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Abstract

Conventional autoregressive left-to-right (L2R)
sequence generation faces two issues during
decoding: limited to unidirectional target se-
quence modeling, and constrained on strong
local dependencies. To address the afore-
mentioned problem, we propose P3LM, a
probabilistically permuted prophet language
model, which strengthens the modeling of bidi-
rectional information and long token depen-
dencies for sequence generation. Specifically,
P3LM learns to generate tokens in permuted or-
der upon an order-aware transformer decoder,
as well as to generate the corresponding future
N tokens with a multi-stream attention mech-
anism. Extensive experiments are conducted
on the GLGE benchmark, which includes four
datasets for summarization, two for question
generation, one for conversational question an-
swering, and one for dialog response genera-
tion, where P3LM achieves state-of-the-art re-
sults compared with strong publicly available
generative pre-training methods.1

1 Introduction

Natural language generation (NLG), aiming to auto-
matically generate a sequence of tokens, are widely
explored on tasks such as summarization, question
answering and generation, dialog response genera-
tion, and machine translation. Recently, generative
pre-training models (Radford et al.; Song et al.,
2019; Dong et al., 2019; Lewis et al., 2020; Raf-
fel et al., 2019; Zhang et al., 2019; Bi et al., 2020;
Xiao et al., 2020; Qi et al., 2020), which accumulate
knowledge based on large-scale unsupervised con-
ditional language modeling, have achieved remark-
able improvements on downstream NLG tasks com-
pared with conventional methods. A typical gener-
ative pre-training model (Song et al., 2019; Lewis
et al., 2020) follows the transformer (Vaswani et al.,

∗Corresponding author: baojunwei001@gmail.com
1The code is available at https://github.com/

JunweiBao/P3LM.
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Figure 1: An illustration of L2R, Prophet, and P3LM de-
coding. L2R decoding: yt is predicted based on y≤t−1.
Prophet decoding: yt is predicted based on y≤t−1, or
y≤t−2 with yt−1 being masked. P3LM decoding: Y
is autoregressively decoded in terms of order Z, where
yzt is predicted based on yz≤t−1

, or yz≤t−2
with yzt−1

being masked. y0=⟨s⟩ is the start of a sentence.

2017) framework which contains an encoder and a
decoder, where the decoder usually learns to gener-
ate a sequence in a left-to-right (L2R) order. The
L2R decoding strategy usually faces two issues
during the modeling of target sequences: (1) lim-
ited to unidirectional context information, and (2)
constrained on strong local dependencies.

In order to enable a language model to learn bidi-
rectional context information, auto-encoding ones,
such as BERT (Devlin et al., 2019) known as a
masked language model (MLM), are pre-trained
based on randomly masked token prediction. In ad-
dition, autoregressive ones, such as XLNet2 (Yang
et al., 2019) known as a permutation language
model (PLM), are designed to reconstruct a par-
tial sequence in permuted order. However, directly
applying these methods on language generation is
not feasible, since they are designed for natural
language understanding (NLU), which are usually
handled by just one encoder or decoder (Song et al.,

2We clarify the differences between our P3LM and XLNet
in Appendix A in detail.
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2019). To prevent overfitting on strong local de-
pendencies during decoding, ProphetNet (Qi et al.,
2020) is proposed to predict N future tokens. How-
ever, the future token prediction strategy predicts
at most N (typically N = 2) continuous tokens,
which has limited ability on long dependency mod-
eling. Besides, due to the L2R decoding, the unidi-
rectional target context modeling issue still exists.

To further enhance the ability of long depen-
dency modeling, as well as capturing bidirec-
tional information of target sequences, we pro-
pose P3LM, a probabilistically permuted prophet
language model. P3LM learns to generate tokens
in permuted order with an order-aware transformer
decoder, as well as predicting the corresponding N
future tokens with a multi-stream attention mech-
anism. Figure 1 illustrates the idea of the pro-
posed P3LM. For instance, given a target sequence
Y = [y1, y2, y3]=sequence→order→matters and a
permuted order Z = [2, 1, 3], P3LM learns to gen-
erate sequence Y in order Z, i.e., order→sequence
→ matters. Meanwhile, it also learns to predict fu-
ture tokens in terms of Z, e.g., predicting sequence
as the future token of order at time step t = 1. The
above design makes P3LM capable of capturing
bidirectional information of target sequence, and
strengths the modelling of long dependencies.

Extensive experiments are conducted on the
GLGE (Liu et al., 2021) benchmark, a general
language generation evaluation benchmark consist-
ing of four datasets for summarization, two for
question generation, one for conversational ques-
tion answering, and one for dialog response gen-
eration, where our proposed P3LM achieves 0.9
absolute and 2.5% relative improvements on the
overall score compared with the public available
state-of-the-art model, i.e., ProphetNet. To con-
clude, the contributions are as follows: (I) We pro-
pose P3LM, a permutation over prophet decoding
net, for generative pre-training, which utilizes bidi-
rectional context information and enhances long
token dependency modeling on target sequences;
(II) We conduct extensive experiments on down-
stream language generation tasks and show that
P3LM obtains new state-of-the-art results on GLGE
benchmark compared with published methods; (III)
Three P3LM models, which cost about 100,000 dol-
lars, are pre-trained based on large scale datasets
and will be released for further research on gener-
ative pre-training and language generation for the
NLP community.

Models Structure Tasks Features During Decoding
Order LongDep BiDir

BERT Enc NLU - - -
RoBERTa Enc NLU - - -
XLNet Enc NLU - - -
ELECTRA Enc NLU - - -
ALBERT Enc NLU - - -
GPT Dec NLU&NLG L2R Shallow No
UniLM Enc/Dec NLU&NLG L2R&R2L Shallow Shallow
T5 Enc-Dec NLU&NLG L2R Shallow No
BART Enc-Dec NLU&NLG L2R Shallow No
PEGASUS Enc-Dec NLG L2R Shallow No
PALM Enc-Dec NLG L2R Shallow No
MASS Enc-Dec NLG L2R Shallow No
ProphetNet Enc-Dec NLG L2R Medium No
P3LM Enc-Dec NLG Permuted Strong Strong

Table 1: Features about typical pre-trained models. Enc:
encoder. Dec: decoder. Order∈{L2R, R2L, Permuted}:
decoding order of target sequence. LongDep∈{Shallow,
Medium, Strong}: long token dependencies in target
sequence. BiDir∈{No, Shallow, Strong}: bidirectional
information of target sequences.

2 Related Work
Typical pre-trained language models are shown
in Table 1, which can be roughly classified into
two categories: for natural language understanding
(NLU) and for natural language generation (NLG).
Models (Devlin et al., 2019; Liu et al., 2019; Yang
et al., 2019; Lan et al., 2020; Clark et al., 2020)
that contain a single encoder, have been proved ef-
fective for dozens of downstream NLU tasks, e.g.,
XLNet (Yang et al., 2019) reconstruct a sentence
fragment in permuted order. Another line of re-
search is generative pre-training for NLG. Effec-
tive methods have been designed to enhance NLG
performance. These models usually pre-train the
decoder as a left-to-right (L2R) autoregressive lan-
guage model. GPT-3 (Brown et al., 2020) pre-train
a transformer decoder with extremely large corpus
and parameters, which is not finetuned on down-
stream tasks, while our model follows the pre-train
then finetune framework. UniLM (Dong et al.,
2019) pre-train a transformer encoder/decoder with
both MLM task and sequence-to-sequence task,
considering two unidirectional orders, i.e., L2R and
R2L, while our model leverages permuted orders.
Additional strong generative pre-trained models in-
cluding MASS(Song et al., 2019), BART(Lewis
et al., 2020), T5 (Raffel et al., 2019), and PE-
GASUS (Zhang et al., 2019) utilize a transformer
encoder-decoder framework to pre-train generative
models, all of which are limited to train a L2R
decoder, while our model learns to decode tokens
in permuted order. ProphetNet (Qi et al., 2020) is
the most similar approach to ours, which propose a
future n-gram prediction mechanism for generative
pre-training, while still limited to L2R decoding.
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3 Approach

3.1 Model Overview

In this paper, probabilistically permuted prophet
language modeling (P3LM) is proposed for se-
quence generation. The idea of P3LM is learning
to autoregressively generate a sequence in a prob-
abilistically permuted order, meanwhile, multiple
future tokens (in the perspective of that order) are
jointly predicted at each decoding time step. The
above design of P3LM makes it capable of captur-
ing bidirectional information of a target sequence,
as well as strengths the modelling of long depen-
dencies in natural language.

3.1.1 Prophet Language Modeling
To alleviate the problem of strong local depen-
dencies during sequence generation, we introduce
prophet decoding. The original prophet modeling
predicts N words after current word. It is first uti-
lized in Word2Vec (Mikolov et al., 2013), where
increasing range N improves the word vector qual-
ity. ProphetNet (Qi et al., 2020) introduces it into
sequence generation by predicting the future N to-
kens. Formally, given X = [x1, ..., xS ] as a source
sequence, and Y = [y1, ..., yT ] as a target sequence.
The learning of a prophet language model (PLM)
is to optimize the objective defined as follows:

Lplm(Y |X) =
1

N

N∑

n=1

log pnθ (Y |X)

where θ represents trainable parameters. pnθ (Y |X)
is the probability of generating Y by skipping
n ∈ {1, ..., N} tokens at each decoding time step t
defined as follows:

pnθ (Y |X) =

T∏

t=1

pθ(yt|y≤t−n, X)

In details, the prophet decoding can be viewed as
a kind of masking strategy on previous generated
sequence, namely, only y≤t−n are feasible for pre-
dicting yt. In practice, to train models within rea-
sonable computational complexity, N is typically
set as a small number, e.g., N is 4 for Word2Vec,
and 2 for ProphetNet. This limits its ability of
modeling long dependencies existing in natural lan-
guage, such as long distance coreferences, clause
dependencies, and discourse relations. Based on
prophet decoding, we introduce P3LM to address
the problem in next section.

3.1.2 P3LM: Probabilistically Permuted
Prophet Language Modeling

Although prophet decoding is capable of alleviat-
ing the problem of strong local dependencies, its
ability of long dependency modeling is still lim-
ited by small N as described above, and it is con-
strained on unidirectional information due to L2R
decoding. The L2R order is a strong inductive
bias, as it is natural for most human-beings to read
and write sequences from left to right. Neverthe-
less, L2R is not the only option for generating se-
quences (Gu et al., 2019). For instance, people
sometimes tend to think of central phrases first be-
fore building up a whole sentence. Previous work
has shown that order matters for sequence gen-
eration (Vinyals et al., 2016; Emelianenko et al.,
2019). Based on the above facts, a natural idea is
to involve sequence order information into decod-
ing. To this end, we propose P3LM to strengthen
prophet language model with probabilistically per-
muted sequence order, which is capable of directly
modeling long dependencies and bidirectional in-
formation of target sequences. Formally, as pre-
vious study (an, 2019), we condition the whole
process on an input sequence X to indicate that the
proposed model is applicable to both conditional
and unconditional sequence generation (X = ∅).
Specifically, the probability of generating Y with
prophet is defined as the expectation of its posterior
probability pnθ (Y |X,Z) over all possible orders as
follows:

pnθ (Y |X) = EZ∼p(Z)p
n
θ (Y |X,Z)

where order Z = [z1, ..., zT ] ∈ P ∗(T )3, which
is a permutation of positions in Y , subjects to a
prior distribution p(Z). The decoding is further
factorized according to order Z as

pnθ (Y |X,Z) =

T∏

t=1

pθ(yzt |yz≤t−n
, X)

where yzt represents the t-th generated token and zt
is its absolute position in Y . Training such a model
needs to enumerate all the T ! permutations, which
is impractical. Instead, we maximize the lower
bound L(Y |X) of the log likelihood Lp3lm(Y |X)

by sampling an order Z̃ according to the prior dis-

3P ∗(T ) is the set of all permutations of {i}i=T
i=1 .
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tribution p(Z) as follows:

Lp3lm(Y |X)=
1

N

N∑

n=1

log pnθ (Y |X)

=
1

N

N∑

n=1

logEZ∼p(Z)p
n
θ (Y |X,Z)

≥L(Y |X)︸ ︷︷ ︸
lower bound

=
1

N

N∑

n=1

[log pnθ (Y |X,Z̃)+log p(Z̃)]

=
1

N

N∑

n=1

T∑

t=1

log pθ(yz̃t |yz̃≤t−n
,X)+C

Theoretically, different distribution p(Z) will result
in different P3LMs. Exploring the best distribution
p∗(Z) could be an interesting problem for future
research. In this paper, we preliminarily explore an
α-P3LM which combines L2R and URP distribu-
tions which are defined as follows:

• L2R order ZL2R = [1, ..., T ] is the left-to-
right position sequence of words in Y . Most
previous methods train a model to generate
target sequences in L2R order. The corre-
sponding p(Z) of these methods, which is a
pulse distribution, is defined as follows:

pL2R(Z) =

{
1, Z = ZL2R

0, Z ̸= ZL2R

• URP order means an uniformly random per-
mutation of the word positions in Y . The
corresponding p(Z), which is an uniform dis-
tribution over the T ! permutations P ∗(T ), is
defined as follows:

pURP(Z) =
1

T !
, Z ∈ P ∗(T )

We believe that the diverse URP orders (not only
L2R) can help strengthen the modeling of bidirec-
tional information and long dependencies of tar-
get sequences. Finally, the order distribution of
α-P3LM is straightforwardly defined as

pα(Z) = αpL2R(Z) + (1− α)pURP(Z)

In this paper, we empirically set α = 0.5 according
to experiments. Besides, unlike previous works
that focus on automatically determining a best gen-
eration order during inference (Gu et al., 2019;
Emelianenko et al., 2019; an, 2019) which requires
nontrivial design, we focus on modeling orders dur-
ing training and keep the L2R inference to reduce
the complexity of the model.

Algorithm 1: P3LM Decoder dec(·)
Input: Target sequence Y , order Z, place

holders {qnzt}
t=T,n=N
t=1,n=1 , # of query

streams N , encoder hidden states he

Output: Prediction probabilities
{pθ(yzt |yz≤t−n

,X)}t=T,n=N
t=1,n=1

1 Create 0-initialized tensors O0 ∈ RT×T and
O1, ..., ON ∈ RT×2T as relative orders

2 Set O∗(∗, 1) = 1
3 for i← 1 to T , j ← 1 to T do
4 let zt1 = i and zt2 = j
5 O0(j+1, i+1)=1 if t1≤ t2, i, j ̸=T
6 for n← 1 to N do
7 On(j, i+1)=1 if t1≤ t2−n, i ̸=T
8 On(j, i+T )=1 if t1 = t2

9 embed [⟨s⟩, Y ] as h and qn as gn, where
qn={qnzt}t=T

t=1 and gn={gn
zt}t=T

t=1

10 for k ← 1 to K do
11 h← OSAϕ0(h,h,h, O0)
12 h← h encoder attention on he

13 for n← 1 to N do
14 gn←OSAϕn(gn,[h;gn], [h;gn],On)
15 gn ← gn encoder attention on he

16 return pnθ (yzt |yz≤t−n
,X)=softmax(gn

ztW )

3.2 Neural Architecture of P3LM

The backbone of the proposed P3LM is a trans-
former encoder-decoder (Vaswani et al., 2017) il-
lustrated in Figure 2. The encoder transfers X
into hidden states he = enc(X) where enc(·) is
a standard transformer encoder. According to the
objective L(Y |X) defined above, during training,
the P3LM decoder simultaneously calculates T×N
probabilities as follows:

{pθ(yzt |yz≤t−n
, X)}t=T,n=N

t=1,n=1 =dec(Y,Z,N,he)

Compared with the vanilla transformer decoder,
our decoder dec(·) has two characteristics: (1) it
takes an order Z as additional input to guide the
autoregressive generation, and (2) it can simulta-
neously skip [1, ..., N ] (Note that N=1 means the
next token prediction) previous tokens for predic-
tion at each time step. To achieve the above two
capabilities, we implement an order-aware multi-
stream P3LM decoder with its workflow shown in
Algorithm 1. The major effort of such a decoder
is to model the absolute order Z as relative orders
in multi-stream attention, aiming to control what
information to use or not for decoding.
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Figure 2: Neural architecture of P3LM (Left), and sampled relative orders (Right) as examples. A case is shown
that sequence y2 → y1 → y3 is decoded in order Z = [2, 1, 3] where y0 = ⟨s⟩ is fixed as the start of sentence.
Encoder is in red, main stream is in blue, query stream 1 is in green, and query stream 2 is in yellow. Colored items
in the masking tensors mean that the corresponding input is available for computing the corresponding output.

Multi-Stream. The original multi-stream atten-
tion has been successfully utilized in XLNet (Yang
et al., 2019). Different from XLNet which lever-
ages a 2-stream attention in encoder for NLU tasks,
we adopt an (N+1)-stream attention where N≥1
in decoder for NLG tasks like ProphetNet (Qi et al.,
2020). Unlike ProphetNet, attention in P3LM de-
coder is order sensitive. Specifically, as shown in
Figure 2 and lines 9-16 in Algorithm 1, at each time
step t, P3LM decoder leverages a main stream (in
blue) as the vanilla transformer decoder to repre-
sent yz<t as hidden states hz<t . In addition, it con-
structs N query streams (in green and yellow) to
represent N place holders qzt =[q1zt , ..., q

N
zt ] as hid-

den states gzt = [g1
zt , ...,g

N
zt ]. Each query stream

is used to predict yzt by skipping n ∈ [1, ..., N ]
tokens, respectively. The above multi-stream trans-
formation is implemented with K layers (line 10),
each of which contains two sub-layers, i.e., order-
aware self-attention OSA(ϕ) (line 11 and 14) intro-
duced in next section and encoder-attention (line 12
and 15). Finally, the distribution of predicting yzt
at the n-th stream is defined as pnθ (yzt |yz<t−n , x) =
softmax(gn

ztW ) (line 16) where W ∈ RD×V are
trainable parameters, D indicates the hidden size,
and V represents the vocabulary size.

Order-aware Self-Attention (OSA). To involve
the order information, an intuitive solution is to di-
rectly reorder Y into a new sequence Y ′ according
to Z, and then learns to decode Y ′ with an L2R de-
coder. However, it will mismatch word and position

embeddings, which leads to the loss of the words’
original positional information. Instead, we intro-
duce an order-aware self-attention OSAθ(·) which
leverages relative orders and keeps the positions
of the words inputted into the decoder unchanged.
Specifically, the absolute order Z is converted into
relative order O0 ∈ RT×T for main stream, and
a set of relative orders O1, ..., ON ∈ RT×2T for
query streams (lines 1-8). O(j, i) indicates the
item in the j-th row and i-th column of a matrix O.
In short, these relative orders act as attention masks,
controlling that words with their order in front are
available for those behind. Finally, OSAϕ(·) taking
in packed hidden states Q,K, V and some relative
order O is defined as follows:

OSAϕ(Q,K, V ,O)

=softmax(
(QWQ) · (KWK)⊤ ⊙O√

D
) · (VW V )

where WQ,WK ,W V ∈ϕ are trainable parameters.

4 Experiment

Extensive experiments are conducted. In Sec-
tion 4.1, pre-training details of P3LM are intro-
duced. In Section 4.2, we show that P3LM achieves
state-of-the-art (SOTA) results on GLGE bench-
mark compared with published methods. In Sec-
tion 4.3, we conduct experiments on text summa-
rization dataset CNN/DM, where ablation study
verifies the effectiveness of P3LM which involves
sequence order information compared with conven-
tional left-to-right (L2R) generation paradigm.

6667



4.1 P3LM Pre-training

4.1.1 Model Architecture
P3LM follows the transformer encoder-decoder
framework. Two model architectures, i.e.,
P3LMbase and P3LMlarge are used for pre-training.
The base architecture contains about 125M param-
eters including a 6-layer encoder and a 6-layer de-
coder with 768 embedding/hidden size and 3,072
feed-forward filter size. The architecture of the
large model contains about 391M parameters in-
cluding a 12-layer encoder and 12-layer decoder
with 1,024 embedding/hidden size and 4,096 feed-
forward filter size.

4.1.2 Corpus and Infrastructure
Following BERT and ProphetNet (Qi et al., 2020),
the English Wikipedia and BookCorpus are used
to pre-train P3LM. In this paper, to keep up with
previous work, we first collect and process the
above datasets, and finally obtain about 16GB data
for pre-training. We pre-train a P3LMbase(16G)

and a P3LMlarge(16G) model on the 16GB dataset
with 64 × 32GB NVIDIA V100 GPUs from
scratch without loading any other pre-trained mod-
els. Following ProphetNet on large scale pre-
training, we also collect a 160GB large scale
dataset which is the combination of five sources
including wikipedia, books, stories, news, and
web text. Based on the 160G data, we also pre-
train a large scale model P3LMlarge(160G) initial-
ized by P3LMlarge(16G) with 16 × 40GB NVIDIA
A100 GPUS. The batch size of all the three pre-
trained models are set as 1,024. The P3LMbase(16G),
P3LMlarge(16G), and P3LMlarge(160G) are trained
with 750k (95 epochs), 1,500k (192 epochs), and
2000k (22 epochs) iterations and cost about 1.7
days, 28.0 days, 48.6 days, respectively. We use
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 1e-4 for pre-training. Our imple-
mentation is based on FAIRSEQ4. To make a fair
comparison, we set the maximum future N -token
to be 2 as ProphetNet in experiments.

4.1.3 Pre-Training Task
P3LM is essentially a sequence-to-sequence model
which takes a sequence as input and outputs a tar-
get sequence. During pre-training, the input length
is set to 512 tokens. We randomly pick a starting
position u in every 64 tokens, and then mask a

4https://fairseq.readthedocs.io/en/
latest/

continuous span from u. The masked length is set
to 15% of the total number of input tokens, i.e., 9
continuous tokens in every 64 tokens. Following
ProphetNet and MASS (Song et al., 2019), among
the masked tokens, 80% of them are replaced by
[M], 10% replaced by random tokens, and 10% un-
changed. Considering the computational cost, we
follow MASS to only predict the masked fragment.
Different from ProphetNet and MASS, P3LM pre-
dicts the target sequence in both an L2R order and
a URP order. Specifically, a URP sequence genera-
tion task is to generate a target sequence word by
word in a given URP sequence order. Traditional
L2R sequence generation task trains a generative
model which only needs to learn a fixed one-word-
right relative positional information. In contrast,
URP sequence generation requires a model to learn
more complex arbitrarily relative positional infor-
mation between words in a target sequence.

4.2 Finetune on General Generation Tasks

In this section, we show the finetune results of
P3LM compared with strong baselines and state-
of-the-art pre-trained models on GLGE5 (Liu et al.,
2021), which is a general language generation eval-
uation benchmark containing 8 datasets on 4 tasks.

4.2.1 GLGE Benchmark
Table 3 shows the statistics of GLGE benchmark.
GLGE is a general language generation evalua-
tion benchmark consisting of four datasets for sum-
marization including CNN/DM (Hermann et al.,
2015; See et al., 2017), Gigaword (Rush et al.,
2015; Graff et al., 2003), XSum (Narayan et al.,
2018), and MSNews, two for question generation
including SQuAD 1.1 (Rajpurkar et al., 2016), and
MSQG, one for conversational question answering
including CoQA (Reddy et al., 2019), and one for
dialog response generation including PersonaChat
(Zhang et al., 2018). Statistics of GLGE are show
in Table 3. Evaluation metrics, including Rouge-1,
ROUGE-2, and ROUGE-L (Lin, 2004) for sum-
marization, ROUGE-L, BLEU-4 (Papineni et al.,
2002), and METEOR (Banerjee and Lavie, 2005)
for question generation, F1 for conversational ques-
tion answering, and BLEU-1, BLEU-2, Distinct-1,
and Distince-2 (Li et al., 2016) for dialog response
generation, are used. GLGE calculates an overall
score s = 1

8

∑8
d=1

1
|Sd|

∑
m∈Sd

m where Sd indi-
cates the evaluation metrics for the d-th dataset.

5https://microsoft.github.io/glge/
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Models Score Text Summarization Question Generation QA Dialog
CNN/DM Gigaword XSUM MSNews SQuAD1.1 MSQG CoQA PersonaChat

Metrics R-1/R-2/R-L R-L/B-4/MTR F1 B-1/B-2/D-1/D-2
Test

LSTM 20.0 37.3/15.7/34.4 34.2/16.0/31.8 25.1/6.9/19.9 30.0/14.6/27.7 27.2/3.8/8.9 25.3/3.5/14.1 15.1 42.2/35.9/0.2/0.7
Transformer 21.9 39.5/16.7/36.7 37.1/18.4/34.5 30.5/10.4/24.2 33.0/15.4/30.0 30.7/4.8/10.9 29.3/5.1/16.6 15.7 38.3/33.6/0.2/0.7
MASSbase 33.6 42.1/19.5/39.0 38.7/19.7/35.9 39.7/17.2/31.9 39.4/21.0/36.1 49.4/20.1/24.4 38.9/10.2/23.3 65.4 41.0/35.7/1.4/6.9
ProphetNetbase 33.8 42.5/19.7/39.5 38.9/19.9/36.0 39.8/17.1/32.0 40.6/21.6/37.0 48.0/19.5/23.9 37.1/9.3/22.7 65.3 46.0/38.4/1.3/7.3
MASSmiddle 34.3 42.9/19.8/39.8 38.9/20.2/36.2 39.1/16.5/31.4 40.4/21.5/36.8 49.9/21.3/25.2 38.9/9.5/23.5 67.6 46.0/38.2/1.2/6.2
BARTlarge 35.8 44.1/21.2/40.9 38.1/18.4/34.9 45.1/22.2/37.2 43.8/24.0/39.2 50.3/22.0/26.4 38.8/9.2/24.3 68.6 49.9/40.0/1.3/8.0
ProphetNetlarge 36.5 44.2/21.1/41.3 39.5/20.4/36.6 44.4/21.3/36.4 44.1/24.4/40.2 51.5/22.5/26.0 38.3/9.6/23.3 73.0 46.7/39.0/1.3/7.5
P3LMlarge(160G) 37.4 44.3/21.0/41.4 39.6/20.2/36.8 45.3/22.3/37.3 44.6/25.0/40.8 51.6/23.0/26.6 39.5/11.0/23.6 75.3 48.8/39.4/1.7/13.7

Valid
P3LMlarge(160G) 38.7 44.8/21.5/42.0 48.8/26.8/45.6 45.4/22.5/37.6 44.2/24.5/40.4 52.5/24.3/27.1 39.9/12.9/24.4 75.9 49.0/39.4/1.7/13.5

Table 2: Experiment results on the GLGE. Overall scores s = 1
8

∑8
d=1

1
|Sd|

∑
m∈Sd

m where Sd is the metrics for

the d-th dataset are highlighted in color . R-1: Rouge-1. R-2: Rouge-2. R-L: Rouge-L. B-4: BLUE-4. MTR:
METEOR. D-1: Distinct-1. D-2:Distinct-2. It is worth noting that D-1 and D-2 are multiplied by 100. Highest
scores are in bold. The gains of P3LMlarge(160G) over ProphetNetlarge(160G) are statistically significant at p = 0.05.

Corpus |Train| |Dev| |Test| |Src.| |Tgt.|
CNN/DM 287,113 13,368 11,490 822.3 57.9
Gigaword 3,803,957 189,651 1,951 33.7 8.7
XSUM 204,017 11,327 11,333 358.5 21.1
MSNews 136,082 7,496 7,562 310.7 9.7
SQuAD 1.1 75,722 10,570 11,877 149.4 11.5
MSQG 198,058 11,008 11,022 45.9 5.9
CoQA 108,647 3,935 4,048 354.4 2.6
PersonaChat 122,499 14,602 14,056 120.8 11.8

Table 3: Statistics of GLGE tasks. |Train|: the number
of examples in training set. |Src.|: the average number
of words in source inputs.

4.2.2 Baselines
We choose the following well performed pre-
trained generative models as our baselines.
LSTM (Bahdanau et al., 2015) is implemented
with the word embedding dimension, the hidden
size, the number of the encoder layer, and the num-
ber of the decoder layer as 512, 512, 1, and 1,
respectively. LSTM is trained for a maximum
of 100 epochs with learning rate of between 1e-
4 and 3e-4. Transformer (Vaswani et al., 2017)
contains a 6-layer encoder and a 6-layer decoder
with 1024 embedding and hidden size, and 4096
feed-forward filter size. Transformer is trained
for a maximum of 20 epochs with learning rate
of between 1e-4 and 3e-4. MASS (Song et al.,
2019) includes MASSbase and MASSmiddle con-
taining a 6-layer encoder and a 6-layer decoder
with 768/1024 embedding and hidden size and
3072/4096 feed-forward filter size. MASS are pre-
trained on the 16GB English Wikipedia and Book-
Corpus dataset and finetuned for a maximum of
25 epochs. BARTlarge (Lewis et al., 2020) con-
tains a 12-layer encoder and 12-layer decoder with
1024 embedding and hidden size, and 4096 feed-
forward filter size. BART is pre-trained based on

the 160GB data of news, books, stories, and web
text and finetuned for a maximum of 20,000 it-
erations. ProphetNet (Qi et al., 2020) includes
ProphetNetbase and ProphetNetlarge containing
the same architecture as the corresponding P3LM
models, where the base model is pre-trained on the
16GB English Wikipedia and BookCorpus, and the
large one on the 160GB corpora. ProphetNet is
finetuned for a maximum of 10 epochs.

4.2.3 Implementation Details
P3LMlarge(160G) is pre-trained on the same 160GB
data as ProphetNetlarge as described in Section 4.1,
and then finetuned on the eight datasets in GLGE,
respectively. The best performing model on each
development set is chosen to inference on the cor-
responding test set. Due to space limitation, imple-
mentation details about the eight models are show
in Table 6 in Appendix B.

4.2.4 Main Results
Table 2 shows the results of P3LMlarge(160G) and
above strong baselines. P3LMlarge(160G) outper-
forms all these published methods on GLGE ac-
cording to the overall score. Specifically, com-
pared with the score 36.5 of ProphetNetlarge
which is the state-of-the-art published method, the
score of our proposed P3LMlarge(160G) is 37.4,
which achieves 0.9 absolute and 2.5% relative
improvements. From the perspective of differ-
ent tasks, the average scores of our model are
34.9/29.2/75.3/25.9, which are 34.5/28.5/73.0/23.6
for ProphetNetlarge, on text summarization, ques-
tion generation, question answering, and persona
dialog response generation, respectively. Our
model achieves +0.6/+0.7/+2.3/+2.3 absolute im-
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Figure 3: Losses of each epoch during the pre-training
of P3LMlarge(160G). Same tend for perplexity.

provements. Based on the above results, the effec-
tiveness of P3LM is verified again. Besides, L2R
inference is explained in Appendix C and the effect
of pre-training iterations is shown in Appendix D.

4.2.5 Order Matters for Language Modeling
To explore the effect of orders, we split the loss
of α-P3LM into two parts, i.e., loss-URP and loss-
L2R. The first part corresponds to αpURP in pα,
and the second corresponds to (1 − α)pL2R in pα.
Figure 3 shows that the loss-URP fits faster than
loss-L2R. Since the perplexity ppl = 2loss, we con-
clude that URP order achieves lower perplexity
than L2R order, i.e., the difficulty of modeling
natural language sentence in an L2R order is larger
than the average level reflected by the URP order.
This observation indicates that sequence order mat-
ters for language modelling. In future, we will
consider to train P3LM in orders considering syn-
tactical information, e.g., a level-order traversal of
the syntactic tree of a natural language sequence.

4.3 Finetuning on Text Summarization.

Abstractive text summarization as a typical NLG
task, aims to generate a short and fluent summary
of a long text document. In this section, we finetune
and evaluate the proposed P3LM on a text summa-
rization dataset CNN/DM introduced before.

4.3.1 Experiment Settings
A base and a large models on CNN/DM with batch
size as 512 are finetuned, and max epochs are set as
25 and 15, respectively. Adam optimizer is used to
update the parameters of the model with a learning
rate of 1e-4 and warm-up updates of 1,000. Model
with the best rouge score on the validation set is
used for testing. Although a URP order is used for
training the P3LM, we use beam search with an
L2R order to generate summaries during inference.
Beam size is set as 5 for both the base and large
models. The length of the target sequence is limited
between 45 and 110 with a length penalty as 1.2.

Method R-1 R-2 R-L
w/o pre-training

LEAD-3 40.42 17.62 36.67
PGNet 36.44 15.66 33.42
PGNet+Coverage 39.53 17.28 36.38
Bottom-Up 41.22 18.68 38.34

w/ pre-training
S2S-ELMo 41.56 18.94 38.47
BERT-SUMABS 41.72 19.39 38.76
BERT-SUMEXTABS 42.13 19.60 39.18
MASS 42.12 19.50 39.01
UniLM 43.33 20.21 40.51
PALM 42.71 19.97 39.71
ProphetNetbase(16G) 42.52 19.78 39.59
ProphetNetlarge(16G) 43.68 20.64 40.72
P3LMbase(16G) 42.90 19.98 39.93
P3LMlarge(16G) 44.07 20.82 41.15

Table 4: Experiment results on CNN/DM. Pre-training
corpus of all methods is less than 18GB. Highest
scores are in bold, and seconds are underlined. The
gains of P3LMbase(16G) over ProphetNetbase(16G), and
P3LMlarge(16G) over ProphetNetlarge(16G) are statisti-
cally significant at p = 0.05.

4.3.2 Baselines

Popular baselines are compared for evaluation.
LEAD-3 (Nallapati et al., 2017) takes the first
three sentences as the summary; PGNet (See et al.,
2017) is Seq2Seq model incorporated with a copy
mechanism; PGNet+Coverage (See et al., 2017)
introduces a coverage mechanism to PGNet; Bot-
tomUp (Gehrmann et al., 2018) employs a bottom-
up content selector based on Seq2Seq model; S2S-
ELMo (Edunov et al., 2019) uses the pre-trained
ELMo (Radford et al.) representations for gener-
ation. Several pre-training based strong baselines
including BERTSUMABS (Liu and Lapata, 2019),
MASS, UniLM (Dong et al., 2019), PALM (Bi
et al., 2020), and ProphetNet are also compared.

4.3.3 Experiment Results

Table 4 shows experiment results of models with-
out pre-training or pre-trained on the less than
18GB wikipedia and bookcorpus dataset, where
ELMo is an exception that it is trained on a 5GB
dataset. Results show that P3LM outperforms
the baselines and achieves the best performance.
Specifically, our base and large models achieve
+0.38/+0.20/+0.34 and +0.39/+0.18/+0.43 improve-
ments compared with corresponding ProphetNet
models in terms of R-1, R-2, and R-L. We think
the improvements come from the P3LM decoding
that strengthens bi-direction information and long
dependencies modeling of target sequences.
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Init Settings R-1 R-2 R-L
w/o pre-training

base

N=1, pL2R 40.33 17.64 37.35
N=2, pL2R 40.65 17.94 37.67
N=2, pURP 36.59 15.57 34.42
N=2, pURP→pL2R 41.32 18.57 38.46
N=2, pα 41.38 18.60 38.47

large

N=1, pL2R 40.53 17.54 37.61
N=2, pL2R 41.04 18.12 38.08
N=2, pURP 36.19 15.43 33.84
N=2, pURP→pL2R 42.00 19.02 39.06
N=2, pα 41.45 18.66 38.42

w/ pre-training

base(16G)

N=1, pL2R 42.32 19.45 39.27
N=2, pL2R 42.56 19.57 39.56
N=2, pURP 38.35 17.00 36.19
N=2, pURP→pL2R 42.92 19.98 39.93
N=2,pα 42.90 19.98 39.93

large(16G)

N=1, pL2R 43.27 20.10 40.23
N=2, pL2R 43.43 20.18 40.46
N=2, pURP 38.94 17.61 36.76
N=2, pURP→pL2R 43.60 20.59 40.66
N=2, pα 44.07 20.82 41.15

Table 5: Ablation study of different finetuning settings
on CNN/DM, with pre-training or not.

4.3.4 Ablation Study

To further verify the effectiveness of the proposed
P3LM, we conduct ablation study on different fine-
tuning settings. We investigate different combina-
tions of finetuning settings and show the results
in Table 5. Specifically, pURP → pL2R means the
model is firstly trained several epochs on sam-
pled instances with orders subjecting to distribution
pURP and then several epochs to distribution pL2R.
We first observe that prophet mechanism (N =2)
brings improvements. More importantly, compared
with pL2R, P3LM introduces pURP, where we can see
that the pURP→pL2R and pα achieve the best perfor-
mance when loading the pre-trained P3LMbase(16G)

and P3LMlarge(16G) models. Furthermore, when
loading no pre-trained models, P3LM trained based
on pURP→pL2R and pα still improve traditional L2R
training a lot. P3LM with only pURP performs the
worst, which is reasonable since the model only uni-
formly selects one permutation of a target as train-
ing data, which is completely inconsistent with the
L2R inference. It further indicates that, although
the L2R order is only one special case of all T ! per-
mutations, it is still important and should be paid
more attention as our α-P3LM do.

5 Conclusion

A probabilistically permuted prophet language
modeling, P3LM, is proposed for generative pre-

training. P3LM models sequences by considering
both left-to-right and random permutation orders,
equipped with a prophet mechanism for future to-
ken prediction. Extensive experiments are con-
ducted on GLGE, a general natural language gener-
ation evaluation benchmark, where P3LM achieves
state-of-the-art results compared with public avail-
able generative pre-training methods.

Limitations

Exploring Better Distribution p∗(Z)

Figure 3 shows that URP loss fits faster than L2R
loss. Since L2R is a special case of URP order,
we think that the difficulty of modeling natural
language sentence in an L2R order is larger than
the average level reflected by the URP order. It
indicates that sequence order really matters for lan-
guage modelling and exploring other distribution
p∗(Z) besides pα could be an interesting problem.
In future, we will consider to train P3LM in orders
considering syntax, e.g., a level-order traversal of
the syntactic tree of a natural language.

Training-Inference Consistency
P3LM decodes a sequence in an order sampled
from pα during training. Different from training,
P3LM performs L2R decoding during inference.
Nevertheless, P3LM achieves significant improve-
ments across multiple tasks and datasets. We think
this benefits from the involving of P3LM decod-
ing which introduces more constraints to help the
model to learn bidirectional context and long de-
pendency modeling. In future, we will explore to
decode a sequence in terms of an optimized order,
not limited in L2R order.

Training Efficiency.
The model construction and network structure is as
complex as ProphetNet. The key point of P3LM
is utilizing sampled orders according to a given
distribution as the attention mask in transformer
decoder. This makes the computation cost of P3LM
similar to ProphetNet when sampling one order
for a target sequence. In this paper, according to
experiments, we sample two orders from pα for
training, this makes training one instance in one
epoch twice the time of ProphetNet.
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A P3LM v.s. XLNet

The idea of permuted decoding is inspired by XL-
Net. However, P3LM is different from XLNet in
multiple aspects as follows. First, P3LM is de-
signed for addressing bi-directional context and
long dependency problems for natural language
generation (NLG), while XLNet is for natural
language understanding (NLU); Second, P3LM
is in a transformer encoder-decoder architecture,
while XLNet is only a transformer encoder; Third,
P3LMis trained on the full permutation of the target
sequence to enhance long dependency modeling,
while XLNet is trained on partial permutation of
the source sequence; Fourth, P3LM is implemented
with multi-streams (# >= 3) for predicting multi-
ple future tokens at one time step, while XLNET is
implemented with two streams (# = 2) for predict-
ing one token at a step; Fifth, P3LM implements
permuted decoding that requiring a shift-right oper-
ation while XLNet does not, which is due to trans-
former’s different designs for encoder and decoder.

B Model Parameters on GLGE

Table 6 shows the parameters of our model on
GLGE. Parameters are primarily searched from
LR∈{1e-4, 1e-5}, WarmUp ∈ {0.5k, 1k}, Batch-
Size ∈ {128, 256, 512}, BeamSize ∈ [4, 10], and
LenPenalty ∈ [0.6, 1.5], except WarmUp=10k for
Gigaword and LenPenalty=10.0 for PersonaChat.

Parameters Text Summarization QG QA Dialog
CD GG XS MN SQ MQ CQ PC

LR 1e-4 1e-4 1e-4 1e-5 1e-5 1e-5 1e-5 1e-4
WarmUp 1k 10k 0.5k 1k 1k 1k 1k 0.5k
BatchSize 512 128 256 128 128 128 128 128
MaxEpoch 15 6 15 15 10 10 10 15
MaxSrcLen 512 128 512 512 256 256 512 256
MaxTgtLen 128 32 128 64 64 32 32 32
BeamSize 5 5 8 8 6 4 7 10
LenPenalty 1.4 0.9 0.8 0.9 1.0 0.8 0.8 10.0
DecLen 45-110 3-32 10-64 3-64 5-32 3-32 1-32 3-32
BestEpoch 14 6 9 13 7 5 10 13

Table 6: Hyperparameters used in fine-tuning P3LM
on GLGE. LR: learning rate. WarmUp: warm up
steps. BatchSize: batch size. MaxEpoch: max
epochs in fine-tuning. MaxSrcLen: source max length.
MaxTgtLen:target max lengt. BeamSize: decoding
beam size. LenPenalty: decoding length penalty. De-
cLen: length range of generated sequence. BestEpoch:
best performing epoch. CD: CNN/DM. GG: Gigaword.
XS: XSUM. MN: MSNews. SQ: SQuAD-QG. MQ:
MSQG. CQ: CoQA. PC: PersonaChat.

C L2R Inference

P3LM decodes a sequence in both L2R and URP
order with prophet mechanism during training. Dif-

ferent from training, our model leverages L2R
decoding during inference. Nevertheless, P3LM
achieves significant improvements across multiple
tasks and datasets. We think this benefits from
the involving of P3LM decoding which introduces
more constraints to help the model to learn bidirec-
tional context and long dependency modeling.

D Effect of Pre-training Iterations

We verify that the performance of a pre-trained
model improves with the increasing of training it-
erations within current maximum iteration number.
Figure 4 shows the results of finetuned models on
CNN/DM with different pre-trained models. For
both the base and large models, rouge scores in-
crease when the models are pre-trained with more
iterations.
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Figure 4: P3LM finetuning results on CNN/DM of
different pre-trained models at different iterations.
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