applied to big networks, however,
similar performances with Louvain are expected on
smaller networks.

This paper extends the idea of lexical shift (Rule
et al., 2015) by identifying communities as repre-
sentative groups of words, able to achieve a fast
and interpretable scaling of documents upon which
a Poisson ranking model could be built, instead of
considering a plain word-count model related to
the bag-of-word hypothesis. I argue that commu-
nities offer a better polarization level when differ-
entiating documents and metadata than standard
bag-of-word techniques, in addition to efficiently
speeding up the learning process by reducing the
size of the document-term-matrix whose sparsity
may hinder the convergence of Poisson models.
Commonly used words are likely to form commu-
nities with a high frequency of words but are less
likely to be polarized compared to communities
with exclusive word usage, denoting the focus of
a given speaker/party on a specific subject of item

that could be identified without the need to run
topic models.

Two historical corpora, in English and German,
were selected to evaluate this novel approach. The
application on the U.S. State Of The Union (SOTU)
addresses (1854-2019) shows a dominance of his-
torical developments as for economic issues, local
affairs and foreign policy that ranked addresses
on a two-regime scale whose transition could be
identified during the great depression. From the
analysis of German political parties’ manifestos
(2013, 2017 and 2022), CommunityFish identified
granular themes at the center of election debates
that were found to replicate the ideological spec-
trum of political parties with AFD and Linke parties
being the ideological bounds of the learned scale,
while other parties seem to share many featured
themes, hence reinforcing their centrist positions.

The paper outlines the build-up of Community-
Fish from a network analysis perspective (Section
2) and from statistical learning (Section 3), then
implements the proposed algorithm on two corpora
(Section 4) and compares to the standard Wordfish
used by practitioners.

2 Methodology
2.1 Network Analysis

Analysis of social media drove the attention of
scientists on the necessity to adopt advanced clus-
tering methods able to extract information that de-
scribe relationships between users via the types
of messages or ideas they produce (White, 2008),
instead of simple relationship structures between
individuals (Bail, 2016).

Network analysis witnessed important contribu-
tions on identifying distinct subgroups in social
networks, built on several optimization schemes de-
veloped to offer intuitive clustering (Lancichinetti
and Fortunato, 2009).

For such tasks, researchers should carefully se-
lect clustering methods for community detection
and also take into account centrality scores (Mester
et al., 2021). Louvain algorithm (Blondel et al.,
2008) is one commonly used clustering technique
,2usually preferred to FastGreedy algorithm (Clauset
et al., 2004), due to its relative low complexity, as
it achieves a local optimization of the modularity
(Q at the node-level, defined as :

Q=135,> {Aij - ]355}5(%03')

7
with A;; rjepresenting the edge weight between
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nodes 7 and j, k; and k; are the sum of the weights
of the edges attached to nodes ¢ and j, respectively;
m is the sum of all of the edge weights in the graph;
¢; and ¢; are the communities of the nodes; and &
is Kronecker delta function é(x,y) = 1 if x=y, 0
otherwise.

Louvain clustering iteratively optimizes the mod-
ularity () by starting with different node being its
own community, and the concept is to place a node
n; to one of its neighboring nodes community, in
a way to maximize the modularity change (Mester
et al., 2021). Similar to users in social networks,
Louvain algorithm can cluster words in a corpus,
S0 to extract communities, in a form of n-grams
of different lengths, having an independent, non-
overlapping structure stemming from the specific
word usage found in documents.

Traag et al. (2019) proposed Leiden clustering as
areliable alternative to Louvain in discerning small
connected communities in large network structures.
Altough Leiden was found to be faster than Lou-
vain, in terms of execution, both do not differ when
the network structure is relatively small, as for
collection of documents with limited vocabulary,
meaning the community structures of both algo-
rithms can share many similarities and just slightly
differ in the number of uncovered clusters.

2.2 Poisson ranking model

To apply CommunityFish, the corpus is broken
down into bigrams and a minimum threshold 7w
is set before running Louvain algorithm that yields
K communities used as features for the Document-
Term-Matrix (DTM), instead of considering all
words in the corpus, hence communities serve as
features to the Wordfish scaling algorithm. This
scheme could be seen as a semantic clustering of
the DTM that identifies correlated pairs of words
in local contexts, thanks to a hierarchical clustering
on bigrams, which differs from a simple bigram
grouping of the initial DTM features.

The resulting DTM, as a matrix of communities’
frequencies on each document in the corpus, is
given as an input to Worfish (Slapin and Proksch,
2008) to learn document positions, or ideal points,
that scale documents based on the occurrence of
communities. As a scaling technique, Wordfish
uncovers a latent scale ¢, assumed to be a proxy
of partisanship or ideological differences between
parties or speakers, depending on the used context.

Although the use of Poisson distribution is jus-

tified by the occurrence of words in the corpus,
assumed to be rare events, it is not always appli-
cable to cases where the word usage concerns few
documents, meaning the Poisson’s expectation de-
parts significantly from the variance (Lowe and
Benoit, 2013; Lo et al., 2016) even though a quasi-
Poisson scheme can relax the Poisson assumption
of the mean-variance equality.

I argue that considering communities frees the
DTM from potential biases raised by rare words
and allows a faster convergence of Wordfish algo-
rithm when applied to big corpora. CommunityFish
could be seen as a double dimensionality reduction
technique: first to uncover communities, as the pri-
mary unit of analysis, and second to learn one scale
of ideal points using a Poisson ranking model.

Algorithm: CommunityFish

1.Community detection: Run a hierarchical
algorithm (Louvain) over the bigram features of
the corpus and extract K groups of words or
communities, whose occurrence in the corpus is
greater than 7.

2.Poisson scaling model: The K communities
are used as features for the Document-Term-
Matrix, to be given as input to the Poisson scal-
ing model (Slapin and Proksch, 2008) to uncover
the scale 6; from the specification:

log(X\ij) = i + 1 + 0;5;, where:

Aij: frequency of the community j in document i
«;: document fixed effect

tpj: community fixed effect

0;: the position of document i

Bj: the effect of community j to the document
position

The hierarchical clustering applied to the corpus
(Louvain algorithm) may be regarded as an implicit
factorization of the traditional unigram DTM, yield-
ing an interpretable feature matrix stemming from
the learned communities. Aside from lowering the
DTM dimension, it permits to intuitively concen-
trate the scaling on meaningful and independent
groups of words (communities), that discriminate
the ideal points based on their occurrences in the
documents.
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3 Application

3.1 State of the Union

State of the Union (SOTU) addresses consist of
annual speeches given by U.S. presidents during
the period (1854-2019), so to emphasize the dual-
ity democratic-republican in the scaling (Diaf and
Fritsche, 2022a). The corpus was lemmatized us-
ing udpipe model (Straka et al., 2016) to reduce
the size of the Document-Term-Matrix and learn
robust communities, in comparison with the raw
corpus. The application of the Louvain algorithm
yielded 52 different communities (Table 1) with a
clear historical context that spans over one and half
century, tied to different episodes of modern Amer-
ican history. From Table 1, 22 communities, out of
52, are constituted of bigrams and the remaining
are n-grams of different lengths comprising entities,
expressions as well as plans or programs!.

Communities, whose contributions to the scale
B; are different from zero, polarize the overall scale
0 via their respective signs. From Figure 1, com-
munities 45, 40, 11 and 8 contribute to documents
whose positions in the overall scale (Figure 2) are
positive, consisting of earlier addresses from the
second half of the ninetieth century that targeted
foreign policy and local administration. On the
other hand, modern addresses have negative posi-
tions (Figure 2) and demonstrate a strong influence
of foreign policy and defense interests (communi-
ties 38 and 49) as well as business/economic envi-
ronment (communities 43 and 2). Figure 2 shows a
two-regime scale of ideal points, whose transition
occurred during the great depression (Hoover’s ad-
dresses during the period 1929-1933, coinciding
with the position 0 = 0), suggesting a potential
shift in the rhetoric, or a transition into modern ad-
dresses, used by U.S. presidents and captured via
communities that could be assumed to be proxies
for most discussed interests in their addresses.

In comparison to classic Wordfish application on
the same corpus (Diaf and Fritsche, 2022a), the
learned document positions are quiet similar, but
cannot be differentiated in small periods, even if
given by different speakers. Word contributions
(Figure 5) obtained via Wordfish offer clustered,
heavily centered densities, with tails dominated
by rare words that occurred in a relatively small

!Leiden clustering yielded a similar community structure
to Louvain, with minor differences concerning two communi-
ties, out of 52. The same results were found using the German
political manifesto corpus.
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Figure 1: Communities contributions to the scale () vs
communities’ positions 1 (SOTU corpus)

number of documents.

3.2 German Manifesto

The corpus of Manifesto Project (Lehmann et al.,
2022) was used to get the manifestos of six main
German political parties, during the period 2013-
2021 (Diaf and Fritsche, 2022b), then lemmatized
using udpipe German language model (Straka et al.,
2016) to reduce the vocabulary length of the cor-
pus. It resulted 45 communities (Table 2) repro-
ducing most of the debated themes in social life,
politics and economic development which consti-
tute the basis of the learned scale (Figure 4), found
to replicate the prevailing political partisanship in
Germany. The AFD and Linke parties represent the
opposite ends of the learned scale, while the other
parties hold central positions, with noticeable firm
positions (small standard deviations of their ideal
points) of the Linke and Griine parties throughout
the studied period. Conversely, the positions of
AFD and CDU exhibit the highest variability, evi-
denced by wider standard errors. The blue line in
Figure 4 is the local polynomial regression Loess
curve (Jacoby, 2000) used to separate parties into
two distinct classes (left-right) based on learned
scale from the established communities (Table 2),
resulting into a bi-partisanship AFD-CDU-FDP
and SPD-Griine-Linke.

From Figure 2, communities 40 and 45 support
the position of the Linke party, as their contribution
to the scale is strongly positive, in comparison to
communities 5, 11 and 12 whose 3; are still pos-
itive but rather close to the origin. Most of the
learned communities have a low contribution to the
scale (3; — 0) and denote shared interests debated
by political parties.
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Figure 2: Learned CommunityFish ideal points with 95% confidence intervals (SOTU Corpus).

As a comparison to Wordfish (Figure 6), Commu-
nityFish highlights a better polarization AFD-Linke,
and a clear partisanship even if document positions
exhibit a higher variability, in terms of standard
errors, than Wordfish.

4 Conclusion

Scaling techniques are valuable analytical tools
used by political scientists to explore partisanship
among parties and to understand the ideological
spectrum of speakers. Nonetheless, they are lim-
ited by the fact that they consider only words as
the unit of analysis, making their application ag-
nostic vis-a-vis semantic signals emerging from
the corpus. While numerous solutions were devel-
oped to improve scaling results by incorporating
external information sources as priors, the use of
hierarchical clustering, as a pre-processing step,
enables the identification of communities, as re-
silient clusters, with semantic effectiveness and
substantial results, combined with a faster execu-
tion time. CommunityFish is a scaling technique
that translates the unit of analysis from words
to communities and an implicit factorization of
the document-feature-matrix, unveiling informative

sub-topic structures for an in-depth scaling of his-
torical corpora as well as political manifestos. Opti-
mal use of CommunityFish requires selecting most
informative communities in an already-lemmatized
corpus by mean of a clustering technique (such as
Louvain or Leiden algorithms). This ensures an in-
dependent community structure when aggregating
the document-feature-matrix, helping the spread
of the ideological stance learned via Poisson rank-
ing model, which was found to outperform classic
Wordfish without calling expensive, often biased,
prior information. Applied to two distinct corpora,
it demonstrated a great ability in extracting com-
munities from a language-variable corpus (SOTU)
and identifying common items in debate-based doc-
uments (German manifesto) for an efficient and
meaningful scaling of documents.
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Figure 4: Learned CommunityFish ideal points with 95% confidence intervals (German Manifesto Corpus).
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Table1: Communities in SOTU corpus Table 2: Communities in German Manifesto corpus

C ity | Words
com_1 agricultural, product
american , billion , business , enlist, every , fellow , million , silver , small ~
com_2 .. . . . C y | Words
young , citizen , family , people , republics, dollar , man , day , americans
- com_1 abkomme, abkommen
com_3 annual , special, message —
com 4 armed , military, naval , force com_2 afd, demokrat, deshalb , fordern , frei, linke, stehen, setzen
= . ;. . alt, brauchen, immer, jung, mehr , mensch
ask , come, current , end , fiscal , five , four, last , many , next , past precede , com_3 > Drauc ! Jung ¢ .
com_5 : . . - million, gerechen, stark, geld, personal, transparenz, zeit
previous, recent , ten , three , two , year , congress, june , session , ago , ahead beit beruflich Kulturell. selbstbest L arbeit
— arbeit, beruflich, gut, rell, selbstbestimmt, arbeiten
attorney , british , can , federal , general , government, local , make , must com_4 bild mb l.t b"(;l. _ leb S K fi
. . . ng, arbeitsbedingung, leben, zukun
com_6 national , postmaster, self , social , spanish , supreme , help , court , sure ! u 2 ! . ingung - Zuku -
also , continue , bank , defense , security com_5 arbeitgeber , arbeitnehmer, patient , verbraucher , innen
com 7 b;;lax;ced budgét . = com 6 arbeitsplatz , dass , deutschland , einsetzen , ganz , gestalten
—, - - - - jed , neu , schaffen , sicherstellen, sorgen verhindern
com_8 base , call , confer , depend , enter , impose , urge , upon , attention J ) v _b" 1 . sorg . v T
com_9 careful , favorable , consideration zeigen , einzeln, form , kind , technologie
con1710 contral ’latin soull; america m 7 beitrag , bund , dabei, etwa, gelten , gerade , gesellschaftlich,
= — — . — - com_ insbesondere , land , mittel, projekt , regelung
civil , hard , human , interest , postal , public , right , tax , work , service , rate . . A © : .
com_11 . L. . . sollen , sowie , teilhabe, wichtig, zugang , leisten, na, mitteln , rolle
debt , building , land , opinion , now , credit , cut , reduction, together
- — com_8 bezahlbar, wohnraum
com_12 commerce , interstate, commission - - -
com_9 biologisch, vielfalt
com_13 earnestly, recommend
> com_10 cdu, csu
com_14 economic , development, growth -
- com_11 corona, krise
com_15 executive, branch , order -
— - - — com_12 demokratisch, kontrolle
com_16 exist , international, law , present , tariff , enforcement , condition , system
com 17 Far thus _reach com_13 deutsch, bundestag, sprache
com718 ﬁrs; [ime, com_ 14 digital, it, sozial, infrastruktur, welt , sicherheit, absicherung
= fore;on Tree areal - mation - office " post - lake . reasury - war - world - gerechtigkeit, marktwirtschaft , netzwerk, sicherungssystem
com_19 = > great, > ottice , post, y y, war, wohnungsbau, zusammenhalt
country com_, power , trade , britain , department, place , ii - — - - -
30 ol employment com_15 drei, euro, letzt, milliarde, mrd, pro, seit, vergangen, vier, zehn, jahr
com s -
= ploy _ com_16 erhalten, bleiben
com_21 go , look , move , forward - -
i) b com_17 erneuerbare , erneuerbaren, energie, energien
com od , bless -
I g — com_18 erst, schritt
com_23 good , faith — —
5 health Tical - com_19 eu, ebene, kommission, mitgliedstaat, staat
com. ealth , medical , care , insurance —
= - 1 com_20 fair, wettbewerb
com_25 high , level , priority, school - - -
26 Tt ] com_21 gering, hoch, mittler, einkommen , unternehmen
com, internal, revenue - g -
‘27 i b " com_22 gesetzlich, mindestlohn, rent, rentenversicherung
com. arge , number, par -
_28 i tg P com_23 gleich, recht , chance, lohn , rechte
com. et, us -
= com_24 hartz, iv
com_29 long, run , term
- com_25 lage, versetzen
com_30 low , income —
3 i com_26 medizinisch, versorgung
com may , we' — - -
‘12 Y hant . com_27 nachhaltig, wirtschaftlich, entwicklung
com_J3 merchant, marine o
— . com_28 offen, gesellschaft
com_33 middle, class , east —= -
— com_29 qualitativ, hochwertig
com_34 minimum, wage , worker
35 & com_30 rechnung, tragen
com_J52 mr , speaker n
= P com_31 rechtlich, rundfunk
com_36 natural , resource
37 “ob X com_32 regel, regeln
com new , jol rogram, yor! 0
= »JOD , prog Y com_33 schnell, internet
com_38 nuclear, weapon
- com_34 schon, heute
com_39 one , half , hundred, third
com_35 schwarz, gelb
com_40 panama, canal ——
] n com_36 sexuell, orientierung
com er , annum, cen
— p ——— com_37 start, ups
com_42 philippine, islands
. h com_38 stelle, stellen
com_43 private , enterprise, sector o
com_39 strukturschwach, region
com_44 progress, step , toward
. com_40 stunde, stunden
com_45 puerto, rico - .
com_41 teil, teilen
com_46 set , forth o
- - com_42 treffen, triefen
com_47 several, united , states , nations - -
i3 K. fund com_43 verein, vereinen
com sink, fun - -
- - . com_44 vereint, nation
com_49 soviet, union -
- - com_45 vgl, kapitel
com_50 vice , president
com_51 welfare, reform
com_52 white, house
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Figure 5: Word contributions from Wordfish (SOTU Corpus) (Diaf and Fritsche, 2022a)
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Figure 6: Learned Wordfish ideal points with 95% confidence intervals (German Manifesto Corpus). Blue line is the
Loess curve.
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Abstract

We introduce ADCluster, a deep document clus-
tering approach based on language models that
is trained to adapt to the clustering task. This
adaptability is achieved through an iterative
process where K-Means clustering is applied
to the dataset, followed by iteratively training
a deep classifier with generated pseudo-labels
— an approach referred to as inner adaptation.
The model is also able to adapt to changes in
the data as new documents are added to the doc-
ument collection. The latter type of adaptation,
outer adaptation, is obtained by resuming the
inner adaptation when a new chunk of docu-
ments has arrived. We explore two outer adap-
tation strategies, namely accumulative adapta-
tion (training is resumed on the accumulated
set of all documents) and non-accumulative
adaptation (training is resumed using only the
new chunk of data). We show that ADClus-
ter outperforms established document cluster-
ing techniques on medium and long-text doc-
uments by a large margin. Additionally, our
approach outperforms well-established base-
line methods under both the accumulative and
non-accumulative outer adaptation scenarios.

1 Introduction

Document clustering is the task of arranging large
volumes of unlabeled documents into clusters ac-
cording to some notion of similarity. A particularly
common goal is to discover the most common top-
ics in a given collection of text documents and to
assign each document to its corresponding cluster.
Given the ever-growing number of documents avail-
able online and the fact that manually structuring
them is impossible, there are countless applications
of document clustering techniques.

General purpose clustering algorithms not specif-
ically designed to work on text documents can be
used for document clustering by creating vector
representations of documents using deep neural net-
works and then clustering those vectors. One way
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Figure 1: Overview of traditional approaches in compar-
ison to ours in unsupervised text clustering tasks, where
chunk data can be accumulated for the adaptive process.

of doing so is to use autoencoders (Ballard, 1987;
Schmidhuber, 2015) applied to term frequency —
inverse document frequency document representa-
tions (tf-idf, (Rajaraman and Ullman, 2011)). How-
ever, such representations neglect contextual in-
formation. Alternatively, one can use contextual
representations obtained from pre-trained language
models (LMs). Such approaches run a clustering
algorithm such as K-Means over the output of the
LM (Guan et al., 2022; Subakti et al., 2022; Groo-
tendorst, 2022; Zhang et al., 2022; Eklund and
Forsman, 2022). In another line of work, some
studies proposed the simultaneous learning of doc-
ument representations and clustering through a self-
learning approach. This involves computing an
auxiliary target distribution using the output of the
model and minimizing the loss between these distri-
butions (Huang et al., 2020; Xie et al., 2016; Hadi-
far et al., 2019). A problem with this approach is
the risk of self-confirmation bias, potentially lead-
ing to trivial solutions. Moreover, the majority of
these proposals rely on autoencoders, with limited
exploration of LMs. In this paper, we introduce
ADCluster, which uses K-Means as a teacher to
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train an LM-based classifier in an iterative manner
to adapt it to the clustering task. Figure 1 shows
the comparison between our approach and previous
approaches (which use LMs) in the unsupervised
clustering task. We hypothesize that the adaptation
process is essential for any real-world application
where there is no labeled training data.

In applications that rely on document cluster-
ing, the collection of documents is seldom static.
For example, consider an online service using web
crawlers to find new content of interest for them,
or an online advertising service trying to discover
appropriate web pages for ad placement (Hatefi
et al., 2021). Given that new content is created
every day, their document collections will steadily
increase. With time, clustering will become unre-
liable because of subtle topic shifts or previously
unknown terms such as Fridays for Future or King
Charles III. Our method facilitates resuming the
iterative adaptation of the model to the clustering
task from its previous state when a new chunk of
documents is to be incorporated.

Thus, we distinguish between inner and outer
adaptation. Inner adaptation adjusts the LM to
the clustering task at hand by an iterative training
process during which the data is considered im-
mutable. Outer adaptation adjusts the model over
time to growing sets of documents by resuming the
inner adaptation when a significant amount of new
data becomes available, either by considering the
entire dataset (accumulative outer adaptation) or
using only the new data (non-accumulative outer
adaptation). An obvious third possibility is to re-
build the model from scratch or use a scheduled
combination of the three possibilities, depending
on the practical conditions under which the model
is used.

In this paper, we mainly focus on introducing the
model and studying its performance under the accu-
mulative and non-accumulative adaptation regimes.
Future work will study the dynamic behavior aris-
ing when the model adapts to growing document
collections as topics evolve.

Apart from introducing the clustering technique
itself, and the algorithm used for training, we exper-
iment with three different datasets, each of which
we divide into five chunks in order to simulate
growing collections of documents. The empirical
results show the following:

1. Under each variant of the outer adaptation
(training from scratch, accumulative, and non-

accumulative adaptation), ADCluster outperforms
the baselines.

2. In the absence of significant topic shifts, the
three outer adaptation regimes usually result in
comparable performance. Hence, one can choose
between them as fits the application.

In addition to these main results, we conduct
experiments to show that the method is insensi-
tive to the type of language model used (our main
experiments use BERT).

2 Related Work

Clustering is a much studied unsupervised problem
in machine learning and data mining which is cen-
tral to many data-driven applications. Many strate-
gies for clustering arbitary sets of data points in
an n-dimensional space have been studied. These
include density-based, hierarchical, centroid- and
partition-based clustering; see Xu and Tian (2015)
for an overview. K-Means (MacQueen et al., 1967)
and HDBSCAN (Campello et al., 2013) are two of
the most popular traditional clustering algorithms.

The progress in deep learning that has been made
during the last decade has made it natural to ap-
ply deep learning to clustering tasks (Zhou et al.,
2022). An example of this is seen in DEC (Xie
et al., 2016), which utilizes a stacked autoencoder
to acquire document representations from tf-idf
vectors. Subsequently, it improves these representa-
tions while learning clustering in a self-supervising
manner. Hosseini and Varzaneh (2022) present a
hybrid deep clustering method combining a stacked
autoencoder and k-Means to organize Persian texts
into clusters.

In recent years, large language models trained
for language understanding and generation have
achieved impressive results across a wide range
of tasks. These LMs produce excellent general-
purpose contextual representations that reflect topi-
cal information and can thus be used for clustering.
Guan et al. (2022) generate document representa-
tions by pooling the outputs of ELMo (Peters et al.,
2018) pre-trained LM and apply K-Means to these
representations after normalizing them. Gupta et al.
(2022) employ language models for unsupervised
model interpretation and syntax induction through
deep clustering of text representations. Huang
et al. (2020) fine-tune the LM simultaneously with
masked language modeling and clustering losses.

To our knowledge, no existing research explores
deep clustering with LMs for dynamic scenarios
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involving a growing set of documents. Our method
provides a simple yet effective approach to improve
cluster assignments by training the LM in an adap-
tive manner to provide clustering-friendly represen-
tations that, over time, can be adapted to a growing
set of documents.

3 Methodology

We first describe how the inner adaptation of the
proposed model ADCluster works. Its pseudocode
is given in Algorithm 1. It uses a conventional
K-Means algorithm and a Deep Neural Network
(DNN) classifier. The classifier is adapted itera-
tively in order to improve the clusterability of the
embedding vectors. This is the inner adaptation.
The classifier consists of a LM-based text encoder
(a pre-trained LM with a mean pooling layer over

Algorithm 1: ADCluster (inner adaptation)

: D: the set of unlabeled documents
fo: LM-based encoder of DNN classifier
W: MLP head of DNN classifier
Mazlter: the max training iterations
EpochSize: iterations per training epoch
b: the mini-batch size
7, y: the training learning rates
DR: the dimension reduction method
7: a threshold for the minimum
percentage of changing assignments within two
consecutive epochs (convergence threshold)
Output :(0*, W™): The optimal weights
C: final cluster assignments for D

1 MazEpoch < Maxlter | EpochSize;
2 for epoch = 1 to MazEpoch do

Input

3 FE < encode D with fp;

4 E' + DR(E) > Apply DR with condition

5 P <« run K-means on E’ using cosine similarity;

6 X < choose b * EpochSize documents from
pseudo-labeled set P with a uniform sampler;

7 W < initialize W with Xavier initialization;

8 for iter = 1 to EpochSize do

9 Biter < choose a mini-batch from X;

10 )/iter — W(fé) (B'Lter));

1 Yk-means ¢— P(Biter);

12 l < cross-entropy-loss (Yiter, }A’K.meam);

13 0+ 0—nxl(0) > Update 0

14 W W —~xl(W) > Update W

15 end

16 Cewrr — Whpredict (fo(D)) > predict cluster
assignments for D with DNN classifier

17 t < compute (Ceurr, Cprev) > Compute the
percentage of changing cluster assignments
compared to previous epoch;

18 if t < 7 then

19 stop the iterative process

20 end
21 Cp’l‘(i’l) <7 CC’UJ‘T
22 end

N

3 return 6°,W*,C,

its last layer) denoted by fy (where @ is the set of
parameters) followed by a Multi-Layer Perceptron
(MLP) head denoted by W that maps document
representations to cluster assignments. Suppose we
have an unlabeled dataset D = {d,,}\_, of N doc-
uments. At the beginning of each training epoch,
we map each document d,, to its contextual repre-
sentation fo(dy). So, E = {fo(dn)}N_, is the set
of document contextual representations. Often, it is
beneficial to reduce the dimensionality of these rep-
resentations using a dimension reduction method
such as PCA (Pearson, 1901) or UMAP (Mclnnes
et al., 2020), resulting in a set £’ of vectors of
fewer dimensions. Next, we use K-Means (based
on cosine similarity rather than squared Euclidean
distance) to cluster £’ into K distinct clusters. We
use these cluster assignments {p, }_, as pseudo-
labels to train the classifier. For this, the MLP W
and the encoder fy are jointly trained to minimize
the cross entropy loss

eXp (ynvpn )

25:1 eXp (yn,k)
b

b
Zn:l - IOg

ey

where y,, is the output of the classifier for docu-
ment d,, and b is the mini-batch size. This cost
function is minimized using AdamW (Loshchilov
and Hutter, 2019) and backpropagation to compute
the gradients. With the goal of preventing the clas-
sifier from overfitting to the current pseudo-labels,
we employ only a subset of the data in every train-
ing epoch and restrict the number of iterations (i.e.,
EpochSize in Algorithm 1).

It is worth mentioning that there is no corre-
spondence between two consecutive cluster assign-
ments. Hence, the final classification layer learned
for an assignment becomes irrelevant for the fol-
lowing one and thus needs to be re-initialized from
scratch at each epoch. We found that re-initializing
the entire MLP head of the classifier rather than the
final classifier layer is also beneficial for reducing
the risk of overfitting. Since the MLP is a shallow
network (having only one hidden layer), it can be
trained sufficiently in one epoch.

In addition, we predict cluster assignments for
all documents at the end of each epoch using the
classifier and stop our procedure when the change
in assignments is less than a threshold 7, i.e., the
algorithm terminates when the number of docu-
ments for which the cluster assignment changes
falls below 7.

70



Table 1: Datasets and statistics. Silhouette Coefficient
refers to the Silhouette score of Rousseeuw (1987)
which measures how similar a document is to its own
cluster compared to other clusters, the best and worst val-
ues being 1 and -1, respectively. We compute the mean
Silhouette Coefficient of all samples of the datasets us-
ing their true labels. As our LM for creating document
representations, we use a BERT language model.

Dataset Yahoo!5 Ag News Fake News
#-Documents 38812 40000 480
Avg # sents 25.12 1.45 6.05
Avg # word 578.26 36.09 141.20
(in doc)
Avg Silhouette  0.01234  0.03736 0.04356
Coefficient

Overall, ADCluster alternates between cluster-
ing document representations to produce pseudo-
labels and updating the parameters of the classifier
by predicting these pseudo-labels using Eq. (1).
This iterative adaptation of the encoder teaches
the LM to generate more clustering-friendly rep-
resentations. This distinguishes ADCluster from
conventional methods, resulting in an improved K-
Means clustering in subsequent epochs. The final
clusters are obtained using the adapted classifier to
predict cluster assignments.

If K-Means assigns almost all documents to a
few large clusters, 6 will only discriminate between
them. A trivial parameterization occurs when all
clusters except one are singletons, and therefore
the classifier predicts the same output for all in-
puts (Caron et al., 2018). To overcome this prob-
lem, we train the classifier on uniformly sampled
documents from the pseudo-labeled classes. The
result is the same as weighting the contribution of
a document to the loss function by the inverse of
the size of the cluster to which it belongs.

Let us now briefly explain the outer adaptation of
ADCluster. Imagine a data stream where new data
arrives sequentially in chunks C', where ¢ denotes
the time step. In the accumulative scenario, we
resume the inner adaptation of ADCluster at time
t using Cp U - - - U C} as training data when a new
chunk C} arrives. In contrast, the non-accumulative
approach resumes inner adaptation solely with the
latest chunk C.

4 Experiments

4.1 Datasets

We employ the following three datasets whose
statistics are summarized in Table 1:

Yahoo!5 is a subset of Yahoo! Answers (Zhang
et al., 2015). The dataset comprises 10 classes,
each document consisting of a question, a title, and
the best answer to the question. We obtain the text
to be clustered by concatenating these parts. To
obtain a long-text dataset we only choose samples
of over 500 tokens. The resulting dataset includes
38 812 documents.

Ag News (Zhang et al., 2015) consists of 4
classes: World, Sports, Business, and Sci/Tech
news. The number of training and testing sam-
ples for each class is 30 000 and 1 900, respectively.
We choose 40 000 documuments at random from
the training set. To have a very short-text dataset,
we only consider the news text and ignore the titles.

Fake News (Pérez-Rosas et al., 2018) com-
prises 480 medium-length news articles belonging
to six different domains. While half of the articles
are real and the other half are fake news, we do not
make use of this distinction but use only the six
topics of the dataset as labels.

Following the approach of prior studies (Huang
et al., 2020; Xie et al., 2016; Hadifar et al., 2019),
we form unlabelled documents by removing all
labels for the training set, using the labels only to
evaluate unsupervised performance.

4.2 Baselines

We use the following baselines for comparisons:
Traditional clustering algorithms We com-
pare our model with K-Means and HDBSCAN.
For HDBSCAN, we use the soft (or fuzzy)
implementation' of the algorithm that predicts
probability vectors for all dataset samples; no
samples are considered noise. These vectors show
the membership probability for each cluster, so
we assign the sample to the cluster for which the
highest probability has been determined. Instead of
using pure BERT vectors, we apply normalization
on them prior to performing dimension reduction
and clustering. Before running HDBSCAN on the
datasets, we perform dimension reduction using
UMAP?. For each dataset, we test several values

1https: //hdbscan.readthedocs.io/en/latest/

soft_clustering.html
2https: //umap-learn.readthedocs.io/en/latest/
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for parameters of HDBSCAN and UMAP and
report the highest accuracy we get. On Yahoo!
Answers, we perform PCA dimension reduction
(n_components = 0.8; preserving at least 80% of
variance) before K-Means.

DEC-tfidf we compare our model with that
of Xie et al. (2016), using the available Py-
Torch implementation from https://github.
com/vlukiyanov/pt-dec. We slightly adjust the
parameters reported in the paper to our datasets and
present the highest value obtained.

DEC-BERT To have a more fair comparison
between ADCluster and DEC (Xie et al., 2016),
we replace the stacked autoencoder part of DEC
with a BERT language model followed by a mean
pooling layer to encode documents and train it with
the same objective function as in DEC.

UFT We compare our model with the model pre-
sented in Huang et al. (2020). We refer to this base-
line as UFT. We obtained the source code from the
authors of the paper and applied it to our datasets.

ADCluster-nolter is a non-iterative version of
ADCluster. We run K-Means only once using con-
textual representations of documents from BERT
and train the neural classifier with the generated
pseudo-labels for some iterations.

Centroid-ADCluster Since in ADCluster
there is no correspondence between two consec-
utive cluster assignments, the final classification
layer learned for an assignment becomes irrelevant
for the following one and thus needs to be re-
initialized from scratch at each epoch. We do this
to prevent the model from overfitting to the noisy
pseudo-labels. For verification, we implemented
another version of ADCluster in which we, instead
of learning a classification layer predicting the
cluster assignments, perform explicit comparisons
between features and centroids.

4.3 Evaluation Metric

We adopt a standard unsupervised evaluation met-
ric that is widely used in deep clustering studies to
compare our proposed method to other algorithms.
For all the algorithms, the number of clusters is set
to the number of ground-truth categories of each
dataset, and we evaluate the clustering performance
using the unsupervised clustering accuracy (ACC):

Soney Hln = m(cn)}
N

ACC = max

where N is the total number of documents, [,, is the
ground-truth label of document d,,, ¢, is the clus-
ter assignment that is predicted by the clustering
algorithm for d,,, and m maps cluster assignments
to labels, ranging over all possible one-to-one map-
pings. This metric seeks the best possible align-
ment between the ground-truth label and the cluster
assignments generated by an unsupervised cluster-
ing algorithm. The Hungarian algorithm, presented
in the work of Xu et al. (2003), offers a means
to efficiently calculate the most effective mapping
function within the context of a linear assignment
problem.

4.4 Experimental Setup

We implemented ADCluster using the PyTorch
framework, utilizing bert-base-uncased LM of Hug-
ging Face®. Documents are truncated to their first
256 tokens. To generate document embeddings,
we employ average pooling over the output of the
language model. For label prediction, we employ
a two-layer MLP with a single hidden layer. The
hidden layer size is set to 128 for Yahoo!5 and
Fake News and 768 for Ag News. The hyperbolic
tangent function is used as the activation function
for the MLP.

We set the mini-batch size to 4 and the learning
rate of the LM and MLP head to 1076 and 10~*
correspondingly. We also use a cosine scheduler
for the learning rate of the LM. We train ADClus-
ter for at most 10 000 iterations and reassign the
clustering labels by applying K-Means on docu-
ment representations every 200 iteration (which we
call an epoch). The threshold for stopping train-
ing when cluster assignments do not significantly
change anymore is set to 1% of the documents. The
model is trained using the AdamW optimizer with
« and (8 equal to 0.999. We use the first 200 iter-
ations as warm-up steps for the LM. To initialize
the centroids of K-Means we use the K-Means++
seeding strategy proposed by Arthur and Vassilvit-
skii (2007) and to initialize weights of MLP head
in each epoch we use Xavier initialization (Glorot
and Bengio, 2010). We train ADCluster-nolter and
Centroid-ADCluster under the same settings. The
only difference for Centroid-ADCluster is that the
size of the hidden layer of the MLP head is 768
for all datasets and the weights of the last layer
(768 - K, where K is the number of classes in the
dataset) are initialized with the centroids of the K-

3https: //huggingface.co/bert-base-uncased
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Means which are constant during training. For the
other baselines, we test several sets of values for
their hyperparameters and report the best results.

5 Results and Discussions

5.1 Overall Performance

Generally, ADCluster achieves better performances
than most of the baseline methods across multiple
datasets (see Table 2). Compared to traditional
clustering algorithms, ADCluster outperforms K-
Means from 1.84% (Ag News) up to 23.3% (Ya-
hoo!5), indicating that the iterative learning pro-
cess (inner adaptation) of our model is effective.
We can also note that HDBSCAN achieves better
performance than K-Means in most cases but out-
performs ADCluster only in the case of Ag News.
In Table 1, we see that Ag News consists of very
short texts, its average number of sentences per
document being 1.45 and the average number of
words being 36.09. It does not seem to provide
enough context for BERT to make distinctive repre-
sentations, thus limiting the efficacy of our model
on this particular dataset. However, in Section 5.5
we will see that by replacing BERT with more ad-
vanced LMs the performance of our model on this
dataset improves. For Yahoo!5 and Fake News,
HDBSCAN gains better performance than most of
the other methods except ADCluster. In fact, for
these datasets, ADCluster displays better perfor-
mance than all baselines. This holds even in the
case of Fake News, which consists of a very limited
number of documents (i.e., 480 documents).

The comparison with DEC-based models yields
the following observations. Firstly, ADCluster out-
performs DEC-tfidf, which we attribute to its use
of BERT contextual representations (whereas tf-
idf representations only consider text as a bags of
words and neglect their semantic relations). Sec-
ondly, even though DEC-BERT has similar ac-
cess to the contextual information of the language
model, its performance is still lower than that of
our model. The same applies to the UFT baseline.
The reason could be that these models are trained
in a self-learning fashion and may thus suffer from
self-confirmation. Our model avoids this by using
K-Means as an external teacher for our neural clas-
sifier. It also uses a uniform sampling technique for
batch creation, mitigating biases stemming from
imbalanced clusters.

5.2 Dynamic Performance Analysis of
ADCluster Across Varied Dataset Sizes

In this experiment, we examine the performance
of ADCluster in comparison to baselines as the
dataset size gradually increases. The outcomes of
this experiment are presented in Table 3, illustrat-
ing the results as the document size expands from
10% to 100%. In general, ADCluster consistently
maintains stable performance throughout these ex-
periments and surpasses baseline models for all
datasets, with the exception of the 10% case for
Fake News.

5.3 Illustration of Learned Representations
by ADCluster

In order to investigate how ADCluster develops
clustering-friendly representations through inter-
nal adaptation, we visualize the evolution of clus-
ters during the training process using the Yahoo!5
dataset. Figure 2 shows how ADCluster clusters
the documents during different epochs with ground-
truth classes represented by different colors. The
figure clearly demonstrates that at the very begin-
ning, the structure is random. Along with the adap-
tation process, documents are arranged into more
distinct groups, which is signified by both color
separation and spatial characteristics. This trend
is further confirmed by the continuous enhance-
ment in clustering performance observed in each
successive epoch.

5.4 The Model Behavior on Data Streams

Notation. Hereafter, if not otherwise specified, we
use Ac to abbreviate Accumulation. We randomly
split each unlabelled data collection into 5 chunks
and denote them by C (1-20%), C5 (21-40%), C3
(41-60%), C4 (61-80%), C'5 (81-100%).

We now analyze the outer adaptation behavior of
ADCluster. In this experiment, we assume the num-
ber of the clusters to be constant over time, only
receiving new samples. We compare our model
with three baselines:

Word2vec+KM We generate document repre-
sentations as the average of the Word2vec embed-
dings of all words in the document and use K-
Means to cluster these representations.

BERT+KM We create document representa-
tions by taking the average of the output of the last
BERT layer for non-pad tokens and use K-Means
to cluster these representations.

ADCluster-scratch This baseline is the same
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Table 2: Overall performances of ADCluster in comparison to baselines. ¥ indicates
short-text datasets.

Method Yahoo!5 AgN ewsY  Fake News
Classic Kmeans (BERT) 44.64 81.6 73.96
Clustering HDBSCAN (BERT) 58.8 83.68 72.71
. * tf-idf 50.23 68.93 45.41
DEC (Xie et al., 2016) BERT 16.43 7832 7583
UFT (Huang et al., 2020)* 46.94 65.46 66.67
Centroid-ADCluster 60.64 80.93 76.67
ADCluster (ours) ADCluster-Final 67.94 8344 77.50
* The result is produced by us following the original paper
Table 3: Performance analysis of ADCluster across
varied dataset sizes compared to baselines. Note that, .
because of the unsupervised setting, there is no expecta- 1 s :
tion of monotonic increases in performance. . P
B : .. eii\-f;-«” ’
Dataset Method 10% 50% 80%  100% ’ ~ Inagg .
K-Means 824 8139 8141 81.6 -
Ag News DEC-BERT 793 7822 784 78.32 s o
ADCluster  84.08 8256 843 83.44
K-Means 5323 535 5995 52.17 P R
Yahoo!S ~ DEC-BERT 4574 4644 4656 4643 (@) Epoch 0 (51.65%) (b) Epoch 5 (57.37%)
ADCluster 663 66.03 67.38 67.94
K-Means 64.58 77.08 77.34 73.96 “
Fake News DEC-BERT 68.75 79.58 77.60 75.83 » N g
ADCluster 6458 83.75 79.95 77.50 . { n ‘ W
. Bp o :‘:';'-’&% po
5 B e
as ADCluster except that instead of perform- : . e
ing outer adaptation, we train the model from . .
scratch (accumulatively on the whole dataset or

non-accumulatively on the last chunk only, respec-
tively). Thus, we remove the outer adaptation and
the model only benefits from the inner adaptation.
Tables 4-6 show the results of our experiments.
As our main take-aways from these experi-
ments, we note that ADCluster outperforms the
Word2vec+KM and BERT+KM baselines in all
cases in both the Ac and non-Ac settings. The su-
perior accuracy of ADCluster on chunk C] can

Table 4: Comparing the outer adaptation performance
of ADCluster with baselines on Yahoo!S.

(c) Epoch 30 (67.53%)) (d) Epoch 50 (67.94%))

Figure 2: Illustration of clustered contextual represen-
tations according to ADCluster for Yahoo! Answer
during inner adaptation. Colors indicate ground-truth
classes. We have used UMAP to map 768-dimensional
representations to a 2D feature space for illustration.

Table 5: Comparing the outer adaptation performance
of ADCluster with baselines on Ag News.

Method Ac Cy Cy Cy Cy Chs Method Ac Cy Cy Cs Cy Cs

Word2vec+KM Yes 52.09 41.86 47.08 4494 49.02 Word2vec+KM Yes 80.65 79.98 80.55 80.87 80.83
BERT+KM Yes 46.28 53.84 53.67 5524 53.70 BERT+KM Yes 81.66 81.42 8150 81.51 81.52
ADCluster-scratch  Yes 67.33 66.44 64.06 64.51 62.06 ADCluster-scratch  Yes 84.07 84.56 84.09 83.07 81.76
ADCluster Yes 67.33 67.99 68.07 67.8 67.48 ADCluster Yes 84.07 84.81 82.56 83.05 84.03
Word2vec+KM No 52.09 42.51 4572 49.79 50.22 Word2vec+KM No 80.65 79.59 8149 80.80 80.85
BERT+KM No 4628 57.02 52.00 54.86 55.04 BERT+KM No 81.66 8143 81.20 81.82 81.05
ADCluster-scratch No  67.33 67.11 65.19 61.79 65.50 ADCluster-scratch No  84.07 83.74 81.95 83.87 82.51
ADCluster No 67.33 68.07 68.24 67.61 67.98 ADCluster No 84.07 84.01 84.25 83.6 83.44
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Table 6: Comparing the outer adaptation performance
of ADCluster with baselines on Fake News.

Table 7: Ablation study to evaluate the impact of differ-
ent components of ADCluster to the final performance.

Method Ac Cl CQ 03 04 05

Word2vec+KM Yes 67.71 79.69 7847 71.35 74.58
BERT+KM Yes 57.29 77.60 77.08 77.34 77.29
ADCluster-scratch  Yes 69.79 82.81 84.37 79.69 79.58
ADCluster Yes 69.79 83.33 83.68 81.25 80.62
Word2vec+KM No 67.71 80.21 6250 54.17 57.29
BERT+KM No 5729 77.08 5833 53.12 51.04
ADCluster-scratch No  69.79 8229 67.71 57.29 59.37
ADCluster No 69.79 86.46 79.17 61.46 73.96

be attributed to the inner adaptation which the
baseline models lack. However, interestingly the
outer adaptation results in superior performances
in most cases on chunks Co—C'5 even compared to
ADCluster-scratch, which is remarkable and shows
the effectiveness of outer adaptation.

5.5 Ablation study

In this ablation study, we design two settings to
study the effectiveness of each ADCluster com-
ponent. First, we replace the default BERT lan-
guage model with recent models such as RoOBERTa,
SBERT, and BART. Second, we test various set-
tings: (1) removing outer adaptation, (2) using a
random sampler instead of a uniform sampler, and
(3) Using UMAP for dimension reduction (instead
of PCA for the Yahoo!5, and instead of not using
dimension reduction for Ag News and Fake News).
Figure 3 clearly shows that recent advanced lan-
guage models yield better performance on all of the
datasets. Table 7 summarizes the performance of
ADCluster in the second setting. Across all experi-
ments, the final model of ADCluster shows better
performance than these variants.

BYahoo!5 B Fake News H Ag News

% 87,29 87,62
85,24 86,08
83,44 82,71

o
S

77,5 77,29

~
o

6794I 68,02 68,37
60 I I I

BERT RoBERTa SBERT

| ||

BART

Figure 3: Ablation study w.r.t. different language mod-
els being used for the inner adaptation of ADCluster.

Ablation setting Yahoo!5 AgNews Fake News
Non iterative 53.89 82.88 73.96
UMAP 64.74 58.33 66.25
Random sampler 65.78 79.2 76.04

6 Conclusion and Future Work

We have introduced ADCluster, a neural document
clustering model that iterates between a contextual
language model and K-Means. K-Means is ap-
plied to contextualized document representations
created by a BERT language model in order to ob-
tain pseudo-labels. The weights of the language
model are then iteratively adapted to improve the
prediction of cluster assignments using discrimi-
native loss. Not only does this inner adaptation
result in superior clustering perform