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Abstract

Automated software debugging is a crucial task
for improving the productivity of software de-
velopers. Many neural-based techniques have
been proven effective for debugging-related
tasks such as bug localization and program re-
pair (or bug fixing). However, these techniques
often focus only on either one of them or ap-
proach them in a stage-wise manner, ignoring
the mutual benefits between them. In this work,
we propose a novel unified Detect-Localize-
Repair framework based on a pretrained pro-
gramming language model CodeT5 to seam-
lessly address these tasks, named CodeT5-DLR.
Specifically, we propose three objectives to
adapt the generic CodeT5 for debugging: a
bug detection objective to determine whether
a given code snippet is buggy or not, a bug lo-
calization objective to identify the buggy lines,
and a program repair objective to translate the
buggy code to its fixed version. We evaluate
it on each of these tasks and their combined
setting on two newly collected line-level debug-
ging datasets in Java and Python. Extensive
results show that our model significantly out-
performs existing baselines from both NLP and
software engineering domains.

1 Introduction

Program debugging is crucial, yet most cost-
dominating in software development. The goal
of program debugging is to localize erroneous lines
of a program (bug localization) and fixes this buggy
patch (program repair). The majority of debugging
tools falls into two categories: program analysis-
based and neural-based. To debug a program, pro-
gram analysis-based techniques employ compiler-
based and software engineering theory to build
code analysis tools. These methods have a sig-
nificant disadvantage in that they are not scalable
to large and complicated programs. On the other
hand, a recent trend is to use neural-based tech-
niques (Lutellier et al., 2020; Jiang et al., 2021;

Zhu et al., 2021; Mashhadi and Hemmati, 2021;
Ding et al., 2020; Wang et al., 2021) based on the
naturalness hypothesis of software code (Hindle
et al., 2016). They adopt a generic data-driven ap-
proach to train neural networks to automatically
acquire bug-fix patterns through learning from a
massive corpora of previous bug-fixes.

However, these techniques suffer from a few
major drawbacks. First, they often utilize code-
specific or language-specific features such as con-
trol flow, data flow, and abstract syntax trees
(ASTs), which requires a significant amount of
engineering effort for a careful design of code rep-
resentations and thus hinders their applicability to
more diverse domains or programming languages.
Second, recent studies have focused on detecting
bugs at coarse-grained code granularity such as
function level or file level, which has been shown
to be impractical in real-world use (Zou et al.,
2019). It is also not ideal to localize bugs at too
fine-grained level like the token level, which might
lead to a large number of false positives (Allama-
nis et al., 2021). Line-level or statement-level bug
localization, on the other hand, has been exten-
sively studied in the domain of program analysis,
such as spectrum-based bug localization (Abreu
et al., 2009; Le et al., 2013; Xie et al., 2013; Abreu
et al., 2007), in which the buggy statements are
localized based on the signals of failed test cases,
or mutation-based bug localization (Jia and Har-
man, 2010; Papadakis and Le Traon, 2015; Zhang
et al., 2018), in which the buggy statements are
localized by randomly mutating the statements and
measuring against a test suite. However, these tra-
ditional techniques necessitate the execution of test
cases in order to complete the bug localization pro-
cess, which has scalability issues. As a result, we
propose that line-level bug detection is more rea-
sonable if we can use large-scale bug fixes datasets;
and it corresponds to how human developers read
and debug programs. Finally, these techniques are
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only intended for either bug localization or pro-
gram repair, or treat them separately as two stages,
which fails to exploit their potential mutual benefits.
Intuitively, a preciser bug detector is able to inform
the repairer with more accurate buggy information
to aid the bug fixing, while a good repairer usually
has strong code understanding that is also required
in bug detection.

To address these issues, we propose a unified
framework for adapting a general pretrained pro-
gramming language model for line-level debugging
and repair. Our framework is based on a key obser-
vation about how programmers debug their code.
First, he or she must determine whether or not a
function is buggy. If it is buggy, the developer
must localize the problematic line and provide a
patch (repair). Inspired from this procedure, we
propose three fine-tuning objectives on top of a
pretrained language model for debugging. Using
pretrained language models for code has two ad-
vantages. First, by treating code as natural lan-
guage, it reduces the effort of the code representa-
tion engineering process. Second, it can leverage
the pretrained knowledge gained from large num-
ber of source code. We employ CodeT5 (Wang
et al., 2021) as the foundation model which has
achieved state-of-the-art results on a wide range
of code intelligence tasks. CodeT5 is pretrained
on large-scale code corpus collected from Github
using code-aware objectives, which endows the
model with strong code understanding capability.

The first objective is the function-level bug de-
tection task, which entails determining whether
or not a particular piece of code includes a bug
(D). Second, in order to give developers with more
valuable information at a finer-grained code granu-
larity, we propose a bug localization aim to identify
the exact lines of code that include bugs (L). The
third ojective is the program repair, which is used
to convert the buggy code to the correct code (if
applicable) (R). We expect that these tasks will
complement one another and culminate in a robust,
all-encompassing software debugging tool capable
of doing many debugging-related tasks. CodeT5-
DLR is the model created by applying all of the
fine-tuning objectives.

To evaluate on the whole debugging procedure
(D-L-R), we newly collected two large-scale bug-
fix datasets in Java and Python programming lan-
guages from Github commits, which is released to
facilitate future research as part of our contribution.

We consider two types of bugs: single-line and
multi-line. We evaluate our CodeT5-DLR on three
separate debugging-related tasks: function-level
bug detection, line-level bug localization, and pro-
gram repair. Our evaluation results show that our
model significantly outperforms existing baselines
on all of the tasks. We further conduct ablation
studies to demonstrate that jointly training with the
three objectives yields better performance than sep-
arately training on each single task. Finally, we
design a unified evaluation task to combine all of
these tasks that is to mimic how developers local-
ize and fix bugs in real-world scenario, where our
model is able to correctly localize 33.93% buggy
lines and repair 46.93% for a single line bug fix
Java dataset.

Our major contributions are three-fold:

• We propose a unified Detect-Localize-Repair
framework (CodeT5-DLR) based on CodeT5 to
seamlessly solve three program debugging tasks:
function-level bug detection, line-level bug local-
ization and program repair.

• We introduce two newly collected large-scale
line-level debugging datasets in Java and Python
programming languages with useful information
for future research, including the buggy line indi-
cator; and the before-fixed version and the after-
fixed version of code snippets.

• We conduct extensive evaluations on each of de-
bugging tasks and their combined task, where
our model outperforms existing baselines with a
significant margin.

2 Method

As shown in Figure 1, we present a unified frame-
work to jointly address three crucial tasks in
program debugging: bug detection (whether a
given code snippet contains bugs), bug localization
(which lines are buggy), and program repair (how
to repair bugs). We first define the input/output
formulation of these tasks in § 2.1 and then revisit
the foundation model CodeT5 in § 2.2, followed
by introducing each of tasks in § 2.3 in detail.

2.1 Problem Definition

LetD be a program debugging dataset consisting of
|D| triplets of (X,Y, F ). X is the source program
patch at function level and Y = {y1, ..., yL} is
its buggy labels for each line, where yi ∈ [0, 1]
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Figure 1: An overview of our CodeT5-DLR framework to jointly detect, localize, and repair bugs.

represents whether the i-th line is buggy or not
and L denotes the number of lines in X . F is the
target fixed program if source patchX contains any
buggy lines, otherwise it is an empty string. Let y
denote such function-level binary label and y = 1
if there exists yi = 1 and else y = 0. For the input
format of X , we insert a special token [SEP] for
each line to inform the end of line information.

2.2 Revisiting CodeT5
CodeT5 (Wang et al., 2021) is a unified pretrained
encoder-decoder language models for code. It
was pretrained on a large-scale source code cor-
pus collected from Github which consists of 8
different programming languages (including Java
and Python). Moreover, CodeT5 proposed an
identifier-aware pretraining objective to endow the
model with code-specific knowledge. Besides
that, it employs a code-specific Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016) tokenizer that
is able to avoid Out-of-Vocabulary (OoV) prob-
lems. CodeT5 has achieved state-of-the-art perfor-
mance on a wide range of code intelligence tasks
in CodeXGLUE (Lu et al., 2021) such as defect
detection and code refinement. In this work, we
adapt CodeT5 as our foundation model and pro-
pose a new unified framework to jointly solve bug
localization and repair.

2.3 Detect-Localize-Repair Framework
In this subsection, we introduce how to adapt
CodeT5 for bug detection, localization, and repair.

Function-Level Bug Detection The goal of this
task is to detect whether a function contains any
bugs. Given an input code patchX , we aim to learn
the binary probability of Pθ(y|X) with CodeT5 pa-
rameterized by θ. Specifically, we pass the source
patch X to the encoder of CodeT5 and adopt the
last encoder state as the sequence representation
of X , followed by a linear layer on top of it for a
binary classification. This task is optimized with a
standard cross entropy loss (denoted as Ldetect) in
training and a patch is considered as buggy if the

predicted probability is higher than a threshold of
0.5 in inference.

Line-Level Bug Localization A further step of
bug detection is to localize which exact lines are
buggy. This is an important intermediate task for
the final successful repair. This task is formulated
to compute Pφ(Y |X), which φ denotes the param-
eter of the encoder of CodeT5. Specifically, we
gather the last layer states of all [SEP] tokens from
the encoder and map them to a vector of proba-
bilities Ŷ = {ŷ1, ..., ŷL}. We approach the bug
localization as a sequence labeling task and apply
the binary cross entropy loss (denoted as Llocalize)
between Ŷ and Y during training. For inference,
we obtain the top-k predictions and measure how
they match the ground truth with retrieval metrics.
Notably, we consider two settings of bug local-
ization where the source patch can have only one
single buggy line or multiple buggy lines.

Program Repair This task aims to translate a
buggy source patch X into its fixed version F . For-
mally, we aim to learn the probability Pθ(F |X) =∏n
j=1 Pθ(Yj |X,F1 : Fj − 1), where F1 : Fj − 1 is

the previous sequence before the j-th token and n
denotes the number of tokens in the target sequence
F . We approach this task a sequence-to-sequence
problem and train with a standard sequence gener-
ation loss (denoted as Lrepair). During inference,
we adopt beam search to generate a ranked list of
fixed candidate patches.

Joint Training During training, we adopt multi-
task learning to simultaneously optimize these
three tasks by combining their losses in an end-
to-end manner:

Lall = Ldetect + Llocalize + Lrepair (1)

The intuition behind this design is that these tasks
are highly related and can complement to each
other. For instance, a preciser bug locator can better
inform the repairer with bug location to aid the bug
fixing. Therefore, we expect these tasks can benefit
from such a joint training paradigm.
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3 Datasets

We collect two new datasets, one is the single line
bug-fixes pair and the other is the multi-line bug-
fixes pair. The single line bug-fixes (Karampatsis
and Sutton, 2020) have been considered recently
as one of the major issues that affects the quality
of source code. These bugs can be fixed easily
with simple code changes such as changing oper-
ators, renaming identifiers, swaping variables and
so on. However, these bugs occurred frequently,
and current static-based techniques are incapable
of detecting them accurately (less than 10% in ac-
curacy).

Existing datasets (Karampatsis and Sutton, 2020;
Richter and Wehrheim, 2022), however, are not
suitable for our purpose due to three reasons: (1)
they contain only the code changes at the file level
while our goal is to detect buggy lines at both func-
tion level and line level; (2) they does not contain
the before and after function-level information of
the code changes but only the patches at line-level;
and (3) these datasets are mostly for single-line
bug fixes, while our goal is to extend for a more
realistic setting of multi-line bugs. With such rea-
sons, we decide to collect datasets by ourselves for
a comprehensive evaluation.

We follow similar steps from (Karampatsis
and Sutton, 2020) to collect two datasets in Java
and Python. Concretely, we extract bug-fixes
code changes from Github commits, we use Py-
driller (Spadini et al., 2018), a tool that mines soft-
ware repositories from Git. To decide if a commit
fixes a bug, we follow Karampatsis and Sutton
(2020) to check if its commit message contains at
least one of the keywords: error, bug, fix, issue, mis-
take, incorrect, fault, defect, flaw, and type. This
heuristic has been shown to achieve 96% accuracy
on a set of 300 manually verified commits (Ray
et al., 2016) and 97.6% on a set of 384 manually
verified commits (Tufano et al., 2018).

The code changes are made up of three parts of
a source file: before changes, after changes, and
the difference between the two (patch). However,
because we want to localise bugs at the function
and line level rather than the file level, we need
to perform additional preprocessing to extract the
code changes at the function level. We use Lizard 1

to extract the functions and compare the different

1https://github.com/terryyin/lizard, a code analy-
sis tool for extracting functions from source code files that
supports multiple programming languages.

between the functions from the before and after
version of a source file (obtained from Pydriller).

We end up with two datasets of different types
and languages, one is for single-line bug-fixes in
Java (SL-Java) and the other is the multi-lines bug-
fixes in Python (ML-Python). For SL-Java, be-
side the code changes for bug fixes, we also fol-
low Karampatsis and Sutton (2020) to use tree-
sitter 2 to identify 13 bug patterns for the single
buggy lines. We do not aim to detect the exact
patterns because they can be easily detected using
matching rules on ASTs if we can localize if a
line is buggy. However, the patterns is useful in
analysing how well our techniques work on each
pattern, allowing us to gain a deeper understanding
of the debugging process.

Table 1 shows the details of 13 bug patterns
in our SL-Java dataset. We also provide a bug-
fix sample for each of the pattern. Overall,
the CHANGE_IDENTIFIER appears the most and
SWAP_BOOLEAN_LITERAL appears the least.

Table 2 shows the statistics of our datasets,
which have been splited into training, validation,
testing sets. For function-level bug detection task,
we use the whole code snippet. The buggy or non-
buggy label is decided by simply treating the be-
fore version as the buggy (label 0) and the after
version as non-buggy (label 1). For line-level bug
localization task, we use the buggy line’s number
information to train the model to localize which
line is buggy. For program repair, the before ver-
sion is used as the source input and the after version
is used as the target sequence.

Figure 2 shows a sample in our SL-Java dataset.
A sample comprises primarily of the buggy code
snippet (Before) and the fixed code snippet (After)
(After). It also includes the line number of the
defective line. Multiple buggy lines are present
in the ML-Python samples as opposed to a single
buggy line. Each instance also include other meta
data, such as commit message, commit id (SHA1)
and project name so that it is easy to trace back the
original bug information.

4 Experiments

We employ the CodeT5-base (220M) 3 as the
foundation model for our unified CodeT5-DLR
framework. For the purpose of ablation study,
we also consider three variants of our model:

2https://github.com/tree-sitter/tree-sitter
3https://github.com/salesforce/CodeT5
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Table 1: Detail of 13 Bug Patterns in SL-Java dataset.

Index Bug Pattern Num Instances
Example

Before Affter
P0 CHANGE OPERATOR 3784 logLevel>=Log.ASSERT logLevel<=Log.ASSERT
P1 CHANGE_OPERAND 1089 x<=1 z<=1
P2 CHANGE_IDENTIFIER 15006 this.userDn this.userName
P3 CHANGE_NUMERAL 8969 player.stepHeight=0.5F player.stepHeight=0.6F
P4 CHANGE_CALLER_IN_FUNCTION 3180 mBlockStream.remaining() inStream.remaining()
P5 CHANGE_UNARY_OPERATOR 2212 !segment.isOk() segment.isOk()
P6 OVERLOAD_METHOD_MORE_ARGS 9732 Messaging.sendTr(sender,key) Messaging.sendTr(sender,key,npc.getName())
P7 OVERLOAD_METHOD_DELETED_ARGS 2577 registerCommandsNow(commands) registerCommandsNow()
P8 DIFFERENT_METHOD_SAME_ARGS 18914 server.getStartedLabel() server.getStartedName()
P9 MORE_SPECIFIC_IF 3981 getIndex()>=arrayLength arrayLength>0 && getIndex()>=arrayLength
P10 LESS_SPECIFIC_IF 3919 pluginId==null pluginId==null || pluginID.length()==0
P11 SWAP_ARGUMENTS 1244 new Duration(DateTime.now(),time) new Duration(time, DateTime.now()
P12 SWAP_BOOLEAN_LITERAL 897 doTest(false) doTest(true)

Figure 2: A sample of an instance in our SL-Java dataset

Table 2: Statistics of our datasets

Split
SL-Java ML-Python

#Projects #Instances #Projects #Instances
Train 2,348 52,789 4,428 132,243
Val 335 7,465 480 22,395
Test 700 15,250 867 35,457

CodeT5-D trained with Ldetect, CodeT5-L trained
with Llocalize, and CodeT5-R trained with Lrepair.
We set the maximum source and target sequence
lengths to 512. All experiments are performed on
NVIDIA A100 GPUs with 40 GB memory.

4.1 Function-Level Bug Detection

Metrics For this task, we use two metrics: the F1
score and the False Positive Rate (FPR). F1 is the
standard metric for this type of task because it is a
binary classification problem (buggy or not). The
FPR, on the other hand, is critical for determining a
bug localization system’s usability in a real-world
scenario. A good bug detection system should pro-
duce as few false positives as possible (Allamanis
et al., 2021; Vasic et al., 2019). FPR is calculated
as the ratio between the number of non-buggy func-
tions wrongly categorized as buggy (false positives)
and the total number of actual non-buggy functions.

Baselines The function-level bug detection can
seen as the code classification task, i.e, assign a la-
bel to a given code snippet. We choose Tree-based
CNN (Mou et al., 2016), a well-known method
for code classification as a baseline. We also in-
cluding some others SOTA pretrained language
models of code, which are CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2020), and
PLBART (Ahmad et al., 2021). We used their pub-
lic checkpoints and fine-tune them for this task.
We also include SpotBugs 4, a widely used static
analysis-based baseline (Karampatsis and Sutton,
2020; Habib and Pradel, 2018) for bug detection
task. For CodeT5, we use 3 baselines: CodeT5-
L, CodeT5-D and CodeT5-DLR. CodeT5-R is not
trained for bug detection but its output can also be
used to detect bug 5.

Results Table 3 shows the results of function-
level bug detection task. Our model fine-tuned
with all 3 objectives together achieve the best per-
formance in terms of both F1 score and FPR, while
our CodeT5-D with the only function-level bug de-
tection objective still yields better results than the
baselines. The SpotBugs baseline achieves only

4https://github.com/spotbugs/spotbugs
5When perform training, we feed the model with both

negative and positive samples so the PR module is able to
decide to generate fixed code or not
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Table 3: Performance of function-level bug detection. ↑:
the higher the better, ↓: the lower the better.

Model SL-Java ML-Python
F1 ↑ FPR ↓ F1 ↑ FPR ↓

SpotBugs 4.6 89.29 - -
TBCNN 45.49 38.03 51.24 48.20
CodeBERT 55.67 40.02 50.24 50.32
GraphCodeBERT 56.44 38.99 49.30 53.20
PLBART 59.01 35.21 52.33 51.24
CodeT5-R 50.94 40.29 52.93 46.45
CodeT5-D 59.28 34.32 52.93 46.45
CodeT5-DLR 63.46 31.24 54.83 43.21

4.6 in F1 score, which is consistent with the per-
formance reported in Habib and Pradel (2018) for
static analysis-based bug detector.

4.2 Line-Level Bug Localization

Metrics We use 3 metrics for this task, which
are Mean Reciprocal Rank (MRR), Mean Average
Precision (MAP), and False Positive Rate (FPR).
In reality, we do not know how many lines of
code is buggy, so we retrieve top-k lines with high-
est scores and measure if the ground-truth buggy
lines(s) belong to these top-k lines. As such, we can
formulate this problem as an information retrieval
problem, with the goal of returning a ranked list
of relevant lines to a query (the query is to retrieve
all of the buggy lines among the lines). For this
reason, we use the well-known metrics of MRR
and MAP to evaluate for this buggy line retrieval
task. In our evaluation settings, each of these met-
rics will be appropriate for a different datasets. For
the SL-Java, because there is only one buggy line
in the ground truth, the MRR is appropriate for
evaluating the performance of this dataset. On the
other hand, each of sample in ML-Python contains
numerous buggy lines in the ground truth, the MAP
is better suited for ML-Python. With this, MRR
and MAP are computed with respect to k, resulting
in MRR@k and MAP@k, where k is number of
lines retrieved for evaluation. We choose k = 1
and k = 5 for our evaluation.

In addition to MRR and MAP, we use False Pos-
itive Rate (FPR) to evaluate. Given a code snippet
and retrieved buggy lines, the FPR in this case is
calculated as the ratio between the number of non-
buggy lines wrongly categorized as buggy (false
positives) and the total number of actual non-buggy
lines. We also compute FPR with respected to top-k
lines retrieved, similar to MRR and MAP.

Baselines For this task, we also chose baselines
that are similar to the Function-level bug local-
ization task, which are CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2020), and
PLBART (Ahmad et al., 2021). In addition, we in-
clude 2 additional baselines that have been used to
detect vulnerability in software engineering, which
are DeepLineDP (Pornprasit and Tantithamtha-
vorn, 2022) and LineVul (Fu and Tantithamtha-
vorn, 2022). They work by simply performing
prediction at the function level, then using atten-
tion scores from the backbone neural architecture
to retrieve the line scores to predict vulnerability
at line level. DeepLineDP is based on the Hier-
rarchical Attention Network (Yang et al., 2016),
which divides the source code into three layers:
function, line, and token, with each level processed
by a BiGRU neural network. LineVul is based on a
vanilla Transformer (Vaswani et al., 2017), and its
scores are calculated by averaging the token scores
from the multi head attention layer. DeepLineDP
and LineVul has not been used for bug localization
before, but we try our best to adapt their software
artifacts 6 7 into our use case.

Results The results of line-level bug localization
task are shown in Table 4. When fine-tuning on all
objectives, our model outperforms all baselines in
terms of all metrics. The FPR is low when we only
aim to detect one line of buggy code. When we
increase k to 5, the FPR increases. However, the
MRR and MAP are also better for either single-line
bug detection (SL-Java) or multi-line bug detec-
tion (ML-Python) with k = 5. It means that as we
broaden the scope of buggy line retrieval, the num-
ber of correctly detected bugs increases, but the
model produces more false alarms. When perform-
ing bug localization at the line level, this is a trade
off that must be made.

4.3 Program Repair

Metrics We use 2 metrics for program repair: Ex-
act Match (EM) and BLEU. For EM, if the gener-
ated program exactly matches the ground truth cor-
rect program, then EM=1, otherwise EM=0. BLEU
score is a standard metric that is usually used to
measure translation-based tasks.

Baselines We also use CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2020), and

6https://github.com/awsm-research/DeepLineDP
7https://github.com/awsm-research/LineVul
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Table 4: Performance of line-level bug localization. ↑: the higher the better and ↓: the lower the better.

Model SL-Java ML-Python
MRR@1 ↑ MRR@5 ↑ FPR@1 ↓ FPR@5 ↓ MAP@1 ↑ MAP@5 ↑ FPR@1 ↓ FPR@5 ↓

DeepLineDP 14.05 15.33 25.30 41.20 9.35 11.98 25.60 73.21
LineVul 15.34 16.79 23.59 39.45 10.46 14.24 27.46 67.22
CodeBERT 21.66 29.69 17.20 21.57 18.67 26.30 19.92 58.90
GraphCodeBERT 20.35 28.45 18.67 20.45 22.59 28.92 19.20 53.24
PLBART 23.02 30.98 12.93 14.67 23.22 30.56 13.98 46.22
CodeT5-L 24.40 32.01 7.33 10.39 24.59 32.40 13.67 42.44
CodeT5-DLR 26.78 34.67 3.04 8.05 26.98 33.75 9.84 38.46
CodeT5-DLR-new 27.67 38.38 3.01 7.23 - - - -

x

Table 5: Performance of Program Repair task.

Model SL-Java ML-Python
EM BLEU EM BLEU

CodeBERT 3.66 34.21 3.40 29.40
GraphCodeBERT 3.35 35.29 3.31 30.59
PLBART 6.02 40.12 5.39 33.92
CodeT5-R 7.30 40.20 6.01 35.54
CodeT5-DLR 10.30 43.42 6.30 38.44

PLBART (Ahmad et al., 2021) for the program
repair task. We fine-tune these pretrained models
with theLrepair objective to generate the fixed code
from buggy code.

Results Table 5 shows the results of program
repair task. Our model when fine-tuning on all 3
objectives achieves the best performance among the
baselines with significant margins, both in terms of
EM and BLEU. In overall, EM for ML-Python is
lower than EM for SL-Java, it is because that it is
more challenging to generate fixed code given that
there are multi buggy lines in the buggy code.

4.4 Qualitative Analysis

4.4.1 End-to-End Bug Detection and Repair
We have shown that our model performs the best
among all of the baselines for 3 tasks: function-
level bug detection, line-level bug localization and
program repair. However, since these 3 tasks are
evaluate individually, they still do not reflect the
full capability of our model in a unified manner,
i.e., both detect bugs and suggest fixes. It also
reflects how the developer debugs program in their
daily work. We perform additional experiments
to illustrate these steps in order. First, we use the
function-level bug detection module to predict a
set of buggy functions from the test set, regardless
of whether they are buggy or not. Then, using
the detected samples, we use the line-level bug
localization module to identify buggy lines within

these detected samples (not all samples in the test
set). We then use the program repair module to
suggest fixes for these samples as well. Figure 3
shows a bug example that our model can detect,
localize and repair. Note that this is a real example
from an open source project 8 with 17K stars on
Github. This is a real bug-fix commit with the
commit message "Minor fix in polyglot native
API". First, our function-level bug detection model
can detect that this is a buggy line. Second, the
line-level bug localization model ranks the line con-
textBuilder.allowNativeAccess(allow_create_thread);
as the top-1 line that is buggy. Finally,
the program repair module translates the
whole buggy function to the fixed function,
and the buggy part "allowCreateThread"
is translated to the correct version "
allowNativeAccess". This fix could be re-
ferred to the CHANGE_CALLER_IN_FUNCTION
pattern, in which the invoked function of an object
is changed.

Figure 4 shows another example. This is yet
another bug found in a real-world project 9. Our
DLR process can also identify the correct buggy
line but fails to recommend correct fixes. How-
ever, this is due to the fact that the fix is for the
pattern CHANGE_NUMERAL, which is very chal-
lenging to know the exact numeral to replace (3476
to 3344). An enhancement to our technique is the
ability to suggest fixes for the missing whole of a
broken line, similar to Guo et al. (2021) for code
completion. We leave this as a part of future inves-
tigation.

4.4.2 Analysis of Detected Bug Patterns
The SL-Java dataset contains bug pattern informa-
tion, analyzing and understanding how different

8https://github.com/oracle/graal/commit/
9059770c00748fac01a75bac6f30d074783d2e69

9https://github.com/apache/druid/commit/
7ebe053ac1abce6e3b218beaee801ebbc6da2ecb
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Figure 3: A CHANGE_CALLER_IN_FUNCTION bug
that our Code-DLR can successfully detect and repair.

Figure 4: A CHANGE_NUMERAL bug that our Code-
DLR can successfully detect but suggest wrong fixes.

bug patterns can be detected and fixed is critical for
future debugging system improvement. We break
down the performance by bug-pattern and com-
puter the percentage of successfully detected bugs
for each of the patterns in terms of F1 score based
on the results of function-level bug detection in Ta-
ble 3 We use 3 baselines for this analysis, which are:
CodeBert, CodeT5-L. and CodeT5-DLR. Figure 5
illustrate such results. CodeT5-L performs better
than CodeT5-DLR on an average of 4.1%, and is
better than CodeBert on an average of 10.2% in
terms of F1. For some patterns, such as P1(change
operand), P2 (change identifier) and P5 (change
caller in fuction), CodeT5-DLR perform much bet-
ter than CoderBert (>14% on average) 10.

4.5 Analysis of End-to-End Bug Detection and
Repair

In addition to the samples shown in Section 4.4.1,
we also want to see how the other models com-
pare to ours in this end-to-end process. However,
because we discovered no baseline in the litera-

10Due to page number constraints, we were unable to dis-
play the pattern name on the bar chart; instead, we abstracted
the pattern into some index, such as P0, P1, and so on. Read-
ers are encouraged to view the explanations for each of the
patterns in our supplementary materials.

ture that performs this unify task in one model, we
were unable to compare with the other baselines.
As such, we compare this to the models that are
trained individually for each task and perform the
same debugging steps as described. Table 6 shows
that CodeT5-DLR continues to outperform its vari-
ants. Note that the performance of CodeT5-DLR
this Table for line-level bug localization (BL) and
program repair (PR) are different than the same
model for the same tasks in Table 4 and Table 5.

Table 6: Performance of Unify Debugging Procedure.
CodeT5-L performs worse than CodeT5-DLR for the
line-level bug localization (BL) task in term of MRR@5.
CodeT5-R also performs worse than CodeT5-DLR for
the program repair (PR) task in term of BLEU.

Model SL-Java ML-Python
BL PR BL PR

CodeT5-L 28.58 - 24.59 -
CodeT5-R - 43.20 - 38.50
CodeT5-DLR 33.93 46.93 28.49 41.21

5 Discussion

In this section, we discuss the design choice of the
model architecture, as well as some advantages and
disadvantages in comparison to other techniques.
A recently developed line of work also employs
a joint objective function for bug localization and
repair (Allamanis et al., 2021; Vinyals et al., 2015).
However, the task they are attempting is not the
same as ours. They aim to detect bugs at token
level, where the token is considered as a missing
slot in the code representation and the goal is to fill
in such missing slot. A pointer network (Vinyals
et al., 2015) is leveraged to predict whether a loca-
tion is buggy or not. In fact, we can also design a
pointer network to detect whether a line is buggy
or not in the line-level bug localization objective
(instead of the current ranking method). However,
because we want to detect both buggy and non-
buggy code, this design is ineffective in our case.
Their method is based on the assumption that the
buggy code is given, the goal is to locate the bug.
We may end up feeding the pointer net a lot of
non-buggy lines, which usually have a much larger
number than buggy lines. Because of the imbalance
between buggy and non-buggy lines, the pointer net
design does not work well in our case (confirmed
with experiments).

In addition, their models are impractical in real-
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Figure 5: Analysis of bug detection in F1 score, broken down by 14 bug patterns.

world use case due to high FPR( 98% in Allamanis
et al. (2021)). Also, the evaluation process of these
techniques is mostly based on synthetic datasets,
i.e., the bugs are generated using some heuristics,
making the evaluation results unrealistic (He et al.,
2022). By contrast, our work does not rely on syn-
thetic bug data, but rather on real-world datasets
from Github projects, making the results more use-
ful in practice. In addition, the granularity of bugs
we are targeting is different so that our technique
cannot be directly compared to theirs.

6 Related Work

Pretrained Language Models for Code Re-
cently, language models in natural language
processing has been applied to model source
code (Feng et al., 2020; Wang et al., 2021; Guo
et al., 2020; Ahmad et al., 2021; Bui et al., 2021;
Elnaggar et al., 2021; Peng et al., 2021; Kanade
et al., 2020). CodeBERT (Feng et al., 2020) pre-
train a model of code on multiple programming
languages by adapting a Roberta model (Liu et al.,
2019). CuBERT (Kanade et al., 2020) pretrains
a BERT model for code using a large dataset of
curated Python files. In general, most of the tech-
niques treat code similar to texts and adapt the same
pretraining strategies as for natural language. Some
techniques, such as CodeT5 (Wang et al., 2021),
encode source code features such as identifier in-
formation, data flow, and function name, among
others, to pretrain code models, which may result
in better overall performance.

Neural-based Bug Localization and Program
Repair Bug localization and program repairs
have received a lot of attention in terms of combin-
ing language models with traditional static analysis-
based methods to improve performance. A re-
cent trend is to generate synthetic simple bugs by
rewriting rules into programs and then use self-
supervised learning to train jointly models for bug
localization and repair (Allamanis et al., 2021; Ya-
sunaga and Liang, 2021, 2020; Vasic et al., 2019).
However, these techniques are almost impractical

for real-world use case since they only target simple
bugs and the models are trained mostly on synthetic
data. There are also many recent neural-based tech-
niques that target only program repairs (Lutellier
et al., 2020; Zhu et al., 2021; Jiang et al., 2021;
Chen et al., 2019; Li et al., 2020; Tufano et al.,
2018). In contrast, our CodeT5-DLR aims to com-
bine the strengths of each of these techniques in
order to fine-tune a foundation model for jointly
localizing bugs and repairing programs at a reason-
able code granularity (function and line level).

7 Conclusion

We proposed a novel detect-localize-repair frame-
work for jointly detecting bugs, localizing bugs and
suggesting program repairs. Our model is built
on the CodeT5 foundation model and is fine-tuned
jointly to achieve three debugging-related objec-
tives: function-level bug detection, line-level bug
localization, and program repair. These three objec-
tives are based on how software developers locate
bugs and repair programs in their daily work. Our
evaluation results show that training these 3 objec-
tives together yields better results than fine-tuning
on each objective individually. Furthermore, we
also contribute to provide two new datasets that can
be used for evaluating both bug localization and
program repair tasks. Our datasets differ from ex-
isting datasets in that we provide the exact line that
is buggy, as well as the before and after versions of
a code snippet. We will make our datasets publicly
available to facilitate research on this topic.
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8 Limitations

There are still a few drawbacks of our technique
that need further investigations. Our intention in de-
signing these three objectives is that each of the two
will assist the third in making the specific task for
that objective better than when training individually.
However, this does not provide a consistent signal
across the three modules. For example, while the
function-level bug detection module indicates that
a function is not buggy, the program repair mod-
ule continues to generate fixes. This inconsistency
has been reflected in Table 3. A future research
direction would be to design the training pipeline
step by step, with the program repair module only
providing repairs based on the bug detection mod-
ule’s signal. Second, we only use within-function
information for the three tasks. A function in a pro-
gram, on the other hand, is usually linked to other
parts of the program or other functions within the
same file. This information is commonly referred
to as contexts, and it should be used as additional
information when localizing bugs. We leave these
investigations for the future work.
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