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Abstract

Non-Fungible Tokens (NFTs) are a relatively
unexplored class of assets. Designing strategies
to forecast NFT trends is an intricate task due
to its extremely volatile nature. The market is
largely driven by public sentiment and "hype",
which in turn has a high correlation with conver-
sations taking place on social media platforms
like Twitter. Prior work done for modelling
stock market data does not take into account
the extent of impact certain highly influential
tweets and their authors can have on the market.
Building on these limitations and the nature of
the NFT market, we propose a novel reach-
aware temporal learning approach to make pre-
dictions for forecasting future trends in the NFT
market. We perform experiments on a new
dataset consisting of over 1.3 million tweets
and 180 thousand NFT transactions spanning
over 15 NFT collections curated by us. Our
model (TA-NFT) outperforms other state-of-
the-art methods by an average of 36%. Through
extensive quantitative and ablative analysis, we
demonstrate the ability of our approach as a
practical method for predicting NFT trends.

1 Introduction

Non Fungible Tokens (NFTs) are digital assets that
represent objects like art, collectibles, and in-game
items 1. Public attention towards NFTs exploded in
2021 when their market experienced record sales
(NonFungible, 2021), but little is known about
the overall structure and evolution of its market.
The NFT space is characterized by extreme growth
along with highly skewed and uncertain returns
that typify speculative markets (White et al., 2022).
Little to no work has been done to forecast future
trends in the NFT market, and unlike other, more
stable assets, investing in NFTs is associated with
extremely high amounts of risk (Mazur, 2021a; Na-
dini et al., 2021) as they are highly volatile (Kong

∗Equal contribution.
1https://ethereum.org/en/nft/

Figure 1: We visualize a sample of tweets related to
Bored Ape Yacht Club NFTs. We also plot the daily
average price of the same NFT collection to observe the
impact of tweets by influential users.

and Lin, 2021). Additionally, social media has
emerged as a space for NFT holders and creators
to shape community opinion and drive public sen-
timent about NFT projects (van Slooten, 2022).
Therefore, conventional forecasting approaches
and contemporary ML models which utilize only
numerical historic NFT data fail to capture suffi-
cient information.

Behavioral finance theories (Chu et al., 2019)
suggest that people are more likely to make de-
cisions based on overconfidence bias (Slovic and
Fischhoff, 1977; Gervais, 2001) and herd behav-
ior (Bikas et al., 2013; Bikhchandani and Sharma,
2000) when faced with uncertainty. The abundance
of tweets about various NFT collections help in cre-
ating "hype" around them which drives their sales,
reinforcing herd behavior. Studies have shown
that NFTs valued by experts are more successful
(Franceschet, 2020), and that the structure of the
the NFT co-ownership network is highly central-
ized, and small-world-like (Barabasi, 2021; Barrat
and Weigt, 1999).

As shown in Figure 1, the daily average price
of an NFT collection, namely Bored Ape Yacht
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Club, reacts immediately to a highly influential in-
dividual tweeting positively about it and spikes up.
However, numerous challenges arise while analyz-
ing such texts. For instance, there are inherent dy-
namic timing irregularities (Sawhney et al., 2021d)
when influencers or "alpha" users make such tweets
and as communities react to them. Simultaneously
capturing temporal granularities along with popu-
larity information (Savaş, 2021) is crucial, as more
widely the content is shared over time, the greater
the user’s impact becomes (Anger and Kittl, 2011).

Therefore, to develop a robust method for predic-
itng NFT trends, we curate a dataset (§3.1), and
formulate a new time and popularity aware finan-
cial modelling approach, where the influence and
reach of individual tweets is captured effectively
translating its effects in their market value.

Our contributions can be summarized as:

• We curate a dataset consisting of over 1.3 mil-
lion tweets and 180 thousand NFT transactions
spanning over 15 NFT collections for two down-
stream tasks, namely daily average price predic-
tion and price movement classification (§3).

• We plan to make this data publicly available
and hope that it could further the research in
this field. To the best of our knowledge, this
will be the first publicly available, large scale
dataset on NFTs based on social media "hype"
and sentiment.

• We propose a novel tweet based reach-aware
temporal attention network to predict NFT
trends (§5), and analyze the impact of social
media on NFT price prediction.

• Through quantitative (§6.1), ablative (§6.2) and
exploratory (§6.3, §6.4) experiments, we build
the case for our approach as a practical method
for modelling NFT market data.

2 Related Work

Non-Fungible Tokens NFTs are digital assets with
relatively recent origins (Nadini et al., 2021). NFT
pricing involve more complex valuations in compar-
ison to traditional assets such as equity (Kong and
Lin, 2021), and are associated with higher returns
along with high volatility (Mazur, 2021a). Exist-
ing research on NFTs focus mostly on technical
aspects such as components, protocols, standards,
& desired properties (Wang et al., 2021) and new
blockchain-based protocols to trace physical goods
(Westerkamp et al., 2018) and the implications that

NFTs have on the art world (Whitaker, 2019; van
Haaften-Schick and Whitaker, 2021). Furthermore,
little to no work has been done to forecast future
trends in the NFT market.

NLP in Finance Traditional financial forecasting
techniques have been applied in areas such as stock
markets (Ariyo et al., 2014; Rundo et al., 2019),
currency exchange markets (Kamruzzaman and
Sarker, 2003), and energy economics (Bento et al.,
2018). Conventional financial models previously
relied on numerical features (Nikou et al., 2019)
and technical indicators (Shynkevich et al., 2017).
These include discrete (Ariyo et al., 2014; Boller-
slev, 1986), continuous (Jacquier et al., 2002; An-
dersen, 2007), and neural approaches (Luo et al.,
2018; Kim et al., 2019). Efforts have since shifted
towards utilizing textual data such as social media
posts (Xu and Cohen, 2018), news reports (Li et al.,
2020; Schumaker and Chen, 2009), web searches
(Zhong and Raghib, 2019; Liu et al., 2012), etc.,
These studies confine their analyses to stock mar-
kets. Recently, Sawhney et al. (2022) explored
cryptocurrency bubble prediction based on user be-
havior on social media. However, there is a gap in
leveraging social media and NLP to analyse and
forecast future trends in the NFT market.

Time-Aware Modelling Temporal data is om-
nipresent in several real-world applications, includ-
ing healthcare (Baytas et al., 2017a), recommender
systems (Rabiu et al., 2020), and finance (Selvin
et al., 2017). As a result, sequential neural mod-
els such as LSTMs (Hochreiter and Schmidhuber,
1997) have gained popularity due to their ability to
capture sequential context dependency (Hu et al.,
2018). Time-aware modelling of time series data
has shown improvements over conventional se-
quential neural models on various tasks such as
patient subtyping (Baytas et al., 2017a), suicide
ideation detection (Sawhney et al., 2020), and dis-
ease progression (Gao et al., 2020). Recently, time-
aware modelling has been adapted in the realm
of financial NLP, such as stock recommendation
(Ying et al., 2020), price prediction (Sawhney et al.,
2021a), and ranking (Sawhney et al., 2021d). How-
ever, these approaches do not take into account the
engagement and popularity of social media posts.
Hence, such methods do not scale to NFTs, which
are more closely correlated with user sentiment and
social media "hype" in comparison to traditional
asset classes (Bouraga, 2021; Franceschet, 2020).
With this work, we seek to explore a promising
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research avenue i.e the intersection of NFTs and
financial NLP, along with time and hype aware
neural modelling.

3 Dataset and Tasks

3.1 Dataset

We utilise two sources, Twitter and Etherscan2

(Ethereum Blockchain access point) to collect qual-
itative and quantitative data respectively for 15
NFT collections. We shortlist NFT collections
which are launched before January 1st 2022, and
appear among the top 40 collections by all-time
sales volume on Opensea3, the most popular mar-
ketplace for NFTs. Using the data described below,
we construct two datasets for the tasks described in
the subsequent section.

3.1.1 Qualitative Data - Tweets
We collect qualitative data by extracting tweets re-
lated to shortlisted NFT collections from Twitter.
We search for tweets consisting of the official Twit-
ter handle of the collection, the Twitter handles of
its creators, as well as a curated list of most fre-
quently used hashtags and search terms related to
each collection. Tweets matching any of the above
search criteria are extracted. In addition to the
tweet text and engagement information (number of
likes, retweets, etc.), we also associate each tweet
with information about the user who posted it, such
as user bio, followers and friends count etc.

We have a total of 1,354,427 tweets correspond-
ing to 15 NFT collections posted in the one-year
period between January 1 2021 to January 31 2022.
The median number of tweets over the collections
is 65,158 with a maximum of 363,506 correspond-
ing to the NFT collection Cool Cats NFT.

3.1.2 Quantitative Data - Transactions
We gather quantitative data, that is NFT transac-
tions between January 1 2021 to January 31 2022
for shortlisted collections from Etherscan which
is an Ethereum blockchain explorer. We filter out
confirmed NFT sales and extract all relevant data
for each transaction comprising of the seller and
buyer address, transaction timestamp, amount and
meta-data of the NFT sold/purchased.

We have a total to 188,535 transactions over
the one year time span for 15 NFT collections. A

2https://etherscan.io/
3https://opensea.io/rankings?sortBy=total_

volume

detailed breakdown of the dataset is given in Ap-
pendix B.

3.2 Tasks

We aim to predict future NFT trends based on
historic tweets about an NFT collection.

Daily Average Price Prediction We regress
the future daily average price of an NFT collection

n given as, θ =
∑k=td

k=1 skd
td

, where skd is the
transaction value of the kth NFT sale on day d
and td is the number of sales on that day. Given L
historic tweets for a collection, we aim to predict
the average price of the NFT collection on the next
day. It is evaluated using mean squared error loss.

Price Movement Classification We formu-
late movement prediction as a binary classification
task. For an NFT collection n, label yk = 1 if
sk > sk−1, yk = 0 otherwise. Thus yk refers
to the price movement of the NFT collection
since sk−1th transaction. We evaluate the model
performance on this task using macro F1 score.

4 Experimental Setup

Preprocessing Following (Nguyen et al., 2020),
we use NLTK to preprocess tweets by converting
mentions (@) and URLs to special tokens @USER
and HTTPURL. We treat emoticons by converting
them to strings using emoji Python package.

Training Setup We perform all our experi-
ments on a Tesla T4 GPU. We use Optuna (Akiba
et al., 2019) to find optimal hyperparameter values
based on the validation MSE/Macro F1 scores
by performing 25 search trials. We explored the
lookback window length L ∈ [2, 40] and the
hidden state dimensions ∈ [64, 768]. We use
10%, 10% and 80% of the samples for testing,
validation and training respectively for both tasks.
We use learning rate ∈ [1e−5, 1e−2] and train the
models using Adam as our optimizer for 2,150
seconds and 10,845 seconds for daily average price
prediction and price movement classification tasks,
respectively.

Evaluation Metrics We evaluate methods
using Mean Squared Error (MSE) loss for daily
average price prediction task and Macro F1-score
(M.F1) for price movement classification task.
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4.1 Baseline Models
• Prophet A decomposable time-series model

utilising interpretable model components
(Taylor and Letham, 2017)

• ARIMA A moving average based auto-
regressive model that uses past prices as input
(Adebiyi et al., 2014).

• MLP A simple Multi-Layer Perceptron that
uses averaged BERT embeddings of tweet se-
quences as input.

• LSTM Utilizes an LSTM (Hochreiter et al.,
1997), which is capable of learning long term
dependencies, to encode textual streams.

• FastText + CNN A CNN based architecture
(Kim, 2014) with a convolution layer on top
of FastText (Joulin et al., 2016) embeddings.

• FAST A time-aware LSTM capable of mod-
elling temporally irregular text stream data
(Sawhney et al., 2021d).

5 Methodology

5.1 Features
Text Embeddings We use Bidirectional Encoder
Representations from BERTweet (Nguyen et al.,
2020) to encode each preprocessed tweet pk to
features mk = BERTweet(pk) ∈ Rd where d =
768, obtained by taking the [CLS] token output
from the final layer.

User Feature Vector We use the Twitter user
metadata for each tweet pk, to construct a user
feature vector uk ∈ Rd where d= 5, normalised
column-wise. This vector contains essential in-
formation about the author of the tweet like the
number of followers, whether the author is verified
or not, their status count, their favourites count, and
friends count. This helps the model learn not only
from the contextualized BERT representations but
also find potential correlations between user meta
data and the tweet’s influence on NFT valuation.

5.2 Model Components
In this section we present the architecture of our
framework, TA-NFT: Time and Reach Aware Net-
work for NFT Price Prediction, designed to fore-
cast NFT prices based on social media trends by
explicitly modelling the temporal irregularities and
engagement of tweets.

Reach Aware Temporal Network Fine-grained
timing irregularities play a crucial role in modelling
online text stream data. For instance, the time in-
terval between two tweets about an NFT collection
can vary widely, from a few minutes to several days.
Therefore, its influence on the value of the NFT
collection may drastically vary overtime. There is
a decay or increase in the influence of the tweet in
relation to other tweets about the collection. Fur-
thermore, every tweet does not have the same reach.
The reach/engagement of two consecutive tweets
about the same collection may vary by thousands of
likes and retweets. In addition to this, the sentiment
polarity between tweets may also vary drastically.

Thus, in order to capture these reach, polarity
and time dependent complexities, we modify Time-
aware LSTM (Baytas et al., 2017b) into reach-
aware temporal network (RTN(·)). Intuitively, the
greater the time elapsed between tweets, the lesser
the impact, and the greater the reach, the higher the
impact in the direction of sentiment polarity. Thus,
for a given day and time k, RTN applies a decaying
function over ∆k, the elapsed time between two
tweets [pk,pk−1]. It also applies a function over
the number of likes l, retweets r and polarity s of
a tweet, transforming the reach, polarity and time
differences into weights:

Cs
k−1=tanh(W dCk−1+ bd)

Ĉ
s
k−1=Cs

k−1 ∗ g(∆k) ∗ q(l, r, s)
(Discounted short-term memory)

CT
k−1 = Ck−1 −Cs

k−1 (Long term memory)

C∗
k−1 = CT

k−1 + Ĉ
s
k−1 (Adjusted previous memory)

where Cs
k−1 is the previous cell memory, W d; bd

are the network parameters, g(·) is a heuristic de-
caying function. Following (Baytas et al., 2017b)
we set g(·) as,

g(∆k) = 1/∆k

and q(·) as,

q(l, r, s) =

{
s ∗ (l + r) if s ̸= 0

ζ ∗ (l + r) if s = 0

where ζ ≈ 0.
Using the adjusted previous memory C∗

k−1, we
define the current hidden state and current memory
states for RTN as:

c̃k= tanh (W chk−1 +U cmk + bc)

Ck=ik ∗ c̃k + fk ∗C∗
k−1 (Current memory)

hk=ok ∗ tanh(Ck) (Current hidden state)
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Figure 2: An overview of TA-NFT - Reach Aware Temporal Network. TA-NFT feeds tweet embeddings to a
reach-aware temporal network (RTN). User-features are concatenated to the output of RTN and fed to a GRU,
followed by a Hawkes Attention layer. Finally, the aggregated representation is passed to an MLP for prediction.

where W c;U c; bc are the learnable parameters,
ik;fk;ok are input, forget and output gates. Fi-
nally, given tweets [p1, . . . pT ] over a lookback
length L, we define the update rule of RTN as,

hk = RTN(mk,∆k,hk−1); k ∈ [1, T ] (1)

where, hk represents the hidden states of RTN.
The hidden states obtained from RTN are then

updated by concatenating the user feature vectors
uk to it,

hk = hk ⊕ uk (2)

to obtain feature vectors ∈ Rd where d=773.

Hawkes Attention Layer Existing work show
that all historical sequence features are not equally
informative and have a varied influence over the
predictions (Sawhney et al., 2021c). We use a tem-
poral attention mechanism (Luong et al., 2015) to
emphasize sequence features likely to have sub-
stantial influence. This mechanism learns atten-
tion weights βk for each hiddden state hk ∈ h =
[h1, . . . ,hT ] as,

βk=Softmax
k

(
(hk)

T(W ah)
)

(3)

where, W denotes learnable weights.
Next, we enhance the temporal attention using

the Hawkes process (Mei and Eisner, 2017) with a

Hawkes attention mechanism. The Hawkes process
is a temporal point process that models a sequence
of arrival of features over time. Each feature item

“excites” the process in the sense that the chance
of a subsequent arrival is increased for some time.
Studies (Zuo et al., 2020; Sawhney et al., 2021b)
show that the Hawkes process can be used to model
sequences from social media and discourses. The
Hawkes attention mechanism learns an excitation
parameter ϵ corresponding to excitation induced by
tweet pk and a decay parameter α to learn the decay
rate of this induced excitement. Formally, we use a
weighted average to aggregate hidden states h via
Hawkes process as,

u = TA-NFT({pk, tk}Tk=1) =
∑

k

βkqk∑
τ βτqτ

qk (4)

qk = βk ∗ hk + ϵ ∗ (ReLU(hk)) ∗ e−α∆k (5)

6 Results

6.1 Performance Comparison
Table 1 shows a comparison of TA-NFT against
baselines spanning commonly used approaches
for asset price prediction tasks. We observe that
our model outperforms most baselines by an aver-
age of 36%. ARIMA (Adebiyi et al., 2014) and
Facebook Prophet (Taylor and Letham, 2017), be-
ing time-series models using only historical price
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Model Price Pred. Mov. Pred.
MSE ↓ M.F1 ↑

Prophet (Taylor and Letham, 2017) 0.4084 0.2576
ARIMA (Adebiyi et al., 2014) 0.1510 0.3278

MLP 0.1363 0.3621
LSTM (Hochreiter et al., 1997) 0.1287 0.3914
FastText + CNN (Kim, 2014) 0.1630 0.3076
FAST (Sawhney et al., 2021d) 0.1253 0.4032

TA-NFT (Ours) 0.0914* 0.4618*

Table 1: Performance comparison with baselines. *
indicates improvement over SOTA is significant (p <
0.01) under Wilcoxon’s signed rank test.

data, are unable to capture sufficient information.
FastText+CNN (Kim, 2014) applies Convolutional
Neural Networks on text embeddings from tweets,
and FAST (Sawhney et al., 2021d) is a time-aware
model using both text and historical features. We
postulate that our model’s superior performance
over them is due to, 1) time-aware Hawkes atten-
tion mechanism, 2) incorporation of tweets’ reach,
polarity and timing based irregularities, and 3) ac-
counting for author influence on the impact of in-
dividual tweets. TA-NFT outperforms other time-
aware networks due to the Hawkes attention mech-
anism, tweet meta data and user information which
serve as proxies for the popularity of the NFT on
Twitter. These observations reveal that a combi-
nation of these features contribute towards NFT
valuation, and by capturing all these features, our
model is practically applicable for NFT average
price prediction and price movement classification.

6.2 Ablation Study

We account for the importance of various com-
ponents of TA-NFT in Table 2. First, we ob-
serve that replacing the standard LSTM (Hochre-
iter et al., 1997) with Time-aware LSTM (Baytas
et al., 2017b) leads to significant performance im-
provement. This validates that incorporating the
time irregularities helps in modelling the NFT mar-
ket. Further improvement is noted on modifying
it into Reach-aware T-LSTM which accounts for
the reach of individual tweets. Enriching the tem-
poral network with Hawkes process leads to perfor-
mance boosts. This is possibly due to the ability of
the Hawkes attention layer to capture excitations
caused by influential tweets. Finally enriching the
tweet embeddings with user feature vector in com-
bination with reach-aware temporal network and
Hawkes attention layer leads to best results, indicat-

Reach
Weights

User Feature
Vector Model Price Pred. Mov. Pred.

MSE ↓ M.F1 ↑

✗ ✗ LSTM 0.1287 0.3914
✗ ✗ T-LSTM 0.1248 0.4325
✓ ✗ T-LSTM 0.1196 0.4372
✗ ✗ T-LSTM + Hawkes 0.1031 0.4561
✓ ✗ T-LSTM + Hawkes 0.1026 0.4601
✓ ✓ T-LSTM + Hawkes (Ours) 0.0914* 0.4618*

Table 2: Ablation study over TA-NFT (mean of 10 runs).
*,†indicate improvements are significant (p < 0.01)
under Wilcoxon’s signed rank test.
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Figure 3: Impact of lookback length L on TA-NFT’s
performance with error bounds. Results are averaged
over 10 independent runs.

ing that capturing the author’s influence is signifi-
cantly advantageous to understand the full extent
of a tweet’s impact on the NFT market.

6.3 Impact of Lookback Length

We study the impact of varying the lookback length
L, referring to the number of historical tweets used
as input for each data point, on our model’s per-
formance for average price prediction task. We
observe that with no historical context, both mod-
els perform the worst. As we increase the lookback
length L, the model performance improves up to
an optimal point, indicating that the naturally de-
caying impact of past tweets on NFT valuation is
being captured by the model. As we further in-
crease L beyond the optimal value, we observe a
gradual drop in performance. This is possibly due
to the noise introduced by older tweets, which are
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Figure 4: Qualitative analysis of Tweets about 0N1 Force NFTs and performance of TA-NFT on price movement
prediciton task with temporal, reach and token level attention visualised.

Model Avg. Price. Pred. Movement Pred.
MSE ↓ M.F1 ↑

LSTM 0.1943 0.3414
T-LSTM 0.1781 0.3536

T-LSTM + Hawkes 0.1702 0.3819
TA-NFT (Ours) 0.1627* 0.4117*

Table 3: Performance comparisons in a zero shot setting.
* indicates improvement over SOTA is significant (p<
0.01) under Wilcoxon’s signed rank test.

relatively insignificant to model the temporal state
of the community around the NFT collection. The
short term dependence of NFT valuation on tweets
indicates the fast-moving and volatile nature of the
NFT space.

6.4 Zero-shot Transfer Analysis

We compare the performance of our model in a
zero-shot setting in Table 3, where we train the
models on a set of collections and test them on a
set of previously unseen collections. Our model
outperforms other text-based and temporal models.
This shows that it is able to effectively generalize

Model Visual Features
Used

Avg. Price Pred. Mov. Pred.
MSE M.F1

TA-NFT None 0.0914 0.4618
TA-NFT All 0.1879 0.3291
TA-NFT Reduced using PCA 0.1989 0.3382
TA-NFT Selected using Boruta 0.1829 0.3432

Table 4: Impact of visual features on the performance
of TA-NFT. Results are averaged over 10 independent
runs.

better for unseen collections. Further, it indicates
that NFT collections share some inherent character-
istics and have overlapping latent representations
that can be learnt using online text streams.

6.5 Impact of Visual Features

We perform a study to account for the impact of the
contents of NFTs, i.e., images towards its valuation.
We compare the performance of our modelling ap-
proach with and without visual features in Table
4. We pretrain the Barlow Twins model (Zbontar
et al., 2021) on all NFT images, minimizing the
redundancy between the embeddings of two identi-
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cal networks in order to produce information rich
representations for the images. We take the output
of the last fully connected layer of the model as the
vector representation vi ∈ Rd where d=1000 for
each image. Further, we concatenate these visual
features with text features and carry out training
and evaluation as usual. We also explore differ-
ent approaches to reduce/select feature dimensions,
namely Principal Component Analysis and Boruta
(Kursa et al., 2010). We observe that utilising vi-
sual features does not lead to any improvements,
but rather degrades the model performance. This
observation suggests that visual features do not
provide any useful information for NFT valuation
and induce noise to the data. We hypothesize that
this could be possibly due to inter-collection and
intra-collection content similarities spawned by the
market responsiveness to the success of a collection
(Nadini et al., 2021).

6.6 Qualitative Analysis

We conduct a qualitative study in an attempt to
interpret the predictions of TA-NFT by taking ex-
amples of tweets about 0N1 Force NFT collection
as shown in Figure 4 for two cases.

Following a series of positive tweets with signif-
icant reach, we observe an upward movement in
the price of 0N1 Force NFT collection. Similarly,
a downward movement appears to be caused by
a series of relatively negative tweets with lower
reach. This suggests NFTs follow hype-driven pric-
ing where more wide-reaching social media traffic
and positive sentiment leads to an upward trend
and vice-versa. Our modelling approach (TA-NFT)
is able to contexualize the impact of social me-
dia hype by accounting for the reach of individual
tweets as well as the influence of its authors in ad-
dition to the timing irregularities. Thus, it is able to
correctly classify the price movement in both cases
as opposed to strictly time-aware modelling tech-
niques. Unlike traditional assets like stocks and
gold, the intensity and polarity of public sentiment
on social media platform drives price fluctuations
(Semenova and Winkler, 2021) which is in turn
affected by influential individuals.

7 Conclusion

Building on the rising popularity and hype-driven
dynamics of NFT markets, we curate a dataset for
forecasting NFT trends through two downstream
tasks consisting of daily average price prediction

and price movement classification. We introduced
TA-NFT, a time and reach-aware neural network
for modelling temporal granularities and engage-
ment dynamics of NFT discourse on social media.
Through extensive experiments, we show that TA-
NFT empirically outperforms other SOTA models
by an average of 36%, and present TA-NFT as a
practical modelling approach and a strong bench-
mark for forecasting NFT trends. We hope the pro-
posed dataset can enable more academic progress
in the field of financial NLP.

Ethical Considerations

While the predictive power of models like TA-NFT
relies on data, we work within the purview of ac-
ceptable privacy practices to avoid coercion and
intrusive treatment. We utilize publicly available
data in a purely observational and non-intrusive
manner. Although informed consent of each user
was not sought as it may be deemed coercive, we
follow all ethical regulations set by our data sources.
Since financial markets are transparent (Bloomfield
and O’Hara, 1999) and heavily regulated (Edwards,
1996), we discuss the ethical considerations and
potential risks pertaining to our work.
Potential risks: Our contributions are meant as an
exploratory research in the financial domain and
no part of the work should be treated as financial
advice. All financial investments decisions are sub-
ject to market risk (Mazur, 2021b; Antonakakis
et al., 2019; Campbell, 1996) and should be made
after extensive testing. Practitioners should check
for various biases (demographic, modelling, ran-
domness) before attempting to use the provided
code/data/methods for real-world purposes.
Intended use of data artifacts: Our dataset will
be made available to use for research purposes.
The intended use of financial datasets is to en-
able investors to take informed financial decisions
(Cooper et al., 2016), research and development to
foster progress of AI methods and financial model-
ing for public good (Veloso et al., 2021).

We additionally follow Cooper et al. (2016) and
focus on the following ethical considerations for
automated trading systems:
Blocking Price Discovery Trading systems should
not block price discovery, nor interfere with the
ability of other market participants to add to their
own information (Angel and McCabe, 2013). Ex-
amples of such scenarios include Quote Stuffing
(Egginton et al., 2016) and Wash Trading (von
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Wachter et al., 2022). TA-NFT does not block
price discovery in any manner.
Circumventing Price Discovery A trading system
should not hide information, such as by participat-
ing in dark pools or placing hidden orders (Zhu,
2014). While we evaluate our approach only on
public data, it is possible for TA-NFT, just as any
other automated trading system, to be exploited
to hinder market fairness (Sako et al., 2021). We
follow broad ethical guidelines to design TA-NFT
and encourage readers to follow both regulatory
and ethical considerations pertaining to the market.

Limitations

While our dataset has been curated using data for
the entire year of 2021, the NFT market is fast
paced, new and ever-changing, which may lead to
the need of adapting newer approaches. Apart from
this, there are 1000s of NFT collections, and we
conduct our analysis on only 15 of them, which
might leave out a lot of independent NFT collec-
tions and related trends. We also acknowledge
the presence of demographic bias in our study
as the tweet data is limited to English, and thus
our approach may not directly generalize to non-
English settings. Additionally, there is a vast scope
for future work accounting for the influence of
buyer/seller network, correlation between the NFT
and Cryptocurrency market, other sources of quali-
tative data like news, blogs, Reddit etc. and NFT
metadata attributes/value proposition.
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A Experimental Setup

Parameter Value

Optimizer Adam

Learning Rate 2e-4

Batch Size 64

β1, β2, ϵ 0.9, 0.999, 1e-6

# Epochs 20

Evaluation Metric MSE/Macro F1

Base Model BERTweet

Classifier
(over architecture)

Linear layer

Number of Parameters 4,817,035

Hardware Nvidia Tesla T4

Table 5: Model and training setup for TA-NFT.

Collection # of NFTs# of tweets# of transactions

0N1 Force 7,777 11,153 8,473
Bored Ape Yacht Club 10,000 28,651 19,472

Cool Cats NFT 9,933 363,506 16,890
CrypToadz by GREMPLIN 7,025 134,339 9,408

CyberKongz 5,000 298,710 4,357
DeadFellaz 9,999 65,158 14,489

FLUF World 10,000 67,379 10,059
Hashmasks 16,370 92,903 16,642

Loot 7,779 393 6,642
Mutant Ape Yacht Club 17,961 5,154 14,819

Meebits 20,000 108,237 13,221
Pudgy Penguins 8,888 2,017 15,997

SupDucks 10,001 169,909 12,965
VOX Collectibles 8,888 2,190 11,787
World of Women 10,000 4,728 13,314

Total 159,621 1,354,427 188,535

Table 6: NFT-collection wise data distribution.

Task # of data points

Daily Average Price Prediction 2,679
Price Movement Classification 188,535

Table 7: Task-wise data distribution.

B Dataset Details

A detailed collection-wise breakdown of the col-
lected data is given in Table 6. In addition to this,
Table 7 gives task-wise distribution (number of data
points) for the tasks defined above.
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