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Abstract

We investigate the dynamics of increasing the
number of model parameters versus the number
of labeled examples across a wide variety of
tasks. Our exploration reveals that while scal-
ing parameters consistently yields performance
improvements, the contribution of additional
examples highly depends on the task’s format.
Specifically, in open question answering tasks,
enlarging the training set does not improve per-
formance. In contrast, classification, extrac-
tive question answering, and multiple choice
tasks benefit so much from additional examples
that collecting a few hundred examples is often
“worth” billions of parameters. We hypothesize
that unlike open question answering, which in-
volves recalling specific information, solving
strategies for tasks with a more restricted output
space transfer across examples, and can there-
fore be learned with small amounts of labeled
data.1

1 Introduction

Recent work on few-shot learning for natural lan-
guage tasks explores the dynamics of scaling up
either the number of model parameters (Brown
et al., 2020) or labeled examples (Le Scao and
Rush, 2021), while controlling for the other vari-
able by setting it to a constant. For example, Brown
et al. (2020) focus on in-context learning from
roughly 32 to 64 examples, a practice that was
adopted by fine-tuning approaches as well (Schick
and Schütze, 2021b; Gao et al., 2021b; Tam et al.,
2021); however, there are many practical few-shot
scenarios where hundreds of examples can be col-
lected at a relatively low effort.2 Other work experi-
ments with single-size models (Schick and Schutze,
2020; Ram et al., 2021; Le Scao and Rush, 2021;

1Our code is publicly available: https://github.com/
yuvalkirstain/lm-evaluation-harness.

2In SQuAD (Rajpurkar et al., 2016), for example, the
average annotation pace is around one minute per question,
producing 480 examples in a single 8-hour workday.
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Figure 1: Open QA tasks (e.g. TriviaQA) benefit from
additional parameters exclusively, while extractive QA
tasks (e.g. SQuAD 2) benefit from both larger models
and more labeled data.

Gao et al., 2021b), even though larger (or smaller)
models may exhibit different behavior. Further-
more, much of the literature focuses on classifica-
tion tasks (Schick and Schütze, 2021a; Gao et al.,
2021b; Le Scao and Rush, 2021), leaving it unclear
whether their conclusions generalize to tasks with
less restricted output spaces.

In this paper, we conduct a systematic explo-
ration of few-shot learning for language tasks,
where we investigate the dynamics of increasing
the number of model parameters (using different
sizes of the self-supervised T5 (Raffel et al., 2020))
versus the number of target-task labeled exam-
ples (from 32 to 2048) across a variety of tasks,
including not only classification, but also extrac-
tive, multiple-choice, and open question answer-
ing. Overall, we evaluate 192 scenarios by training
7,680 models to control for hyperparameters and
random seeds.

Our experiments show that, surprisingly, the con-
tribution of additional parameters versus additional
labeled examples highly depends on the format
of the task. For open QA tasks, such as the open-
domain version of Natural Questions (Kwiatkowski
et al., 2019; Lee et al., 2019), which require the
model to recall specific information seen during
pretraining, enlarging the training set does not im-
prove performance. By contrast, increasing the
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number of model parameters results in substantial
gains (see TriviaQA (Joshi et al., 2017) in Figure 1).
Hence, when dealing with open QA, model param-
eters are of immense value, and cannot be replaced
by increasing the number of labeled examples.

On the other hand, we observe a completely dif-
ferent trend for classification, extractive QA, and
multiple-choice tasks. These tasks benefit from
enlarging both the training set and the model (see
SQuAD 2 (Rajpurkar et al., 2018) in Figure 1).
We observe that hundreds of examples are often
“worth” billions of parameters; T5-L fine-tuned on
4 times more data is roughly competitive with T5-
XL, which has 4 times the number of parameters.
Moreover, some tasks benefit so much from labeled
examples, that collecting even 512 data points can
make a fine-tuned T5-L (800M parameters) outper-
form GPT-3 (175B parameters).

Finally, we hypothesize that unlike open QA,
formats with restricted output spaces have solv-
ing strategies (such as elimination) that can be
learned from small amounts of labeled data. This
hypothesis also provides a possible explanation as
to why lean retrieve-and-read approaches (such as
DrQA (Chen et al., 2017), ORQA (Lee et al., 2019),
and DPR (Karpukhin et al., 2020))) appear to be
more robust than multi-billion-parameter closed-
book models (Roberts et al., 2020) when tested on
non-overlapping data (Lewis et al., 2021).

2 Experiments

We describe the tasks (Section 2.1), models (Sec-
tion 2.2), data regimes (Section 2.3), and imple-
mentation details (Section 2.4) of our systematic
experiment suite. In total, we experiment with 12
tasks, 4 models, 4 data regimes (with 5 samples
each), and 8 hyperparameter configurations; these
amount to 7,680 trained models, evaluated across
192 task-model-data scenarios.

2.1 Datasets
We experiment with 12 datasets, divided into 4
broad types of task formats. The formats and their
constituent tasks are described below.

Classification In classification tasks, the model
is expected to read a given text and predict a single
label from a small closed set, e.g. yes or no. We
adopt classification tasks from the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks, namely: Recognizing Textual Entail-
ment (RTE, Dagan et al., 2006; Bar-Haim et al.,

2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009), the Stanford Sentiment Treebank (SST-2,
Socher et al., 2013), and BoolQ (Clark et al., 2019).
We report accuracy for all classification datasets.

Extractive Question Answering In extractive
QA, the model is given a passage and a ques-
tion, and is then expected to produce an answer
in the form of a span from the passage. We experi-
ment with SQuAD 2 (Rajpurkar et al., 2018), Hot-
potQA (Yang et al., 2018), and DROP (Dua et al.,
2019). Each of these datasets contains an additional
“quirk” that makes it more challenging than the orig-
inal SQuAD dataset (Rajpurkar et al., 2016), which
popularized the extractive QA format: SQuAD 2
has unanswerable questions, HotpotQA provides
multiple passages per question, and DROP con-
tains many arithmetic questions whose answer is
not strictly extractive, but can be derived from a set
of spans in the given passage. For all extractive QA
datasets we report token-wise F1.

Multiple Choice Multiple choice tasks provide
the model with a question and several candidate
answers, with the goal of selecting the correct one.
We focus on three datasets in this format: the
easy question set from the AI2 Reasoning Chal-
lenge (ARC-E, Clark et al., 2018), the Physical In-
teraction Question Answering dataset (PIQA, Bisk
et al., 2020), and CommonsenseQA (Talmor et al.,
2019). Unlike extractive QA, multiple choice tasks
do not contain supporting evidence (a passage) for
answering the question, and in contrast to classifica-
tion, they have a different output space (candidate
answers) for each example. We report accuracy for
all multiple choice datasets.

Open Question Answering Open QA3 datasets
provide the model with just a question; no support-
ing evidence or closed candidate set is available.
We experiment with open-domain versions of Nat-
ural Questions (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), and SQuAD 1 (Rajpurkar
et al., 2016). Our experiments here focus purely
on the closed-book setting (Roberts et al., 2020),
which does not allow models to retrieve text from
an external corpus, restricting them to information
stored in their parameters. For all open QA tasks
we report F1 as the main metric.

3We deviate from the widely-used term open-domain QA,
which describes the task, and use open QA instead to refer
to the format, much like we use extractive QA rather than
reading comprehension.
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2.2 Models

The Text-to-Text Transfer Transformer (T5, Raffel
et al., 2020) uses an encoder-decoder transformer
architecture. It is pretrained on the task of gener-
ating masked-out spans over the Colossal Clean
Crawled Corpus (C4), which contains 800GB of
English-language text. We use version 1.1 of T5,
which is not trained on any labeled data. Our ex-
periments include the 77M (S), 250M (B), 800M
(L), and 3B (XL) parameter variants of this model.

2.3 Training Data

While many publicly released datasets include an
enormous number of labeled examples (Rajpurkar
et al., 2018; Yang et al., 2018; Kwiatkowski et al.,
2019), and recent work on few-shot learning fo-
cus on an extreme scenario in which less than one
hundred examples are at hand (Brown et al., 2020;
Schick and Schütze, 2021a; Gao et al., 2021b), we
choose to simulate a broader set of practical scenar-
ios where a small-to-medium dataset is available;
in SQuAD (Rajpurkar et al., 2016), for example,
the average annotation pace is around one minute
per question, producing 480 examples in a single
8-hour workday. Therefore, we consider 4 dataset
sizes for each task: 32, 128, 512, and 2048 exam-
ples. For each dataset size, we sample the rele-
vant amount of examples five times using different
seeds, thus creating 20 datasets for each task over-
all. We report the average score for each dataset
size, thereby reducing the high variance associated
with training on small datasets.

2.4 Implementation

Code For our implementation we extend
EleutherAI’s language model evaluation har-
ness (Gao et al., 2021a) to allow fine-tuning and
evaluating additional datasets and models.

Prompts We adopt the prompts used by Brown
et al. (2020) and Khashabi et al. (2020), with min-
imal adaptations to T5 by adding a mask token
followed by a period. Following Le Scao and Rush
(2021), we use prompts in conjunction with fine-
tuning.

Decoding We use greedy decoding for extractive
and open QA tasks. For classification and multiple
choice tasks, we compare the model’s probability
for each possible outcome, and predict the option
with the highest probability. In BoolQ, for example,
we compare P (“yes”|x) (the probability of the pos-

itive class) with P (“no”|x) (the probability of the
negative class), where x is the prompt containing
the context and the question.

Reproducibility and Hardware While our eval-
uation suite is extensive, and therefore compute-
heavy, the average runtime on the experiments is
less than one hour, and can be executed with merely
four 32GB V100 GPUs. 4 This allows one to verify
the results by sampling a small subset of scenarios,
and testing them in low-resource setup.

Hyperparameters To tune hyperparameters for
fine-tuning, we split the available data into 75%
training and 25% validation (e.g. 24 training exam-
ples and 8 validation when the dataset size is 32).
For each case, we experiment with two learning
rates (5e−5, 5e−4) combined with linear decay,
two weight decays (0.001, 0.1), and two values for
amount of steps (512, 2048). The effective batch
size is always 32 examples. Additionally, we use
a dropout ratio of 0.1, gradient clipping is set to 1,
and the amount of warmup steps is determined by
the maximum between 10% of the training steps
and 100. We evaluate each run after every epoch
and choose the model with the lowest validation
loss for extractive and open QA tasks, and highest
validation accuracy for classification and multiple
choice tasks.

3 Results

For each task in our experiment suite, we present a
heatmap of the model’s performance as a function
of model size and the number of labeled exam-
ples. These heatmaps expose that most tasks bene-
fit from both larger models and more training data,
to a point where enlarging the dataset will result in
similar gains as increasing the number of param-
eters. However, this trend does not apply to open
QA tasks, whose performance only improves with
additional model parameters (Section 3.1). Fur-
thermore, we show that converting multiple choice
datasets to the open QA format disables the ben-
efits of additional training data, whereas convert-
ing in the opposite direction – from open QA to
extractive or multiple-choice QA – enables mod-
els to improve with more examples (Section 3.2).
Next, we describe a method for quantifying the rel-
ative benefit from parameters versus training data,
which confirms the observed trends (Section 3.3).

4Most experiments require a single GPU, and only those
that train billion parameter models require four.
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Classification Extractive QA Multiple Choice Open QA
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Figure 2: Each heatmap displays the model’s performance (F1/accuracy) given its size in parameters (horizontal
axis) and the number of labeled examples available during fine-tuning (vertical axis).

We then show that collecting a few hundred exam-
ples allows the much smaller T5-L to outperform
GPT3, but not in open QA tasks, where the mas-
sive amount of parameters is the prime contributor
(Section 3.4). Finally, we suggest a hypothesis to
explain the observed trends (Section 3.5).

3.1 Main Trends

Figure 2 shows performance as a function of model
size and dataset size per task.5 Visualizing the
results via heatmaps highlights two patterns: (1) di-
agonal gradients, where performance significantly
improves along both axes (though not necessarily
equally), and (2) horizontal gradients, where per-
formance improves almost exclusively along the
horizontal (model size) axis. We observe that all
three open QA datasets exhibit horizontal gradients,
while the remaining datasets follow the diagonal
patterns. We do not observe vertical gradients at
all, indicating that enlarging the model’s size is
consistently beneficial.

Consider TriviaQA, for example (Figure 2, right

5The results are available in tabular form in Appendix A.

column, second row); performance approximately
doubles when switching models from T5-B to T5-
L (and from T5-L to T5-XL), but changes by less
than 2 points when increasing the dataset from 32
examples to 2048. On the other hand, in the classi-
fication task SST-2 (Figure 2, left column, second
row), annotating 128 examples rather than 32 exam-
ples results in double-digit improvements for T5-S
and T5-B, and in significant gains for larger mod-
els as well. Here, data-driven improvements coin-
cide with parameter-driven improvements, and in-
creasing either factor typically boosts performance.
Moreover, the diagonal gradients show that in many
cases a model trained on more data can “catch
up” with a larger model. This trend is particularly
striking when comparing T5-L with T5-XL, where
training the smaller model (T5-L) on 4 times more
data is almost always competitive with the larger
model (T5-XL).

3.2 Same Dataset, Different Format

While a clear dichotomy arises from Section 3.1
with respect to format, it might also result from the
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Figure 3: Converting multiple choice tasks (left column)
to open QA (right column) changes the scaling dynam-
ics, replacing diagonal gradients (performance improves
with more parameters and more data) to horizontal gra-
dients (performance improves almost exclusively with
more parameters).

fact that the different datasets were collected and
annotated using different methodologies. Can we
conduct a more controlled experiment, which uses
the same dataset but in different formats?

We first take the three multiple choice datasets
(ARC-E, PIQA, and CommonsenseQA) and con-
vert them into the open QA format by excluding
the candidate answers from the input.6 Figure 3
shows that the diagonal gradients clearly seen in
the multiple choice format are replaced with hori-
zontal gradients similar to those of other open QA
datasets.

We also examine data conversion in the oppo-
site direction, by using multiple choice and extrac-
tive QA versions of Natural Questions.7 Here we

6We control for the inference method by selecting the
most probable answer candidate, rather than applying greedy
decoding. Thus, the only difference between each pair of
datasets is whether or not the candidates appear in the input.

7The original Natural Question dataset (Kwiatkowski et al.,

control for the change in format by decoding the
multiple choice models as we do for extractive and
open QA tasks and report F1. Figure 4 shows that
while the open QA heatmap displays largely hori-
zontal gradients, both extractive QA and multiple
choice heatmaps follow the diagonal patterns. Un-
like the original open-domain Natural Questions
dataset, we do observe some minor improvement
along the data axis in this entity-focused version,
but analyzing the data reveals that this stems from
an increase in example overlap (Lewis et al., 2021),
with 11.7% of test-set answers appearing in the
2048-example training sets, compared to 8.5% in
the original. Overall, both experiments’ results indi-
cate that the task’s format directly impacts whether
more labeled data will improve performance or not.

3.3 Quantifying the Relative Impact of
Parameters versus Examples

For many tasks, both additional model parameters
and labeled examples can improve performance.
However, it is not always clear how much each fac-
tor contributes to greater performance gains with
respect to the other. To quantify the importance of
increasing parameters versus examples, we com-
pute a regression-based metric using the numeri-
cal results in a given heatmap. Specifically, we
train the following linear regression model for each
heatmap:

y = αmxm + αdxd + b

where y is the model’s performance on the task,
xm is the normalized number of model parameters
(S is 1, B is 2, L is 3, and XL is 4), and xd is the
normalized number of dataset examples (32 is 1,
128 is 2, 512 is 3, and 2048 is 4). The regression
coefficients αm, αd are scalars, learnt for each task,
which are then normalized to measure the relative
impact of each axis (parameters versus examples):

Im =
|αm|

|αm|+ |αd|

When 0 < Im < 0.5, additional examples are
greater contributors to performance gains, while

2019) is in the extractive QA format; specifically, we use
the version in the 2019 MRQA Shared Task (Fisch et al.,
2019). We filter the dataset to include only named entity
answers that were recognized using an off-the-shelf OntoNotes
Named Entity Recognition model from spaCy (Hovy et al.,
2006; Honnibal et al., 2020), and suggest them as candidate
answers alongside entities of the same type that appear in the
background passage.
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Extractive QA Multiple Choice Open QA
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Figure 4: Converting Natural Questions (Kwiatkowski et al., 2019) from its open QA format (right) to multiple
choice (middle) and extractive QA (left) changes the scaling dynamics, replacing horizontal gradients (performance
improves almost exclusively with more parameters) with diagonal gradients (performance improves with more
parameters and more data).
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Figure 5: The relative importance of parameters versus
examples (Im), as computed via regression over each
tasks’s heatmap. Higher values indicate more depen-
dence on parameters and less on labeled data.

0.5 < Im < 1.0 indicates that model parameters
have higher relative importance.

Figure 5 shows that most tasks lie between
0.4 < Im < 0.7, with model parameters responsi-
ble for most performance improvements, but with
significant improvements arising from labeled data
as well. However, all open QA tasks deviate from
this interval, and exhibit Im values of 0.9 and
above, indicating that increased model parameters
is almost exclusively responsible for better perfor-
mance.

3.4 Comparison with Massive Models

While models can benefit from both parameters
and labeled data in many tasks, scaling up language

models to hundreds of billions of parameters may
restrict the ability to fine-tune, as GPT3-scale mod-
els are typically available only as a service to most
practitioners and researchers (Brown et al., 2020).
Given this data-parameter trade-off, how many la-
beled examples are 175B parameters worth?

We compare our results of T5-L (800M parame-
ters) fine-tuned on various dataset sizes to those of
GPT3 (175B, over 200 times larger than T5-L) us-
ing in-context learning, as reported by Brown et al.
(2020).8 Table 1 shows a wide performance gap be-
tween GPT3 and T5-L on open QA datasets, which
cannot be bridged by additional labeled examples,
as observed in our main experiments. However,
for classification and extractive QA tasks, even a
few hundred labeled examples are often enough
for T5-L to catch up with GPT3’s performance
and even exceed it. In BoolQ, for example, just
collecting 96 additional examples is tantamount to
adding 200 times more parameters to the model.
This result demonstrates that while performance
may improve along the parameter axis in classifi-
cation and extractive QA tasks, a small amount of
labeled training data can also go a long way.

3.5 Discussion
Why does changing the task’s input format have
such a dramatic effect on the training dynamics?
We conjecture that the format changes described in
our experiments, which effectively remove informa-
tion from the input, force the models to supplement
that information with knowledge stored in its pa-
rameters. For example, when asking What is the
capital of Micronesia? in the open QA format, the

8Our work has 6 datasets that properly overlap with the
original GPT3 paper. ARC-E and PIQA are also used to
evaluate GPT3, but in the open QA format.
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Model #Examples Classification Extractive QA Open QA
RTE BoolQ SQuAD 2 DROP NQ TriviaQA

T5-L

32 68.2 65.0 39.4 23.8 5.1 12.0
128 72.9 77.0 55.3 26.5 5.8 11.5
512 79.1 82.5 70.5 31.2 5.6 12.1

2048 86.3 85.4 78.9 37.7 6.3 10.7

GPT3 ≤64 72.9 77.5 69.8 36.5 29.9 71.2

Table 1: A comparison between GPT3 (with in-context learning, as reported by Brown et al. (2020)) and T5-L.
Figures in bold represent T5-L configurations that outperform GPT3. For a fair comparison with Brown et al. (2020),
we report accuracy (exact match) for open QA tasks in this table.

model is required to know that the answer is Palikir
by encountering the fact during pretraining or fine-
tuning on a paraphrase of the same question. In
contrast, if the same question is asked in the multi-
ple choice format, and the options are (1) Rome, (2)
Tokyo, (3) Yaren, (4) Palikir, the model can easily
eliminate the more frequently-mentioned capitals
of Rome and Tokyo, and then guess between the
two remaining options, Yaren (the capital of neigh-
boring Nauru) and Palikir (the correct answer). A
similar example can be constructed for extractive
QA, where the vast majority of passage spans can
be pruned a priori, leaving only a handful of named
entities as more likely candidates. We hypothe-
size that answering strategies, such as elimination,
can indeed be learned from small-medium training
sets, while actual new facts cannot, unless there is
significant train-test overlap (Lewis et al., 2021).

A practical corollary of this hypothesis is that
if one can modify a target task from the open QA
format to one with a more limited output space, à
la multiple choice or extractive QA, they would
unlock the ability to trade data for parameters. In-
stead of relying on massive pretrained language
models, which can only be used as a service, one
could achieve competitive and even superior re-
sults with a much smaller model, given a relatively
small dataset of several hundred labeled exam-
ples. Retrieve-and-read approaches successfully
demonstrate this notion by decomposing open QA
into two separate classification and extractive QA
subproblems (Chen et al., 2017; Lee et al., 2019;
Karpukhin et al., 2020), and may possibly be ap-
plied to few-shot scenarios in additional tasks via
more general retrieve-and-generate models such as
RAG (Lewis et al., 2020).

4 Related Work

Few-shot learning has been a subject of interest for
several decades (Thrun and Pratt, 1998; Fink, 2005;

Li et al., 2006; Vinyals et al., 2016; Jiang et al.,
2018). Within NLP, “few-shot learning" has tradi-
tionally focused on quickly learning new classes
and domains within the context of a single task (see
Yin (2020) for a recent survey). Recently, there has
been a surge of interest in few-shot learning, follow-
ing the release of GPT3 (Brown et al., 2020). Here,
the few-shot learning paradigm has shifted subtly,
and refers to building models capable of tackling
a range of standard NLP tasks, albeit using very
restricted training sets, usually sub-sampled from
the full training set. A great deal of work has re-
cently been produced in this area, and we provide
a necessarily incomplete summary below.

In-Context Learning In-context learn-
ing (Brown et al., 2020) generally refers to
adapting to a task by providing training examples
as additional textual input, without performing
gradient-based updates. This technique imposes a
limit on size of the training dataset due to context
length limits. Recent work from Liu et al. (2021a)
and Lu et al. (2021) demonstrate that the choice
of in-context training examples, and the order in
which they are presented have large effects on
performance.

Prompt-Based Learning Prompting refers to
providing additional input to a model designed to
help it to produce correct outputs. Typically, these
take the form of textual templates used to form
cloze questions, and have been used in a variety of
settings, such as probing (Petroni et al., 2019) and
zero-shot learning (Radford et al., 2019). Prompts
can be used in conjunction with fine-tuning, which
has been shown to improve results in a number of
works (Schick and Schutze, 2020, 2021; Schick
and Schütze, 2021a; Gao et al., 2021b; Le Scao
and Rush, 2021; Tam et al., 2021). We adopt this
technique in our experiments and adapt the models
using prompt-based fine-tuning.
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Prompt Engineering Models may be sensitive
to the choice of prompt (especially without fine-
tuning), and a number of works attempt to optimize
the prompt for the task at hand (Jiang et al., 2020;
Shin et al., 2020). Recently, a number of works
have also proposed generalizing prompts to include
task-specific parameters and embeddings, typically
learnt via gradient descent while keeping parts
or all of the model’s parameters frozen (Houlsby
et al., 2019; Liu et al., 2021b; Zhong et al., 2021;
Qin and Eisner, 2021; Li and Liang, 2021; Lester
et al., 2021; Logan et al., 2021). While these tech-
niques can improve results for frozen models, they
generally do not outperform fine-tuning the whole
model (Lester et al., 2021), hence we choose to fo-
cus on full-model finetuning with standard prompts
in our experiments.

Few-Shot Learning Analysis Closest to our con-
tribution are works placing an emphasis on the anal-
ysis of few-shot model behaviour, rather than focus-
ing on schemes to improve performance. Le Scao
and Rush (2021) quantify the benefit of prompt-
ing in few-shot learning, and Perez et al. (2021)
critically discuss the difficulty of model selection
and very low dataset sizes in few-shot learning.
Our work is complementary, exploring the relation-
ship between scale, dataset size, and task open-
endedness.

Task Formats Another important aspect of our
work is the investigation of learning as a function of
task format. Related work in this area includes re-
search investigating reformulating a task into a dif-
ferent format, such as reducing tasks to NLI (White
et al., 2017; Wang et al., 2018) or reading compre-
hension (Levy et al., 2017; Wu et al., 2020), or
even reducing all tasks to a single format (Kumar
et al., 2016; McCann et al., 2018). A related line
of work seeks to understand tasks and datasets by
changing or removing parts of the input, and, in-so-
doing, changing the task format. Examples include
hypothesis-only NLI baselines (Gururangan et al.,
2018; Poliak et al., 2018), and document-only base-
lines in Reading Comprehension (Kaushik and Lip-
ton, 2018; Sugawara et al., 2020). We also change
the available input to a model for a given task, ef-
fectively changing the task format, while keeping
the targets unchanged. We do this to measure the
effect of the open-endedness of a task on sample
complexity for differently sized models.

5 Conclusions

In this work, we present an empirical investigation
on the relationships between (1) a task’s format, (2)
the number of labeled examples available for said
task, and (3) the number of parameters the model
tackling the task has. Through our extensive experi-
ments, we determine that task format greatly affects
the relative performance improvement that can be
expected from increased training set size and pa-
rameter count. For tasks that do not require the rec-
ollection of specific external information – i.e. clas-
sification, multiple choice, and extractive QA – we
find that more labeled data and larger models both
reliably improve performance. In fact, for some of
these tasks, adding a few hundred labeled examples
is more beneficial than scaling up the model size by
billions of parameters. It seems then, from a practi-
tioner’s perspective, that for many tasks where data
is very sparse, the tried-and-true strategy of simply
collecting more training data will often be a more
effective strategy than attempting to scale to larger,
more computationally-demanding models. How-
ever, the picture is very different for open QA tasks;
for such tasks, we find that increasing the size of the
training data barely improves performance, leaving
parameter inflation as the only reliable approach to
improve accuracy. Finally, we provide a hypoth-
esis to explain these results and conclude with a
practical corollary – when possible, changing the
format from open QA into a more “self-contained”
one will allow labeled data to bridge performance
gaps between moderately-sized models and much
larger ones.

6 Limitations

This work has two main limitations. First, we
mostly experiment with different variants of T5,
but do not repeat the full experiment suite on other
model families. While we did conduct prelimi-
nary experiments on GPT-2 and GPT-J, we found
that T5 models provide significantly stronger base-
lines when controlling for the number of param-
eters. Another limitation is that while the set of
tasks is diverse, it is not exhaustive; in particular,
we do not explore tasks that require generating
longer sequences of text, such as summarization.
Having said that, our experiment suite is extensive
and costly as-is, and it is not clear whether the fi-
nancial and environmental costs of expanding our
experiments to encapsulate further model families
and tasks can be justified.
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Model #Examples Classification Extractive QA Multiple Choice Open QA
RTE SST BoolQ SQuAD2 HPQA DROP ARC-E PIQA CSQA NQs TQA SQuAD1

T5-S

32 53.8 65.4 57.3 37.2 28.1 6.0 29.1 55.2 21.4 1.9 4.8 3.3
128 50.9 81.5 58.0 40.5 36.5 9.1 31.5 52.9 22.4 4.5 5.8 3.9
512 52.0 84.1 58.3 42.5 52.1 15.1 32.1 55.1 28.5 3.9 5.8 3.5

2048 59.6 88.0 64.9 51.1 61.8 18.9 40.7 57.3 36.0 4.4 5.7 5.0

T5-B

32 53.1 73.0 58.8 34.7 48.3 10.2 31.4 52.1 26.0 5.3 10.3 7.9
128 55.1 91.9 58.5 51.1 58.4 11.8 33.0 54.9 21.8 7.8 9.7 6.7
512 63.5 90.5 71.2 49.6 71.1 23.2 34.8 55.0 42.0 7.7 11.0 8.5

2048 67.5 92.9 70.4 59.8 72.7 24.5 47.7 59.6 54.5 7.5 9.6 9.0

T5-L

32 68.2 84.5 65.0 39.4 71.1 23.8 42.9 55.6 41.7 10.6 17.7 11.1
128 72.9 92.4 77.0 55.3 74.9 26.5 55.2 56.6 57.8 11.8 17.4 12.0
512 79.1 94.2 82.5 70.5 78.2 31.2 65.1 68.6 64.3 11.6 18.7 12.6

2048 86.3 95.1 85.4 78.9 79.7 37.7 72.6 72.6 72.7 12.0 17.1 13.0

T5-XL

32 63.7 82.3 76.5 56.4 67.4 30.1 61.4 56.2 52.4 15.4 26.2 15.4
128 83.4 91.5 83.0 73.2 76.9 32.5 72.2 59.2 64.8 16.4 27.3 15.0
512 84.1 95.2 85.9 77.7 80.2 36.8 76.9 75.5 74.0 16.1 27.5 15.8

2048 88.4 96.0 88.0 84.8 81.9 43.6 80.9 81.1 78.5 16.0 25.2 15.7

Table 2: The performance (F1/accuracy) of different T5 models fine-tuned on different training set sizes, across 12
different datasets.
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