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Abstract

For years the model performance in machine
learning obeyed a power-law relationship with
the model size. For the consideration of param-
eter efficiency, recent studies focus on increas-
ing model depth rather than width to achieve
better performance. In this paper, we study how
model width affects the Transformer model
through a parameter-efficient multi-path struc-
ture. To better fuse features extracted from
different paths, we add three additional opera-
tions to each sublayer: a normalization at the
end of each path, a cheap operation to produce
more features, and a learnable weighted mech-
anism to fuse all features flexibly. Extensive
experiments on 12 WMT machine translation
tasks show that, with the same number of pa-
rameters, the shallower multi-path model can
achieve similar or even better performance than
the deeper model. It reveals that we should pay
more attention to the multi-path structure, and
there should be a balance between the model
depth and width to train a better large-scale
Transformer.

1 Introduction

The large-scale neural network has achieved great
success at a wide range of machine learning tasks
(Deng et al., 2009; Devlin et al., 2019; Shazeer
et al., 2017). Among them, deep models show
great potential to deal with complex problems (He
et al., 2016a; Wang et al., 2019). By stacking
more layers, deeper models generally perform bet-
ter than shallower models since they provide more
non-linearities to learn more complex transforma-
tions (Telgarsky, 2015; Liu et al., 2020a,b). Com-
pared to increasing the model depth, broadening
the model width can also benefit the model by pro-
viding richer features in a single layer.

There are two ways to broaden the model width:
1) Scaling the matrix dimensions, such as turning
the model configuration from Transformer-base

∗Corresponding author.

Deep Wide Multi-Path Our Multi-Path

50 100 150 200 250

28.5
29

29.5

# Params
B

L
E

U
[%

]

Figure 1: Performance (BLEU) vs. the number of pa-
rameters (M) on WMT14 En→De.

to Transformer-big (Vaswani et al., 2017). How-
ever, both the number of parameters and compu-
tational costs will increase quadratically, making
such model training and deployment difficult; 2)
Adopting the multi-path structure (Ahmed et al.,
2017). The expressive power of such models can
be improved by fusing abundant features obtained
from different paths, and the parameters and com-
putations will only increase linearly with the num-
ber of paths.

The multi-path structure has proven to be quite
important in convolutional networks for computer
vision tasks (Zhang et al., 2020; Zagoruyko et al.,
2016). But in Transformer, this type of structure
has not been widely discussed and applied (Ahmed
et al., 2017; Fan et al., 2020). In this paper, we con-
tinue to study the multi-path structure and adopt a
sublayer-level multi-path Transformer model. As
shown in Fig. 1, the original multi-path models ■
significantly outperform wide models ▲ that scale
the matrix dimensions. To make better use of the
features extracted from different paths, we redesign
the multi-path model by introducing three addi-
tional operations in each layer: 1) A normalization
at the end of each path for regularization and ease
of training; 2) A cheap operation to produce more
features; 3) A learnable weighted mechanism to
make the training process more flexible.

To demonstrate the effectiveness of our method,
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we test it on the Transformer-base and Transformer-
deep configurations. The experiments are run
on 12 WMT machine translation benchmarks,
including WMT14 English↔{German, French}
and WMT17 English↔{German, Finnish, Latvian,
Russian}. Experiments on the most widely used
English→German task show that the multi-path
Transformer model can achieve 2.65 higher BLEU
points with the same depth as the Transformer-base
model. What’s more, a shallower multi-path Trans-
former can achieve 29.68 BLEU points, which is
even higher than the 48-layer Transformer-deep
model of the same size. It inspires us that, model
width is as important as model depth, instead of
indefinitely stacking more layers, we should pay
more attention to the multi-path structure.

2 Background

2.1 Transformer

Transformer is an attention-based encoder-decoder
model that has shown promising results in many
machine learning tasks (Vaswani et al., 2017; De-
vlin et al., 2019; Liu et al., 2020b). It mainly con-
sists of two kinds of structures: the multi-head
attention and the feed-forward network.

The multi-head attention computes the attention
distribution Ax and then averages the input X by
Ax. We denote the attention network as MHA(·):

Ax = SoftMax(
XWqW

T
k XT

√
d

) (1)

MHA(X) = AxXWv (2)

where X ∈ Rt×d, t is the target sentence length
and d is the dimension of the hidden representation,
Wq,Wk,Wv ∈ Rd×d.

The feed-forward network applies a non-linear
transformation to its input X . We denote the output
as FFN(·):

FFN(X) = ReLU(XW1 + b1)W2 + b2 (3)

where W1 ∈ Rd×4d, b1 ∈ R4d, W2 ∈ R4d×d and
b2 ∈ Rd.

Both the MHA and FFN are coupled with the
residual connections (He et al., 2016a) and layer
normalizations (Ba et al., 2016). For stabilizing
deep models training, here we adopt the normaliza-
tion before layers that has been discussed in Wang
et al. (2019)’s work.

LayerNorm
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Figure 2: The architecture of the constructed multi-path
Transformer model in this paper.

2.2 Multi-Path Transformer

As a way to enlarge the model capacity, the idea
of multi-path networks has been explored widely
and has proven to be important in several domains
(Ahmed and Torresani, 2017; Zhang et al., 2019).
Among them, Ahmed et al. (2017) replace the
multi-head attention with multiple self-attentions.
Fan et al. (2020) propose MAT, in which the atten-
tion layer is the average of multiple independent
multi-head attention structures. The MoE proposes
to dynamically choose paths in a very large-scale
network (Shazeer et al., 2017).

Here, we continue to study the sublayer-level
multi-path structure based on the Transformer
model. The multi-path structure is applied both
on the multi-head attention and feed-forward net-
work as shown in Fig. 2, and the constructed model
can be seen as a case of the MoE without dynamic
computation. We discuss that width is an important
factor that should not be ignored especially when
the model becomes too deep.

3 Methods

3.1 PathNorm and The Weighted Mechanism

Fig. 3 shows the architecture of the multi-path
Transformer model constructed in this paper. In
the implementation, we adopt the normalization
before layers because it has proven to be more ro-
bust to deep models than the normalization after
layers (Baevski and Auli, 2019; Xiong et al., 2020;
Nguyen and Salazar, 2019). In this model, different
paths are split after each layer normalization and
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Figure 3: A running example of the process of generating more features from cheap operations.

fused at a sublayer level. To better fuse features
extracted from different paths, three additional op-
erations are proposed in this paper. In this section,
we will introduce two of these three operations, the
other one will be introduced in Section 3.2.

PathNorm. As shown in Fig. 2, an addi-
tional normalization (named PathNorm) is in-
troduced at the end of each multi-head attention
(MHA) or feed-forward network (FFN). Different
from Shleifer et al. (2021)’s work, the proposed
PathNorm aims to bring the magnitudes of out-
put distributions closer, which we think is more
conducive to the fusion of different paths. When
the number of paths becomes relatively large, it
also plays a role in regularization and ensures the
stability of the model training.

The Weighted Mechanism. To enable the
model to learn how to combine paths on its own, a
learnable weighted mechanism is introduced. As
shown in Fig. 2, learnable weights α are added on
all model paths, and the residual connections sur-
rounding layers are also equipped with learnable
weights β. By adopting this strategy, the model
can automatically distinguish which part is more
important and the training process will be more
flexible.

For this multi-path Transformer model, we can
write the output of multi-head attention or feed-
forward network as:

Y = βX +
n∑

i=1

αiPathi(X) (4)

where X denotes the layer input, Y denotes the
layer output, n denotes the total number of paths.
α and β are respectively learnable weights added
on the model paths and residual connections. We
denote the computation of the multi-head attention
in Eq. 2 as MHA(·) and the computation of the
feed-forward network in Eq. 3 as FFN(·). In the
multi-head attention or feed-forward network, each
path can be computed as:

Path(X) = PathNorm(Func(LN(X))) (5)

Func(X) = MHA(X) or FFN(X) (6)

where PathNorm is the normalization added after
the computation of each multi-head attention or
feed-forward layer. LN is the layer normalization.

3.2 More Features from Cheap Operations
With the increasing number of paths, the model
tends to get better performance, but the number of
parameters and computational costs will also in-
crease correspondingly. What’s worse, one model
with too many paths will be hard to train because
of much more GPU memory resources consuming.

To solve the above-mentioned problem, here we
propose to generate more features from the exist-
ing ones through a cheap operation. This method
can help the multi-path model achieve better per-
formance with almost negligible additional com-
putational costs, and it has no effect on the overall
parameters. Specifically, here we adopt a "selec-
tion then combination" strategy. In the example
of Fig. 3, Paths 1 ∼ 4 denote paths of the cur-
rent Transformer layer, the features generated from
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these paths are called "raw features", and the fea-
tures further generated by "raw features" are called
"new features". This process can be divided into
the listed two steps.

Selection. Firstly, we need to select a few paths
for the next combination operation. Since we want
to get different features, the selection must be with-
out repetition. Since different paths are indepen-
dent, so the selection order does not matter. It
should be noted that if each path is selected too
many times, it will weaken the feature diversities.
While, if each path is chosen only a small number
of times, there will be fewer benefits. Here we se-
lect n− 1 paths from the total n paths once time,
until all subsets of paths that meet this condition
are selected without repetition. From n paths, there
will be Cn−1

n = n subsets of paths, and the corre-
sponding number of newly generated features will
be n. Through this selection strategy, there will be
a balance between the rawly existing features and
the newly generated features.

Combination. Since we have obtained n sub-
sets of paths from the selection operation, we need
to combine paths from the same subset to generate
new features. To compute the combination result,
here we adopt a simple average operation. Specifi-
cally, we average the outputs of different paths in
each attention or feed-forward network which have
been computed in Eq. 6. Suppose the number of
paths is set to n, then the number of paths in one
subset is k = n− 1, the average operation can be
denoted as below:

AVG(X) =

∑k
i=1 Funci(X)

k
(7)

After the combination operation to produce n
new features, we add additional normalizations
as described in Section 3.1. Different from the
previous description, here we add PathNorm on
both the "raw features" and "new features". Be-
sides, learnable weights α and β are also added for
weighting these two kinds of features as shown in
Fig. 3.

Efficiency. Considering the parameter efficiency,
although we need to introduce additional normal-
izations with twice the number of model paths, it
has little effect on the total number of parameters
since the parameters in each normalization are very
limited. As for the computation efficiency, because
the average operation is quite lightweight and the
dimension of the sublayer output is relatively small,
the combination operation will only have a small

Source Task
Train Valid Test

sent. word sent. word sent. word

WMT14
En↔De 4.5M 220M 3000 110K 3003 114K
En↔Fr 35M 2.2B 26K 1.7M 3003 155K

WMT17

En↔De 5.9M 276M 8171 356K 3004 128K
En↔Fi 2.6M 108M 8870 330K 3002 110K
En↔Lv 4.5M 115M 2003 90K 2001 88K
En↔Ru 25M 1.2B 8819 391K 3001 132K

Table 1: Data statistics (# of sentences and # of words).

impact on the overall training efficiency. Since we
only experiment on the Transformer encoder, it has
nearly no impact on the inference efficiency.

3.3 The Initialization of α and β

In Section 3.1, we have introduced the learnable
weights α and β for the path outputs and residual
connections respectively. Here we introduce how
to initialize α and β in this work. Since the result
of one path coupled with PathNorm follows the
normal distribution with mean 0 and variance 1,
to make the sum of multiple paths approximately
equal to the standard normal distribution, here we
set α = 1√

2n
, where n is the number of "raw fea-

tures" in the current layer. To balance the residual
connections and paths in the initial training stage,
we set β = 1 in all sublayers.

4 Experiments

4.1 Setup

We evaluate our methods on 12 machine translation
tasks (6 datasets × 2 translation directions each),
including WMT14 English↔{German, French}
(En↔{De, Fr}) and WMT17 English↔{German,
Finnish, Latvian, Russian} (En↔{De, Fi, Lv, Ru}).
The statistics of all datasets are shown in Table 1.

Datasets. For the En↔De tasks (4.5M pairs),
we choose newstest-2013 as the validation set and
newstest-2014 as the test set. We share the source
and target vocabularies. For the En↔Fr tasks (35M
pairs), we validate the system on the combination
of newstest-2012 and newstest-2013, and test it on
newstest-2014. We use the concatenation of all
available preprocessed validation sets in WMT17
datasets as our validation set. All WMT datasets
are provided within the official website1.

For all datasets, we tokenize every sentence us-
ing the script in the Moses2 toolkit and segment

1http://statmt.org/
2https://github.com/moses-smt/mosesdecoder/blob/maste
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System Params Depth Path Test ∆BLEU Valid ∆BLEU ∆Average

Transformer-base 62M 6 1 27.00 +0.00 25.88 +0.00 +0.00

Deep12 ✓ 80M 12 1 28.32 +1.32 26.65 +0.77 +1.05
Multi-Path2 80M 6 2 28.00 +1.00 26.22 +0.34 +0.67

+ Ours 80M 6 2 28.44 +1.44 26.43 +0.55 +1.00

Deep24 118M 24 1 29.01 +2.01 26.94 +1.06 +1.54
Multi-Path2 118M 12 2 28.90 +1.90 26.67 +0.79 +1.35

+ Ours ✓ 118M 12 2 29.33 +2.33 27.23 +1.35 +1.84
Multi-Path4 118M 6 4 28.25 +1.25 26.18 +0.30 +0.78

+ Ours 118M 6 4 29.04 +2.04 26.80 +0.92 +1.48
+ More Features 118M 6 4 29.19 +2.19 26.96 +1.08 +1.64

Deep36 156M 36 1 29.37 +2.37 27.14 +1.26 +1.82
Multi-Path3 156M 12 3 29.05 +2.05 26.69 +0.81 +1.43

+ Ours 156M 12 3 29.08 +2.08 26.93 +1.05 +1.57
+ More Features 156M 12 3 29.20 +2.20 27.05 +1.17 +1.69

Multi-Path6 156M 6 6 28.87 +1.87 26.58 +0.70 +1.29
+ Ours 156M 6 6 29.13 +2.13 26.93 +1.05 +1.59
+ More Features ✓ 156M 6 6 29.65 +2.65 26.89 +1.01 +1.83

Deep48 193M 48 1 29.43 +2.43 27.12 +1.24 +1.84
Multi-Path2 193M 24 2 29.44 +2.44 27.05 +1.17 +1.81

+ Ours ✓ 193M 24 2 29.68 +2.68 27.41 +1.53 +2.11
Multi-Path4 193M 12 4 29.04 +2.04 26.73 +0.85 +1.45

+ Ours 193M 12 4 29.46 +2.46 27.03 +1.15 +1.81
+ More Features 193M 12 4 29.56 +2.56 27.00 +1.12 +1.84

Multi-Path8 193M 6 8 28.62 +1.62 26.71 +0.83 +1.23
+ Ours 193M 6 8 29.21 +2.21 27.07 +1.19 +1.70
+ More Features 193M 6 8 29.56 +2.56 26.95 +1.07 +1.82

Table 2: Results on WMT14 En→De (We mark the best system with ✓ under the same number of parameters. The
original multi-path models with different paths are represented as “Multi-Path2∼8”. Our models with PathNorm
and learnable weighted mechanism are represented as “+ Ours”, our models with more features based on “+ Ours”
are represented as “+ More Features”.).

every word into subword units using Byte-Pair En-
coding (Sennrich et al., 2016). The number of the
BPE merge operations is set to 32K in all these
tasks. In addition, we remove sentences with more
than 250 subword units (Xiao et al., 2012) and
evaluate the results using multi-bleu.perl3.

Models. Our baseline system is based on
the open-source implementation of the Trans-
former model presented in Ott et al. (2019)’s work.
For all machine translation tasks, we construct
baseline models with the Transformer-base and
Transformer-deep (Wang et al., 2019) settings. All
baseline systems consist of a 6-layer encoder and
a 6-layer decoder, except that the Transformer-
deep encoder has 12∼48 layers (depth) (Li et al.,
2020). The embedding size is set to 512 for both the
Transformer-base and deep. The FFN hidden size
equals 4× embedding size in all settings. As for
the multi-path Transformer models, except for the
number of paths, all other model hyperparameters

r/scripts/tokenizer/tokenizer.perl
3https://github.com/moses-smt/mosesdecoder/blob/maste

r/scripts/generic/multi-bleu.perl

are the same as the baseline models. The multi-path
models in this paper consist of 2∼8 paths.

Training Details. For training, we use Adam
optimizer with β1 = 0.9 and β2 = 0.997.
For the Transformer-base setting, we adopt the
inverse square root learning rate schedule with
8,000 warmup steps and 0.001 learning rate. For
the Transformer-deep and multi-path settings, we
adopt the inverse square root learning rate schedule
with 16,000 warmup steps and 0.002 learning rate.
The training batch size of 4,096 is adopted in the
base setting, and 8,192 is adopted in the deep and
multi-path settings. All experiments are done on 8
NVIDIA TITIAN V GPUs with mixed-precision
training (Micikevicius et al., 2018). All results are
reported based on the model ensembling by aver-
aging the last 5 checkpoints.

4.2 Results
Table 2 and Table 3 show the results of different
systems on WMT14 En↔De and WMT14 En↔Fr.
In all tasks, the original multi-path models can not
perform as well as the deep models, which proves
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System Params D-P Test Valid ∆Average

W
M

T
14

D
e-

E
n

Baseline 62M 6-1 30.50 30.34 +0.00
Deep24 ✓ 118M 24-1 31.92 31.37 +1.23
Multi-Path2 118M 12-2 31.62 31.00 +0.89

+ Ours ✓ 118M 12-2 32.00 31.29 +1.23
Multi-Path4 118M 6-4 31.52 30.80 +0.74

+ Ours 118M 6-4 31.85 30.95 +0.98
+ More Features 118M 6-4 31.89 31.03 +1.04

W
M

T
14

E
n-

Fr

Baseline 111M 6-1 40.82 46.80 +0.00
Deep24 168M 24-1 42.40 48.41 +1.60
Multi-Path2 168M 12-2 42.40 48.37 +1.58

+ Ours ✓ 168M 12-2 42.44 48.45 +1.64
Multi-Path4 168M 6-4 41.76 47.93 +1.04

+ Ours 168M 6-4 41.90 48.19 +1.24
+ More Features 168M 6-4 42.32 48.37 +1.54

W
M

T
14

Fr
-E

n

Baseline 111M 6-1 36.33 47.03 +0.00
Deep24 168M loss exploding ✗

Multi-Path2 168M 12-2 38.19 48.02 +1.43
+ Ours ✓ 168M 12-2 38.24 48.45 +1.67

Multi-Path4 168M 6-4 37.94 48.18 +1.38
+ Ours 168M 6-4 38.20 48.30 +1.57
+ More Features 168M 6-4 38.26 48.36 +1.63

Table 3: Results on other WMT14 tasks (We mark the
best system with ✓, ✗ means that the model cannot con-
tinue training due to the gradient exploding problem.).

that model depth does play a crucial role in per-
formance. However, our multi-path models can
achieve similar or even better results than the deep
models. On the En→De dataset, our best multi-
path system achieves 0.12/0.32/0.28/0.25 higher
BLEU points than the deep model when the number
of parameters is set to 80/118/156/193 megabytes.
It shows the potential of the multi-path models and
proves that model width is as important as model

depth. Under the same model depth, multi-path
models with more features significantly perform
better than the original multi-path models, which
demonstrates the effectiveness of our proposed
method in Section 3. Note that in our method of
generating more features, there will be Cn−1

n = n
new features. In a 2-path model, since there are
only 2 paths, no new features will be generated.

Experiments on En→Fr, De→En and Fr→En
also show the competitive performance of the multi-
path Transformer models. Note that on Fr→En
task, in the mix-precision training process of the
24-layer model, we met the problem of loss explod-
ing. It means that the minimum loss scale (0.0001
in the fairseq fp16 optimizer4) has been reached
and the loss is probably exploding. We further
validate our conclusions on 8 WMT17 tasks, in-
cluding En↔{De, Fi, Lv, Ru}. Experiments in Fig.
4 show a similar phenomenon and further verify
that, instead of indefinitely stacking more layers,
we should pay more attention to wider structures,
such as the multi-path models.

5 Analysis

5.1 Shallower Networks

In this section, we study the performance of our
multi-path structure in shallower networks. Fig.
5 shows the results of Transformer models with
different numbers of depths and paths. When the
model is relatively shallower, increasing the num-
ber of paths will produce slightly worse perfor-

4https://github.com/pytorch/fairseq/blob/v0.6.2/fairseq/opt
im/fp16_optimizer.py
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Figure 5: Results of shallower networks with different
depths and paths on WMT14 En→De (Darker color
means better performance.).

System Params BLEU
Test Valid

Baseline 62M 27.00 25.88
+ Multi-Path 156M 28.87 26.58
+ PathNorm 156M 28.72 26.28
+ Learnable Weights 156M 29.13 26.93

- PathNorm 156M 28.86 26.58
+ More Features 156M 29.65 26.89

Table 4: Ablation study on WMT14 En→De.

mance than increasing the number of depths (e.g.,
the 1-layer 6-path model vs. the 6-layer 1-path
model). When the model is deeper, increasing the
number of paths has a greater advantage (e.g., the
2-layer 5-depth model vs. the 5-layer 2-depth mod-
els). In most instances, changing the depth and path
have almost the same effect on model performance.

5.2 Ablation Study

Table 4 summarizes and compares the contribu-
tions of each part described in Section 3. Each
row of Table 4 is the result of applying the current
part to the system obtained in the previous row.
This way helps to illustrate the compound effect
of these parts. Here we adopt the 6-layer 6-path
model for study. In the first two rows, different
paths in the same layer are added with the fixed
weights (1/6 in the + Multi-Path model and 1/

√
6

in the + PathNorm model). We can see that the +
Multi-Path model significantly surpasses the base-
line model. However, the + PathNorm model per-
forms slightly worse than the + Multi-Path model.
In order to verify the importance of PathNorm in
our method, we conduct an additional experiment
to use learnable weights alone (- PathNorm). As
can be seen in Table 4, neither the learnable weights
(- PathNorm) nor PathNorm (+ PathNorm) works
well alone, which verifies the importance of the
combination of learnable weights and PathNorm (+
Learnable Weights) in our method.
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Figure 6: Loss vs. the number of epochs on WMT14
En-De (The left figure plots the training losses, the right
figure plots the validation losses.).

0 3 6 9 12 15 18 21 24
0

0.1

0.2

Model Depth

V
al

ue

Attention Feed-forward

Figure 7: The diversities among different paths vs. the
model depth on WMT14 En→De.

5.3 Training Study

We plot the training and validation loss curves
of different systems with the same number of pa-
rameters, including the deep model, the original
multi-path model (Multi-Path) and our model with-
out/with more features (+ Ours/+ More Features),
for studying their convergence. All these four sys-
tems have been shown in Table 2. We can see that
all systems converge stably. The original multi-
path model has a higher loss than other models in
both the training and validation sets and it does
perform the worst. The deep model has the lowest
loss, but the performance is close to + Ours and +
More Features, which means that the loss cannot
absolutely reflect the model performance.

5.4 Learnable Weights

As the learnable α is considered to be a way of
measuring the importance of different paths, the
difference of α from different paths can be seen as
the diversities among these paths. Fig. 7 studies the
behavior of α, the solid lines denote the absolute
value of the difference of α. Here we adopt the
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Figure 8: Training cost vs. the number of paths on
WMT14 En→De.

24-layer 2-path Transformer system to study α in
deep models, we let |d| = |α1−α2|

|α1+α2| denote the above
mentioned absolute value of difference.

As can be seen in Fig. 7, either in the atten-
tion layer or the feed-forward layer, |d| changes
significantly in different model depths. In the feed-
forward layer, except for the first and last several
layers (e.g., 1, 22, and 23), the value of |d| is
smaller than the attention layer, which reflects from
the side that the diversity of the feed-forward layer
is smaller than the attention layer. In the attention
layer, the value of |d| is larger in the middle layers
(e.g., from 4 to 20), indicating that more model
diversities can be learned in the middle layers than
the bottom and top layers.

5.5 Training Efficiency

Here we record the computation times required per
100 training steps of different models. To exclude
the influence of data transfer, we train these mod-
els on a single GPU. Since each path is computed
independently, the multi-path structure adopted in
this paper has the inherent advantage of high com-
putational parallelism. However, due to the limita-
tions of related computational libraries, this kind of
model does not achieve its ideal efficiency as can
be seen in Fig. 8. As one type of model structure
with great potential, the multi-path model should
get more attention from us, and the related compu-
tational libraries should also be completed.

6 Discussion

Model depth or width which is more important be-
comes a hot topic in recent years (Nguyen et al.,
2021; Vardi et al., 2022; Eldan and Shamir, 2016;
Lu et al., 2017; Cheng et al., 2016). In general,
one model can benefit more from increasing the
depth (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2015; Szegedy et al., 2015), the reasons
can be summarized as follows: 1) Expressivity,
deep models have better non-linear expressivity to
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Figure 9: Training costs of different systems on WMT14
En→De.

learn more complex transformations. 2) Efficiency,
both the number of parameters and the computa-
tional complexity will be changed quadratically
corresponding to the model width (referring to scal-
ing the matrix dimensions) while linearly with the
model depth, thus the cost of increasing width is
often much higher than that of depth.

For tasks such as computer vision, the model
depth can even reach hundreds or thousands of lay-
ers (He et al., 2016a; Zagoruyko and Komodakis,
2017). For the Transformer model, Wang et al.
(2022) even train a Transformer model with 1,000
layers. However, the training process of deep mod-
els is not as simple as scaling the number of layers.
When the model becomes too deep, the degradation
problem caused by the back propagation will be
exposed (He et al., 2016a).

To seek new solutions to further improve large-
scale neural networks, here we adopt the parameter-
efficient multi-path structure. As shown in Fig.
1, the multi-path models significantly outperform
wide models that scale the matrix dimensions.
From Fig. 8 and Fig. 9 we can see that, although
the multi-path model does not achieve its ideal effi-
ciency because of computational libraries support,
it still takes less training cost than wide models.
The above discussions show that multi-path is a
better option to broaden the model width, and the
width of one model is as important as its depth for
the purpose of improving capacity.

7 Conclusion

In this work, we construct a sublayer-level multi-
path structure to study how model width affects
the Transformer model. To better fuse features ex-
tracted from different paths, three additional op-
erations mentioned in Section 3 are introduced.
The experimental results on 12 machine transla-
tion benchmarks validate our point of view that,
instead of indefinitely stacking more layers, there
should be a balance between the model depth and
width to train a better large-scale Transformer.
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Limitations

For the limitation of our work, we will discuss it
from three aspects.

Non-Ideal Training Efficiency. As discussed
in Section 5.5, although the multi-path structure
adopted in this paper has an inherent advantage of
high computational parallelism, the training effi-
ciency of this kind of model does not achieve its
theoretical height. As one type of model structure
with great potential, the multi-path network should
get more attention from us, and the related compu-
tational libraries should also be completed.

Non-Optimal Hyperparameters. Just like the
training hyperparameters are quite different among
Transformer-base, big and deep systems, the op-
timal hyperparameters for models with different
depths and widths tend to be different. However,
due to the limited computing resources, we do not
tune but choose the same hyperparameters as the
deep models, which may lead to a non-optimal
setting.

Very Large-Scale Networks. Limited by the
hardware and memory resources, we did not ex-
plore very large models with much more layers and
paths. All we can do here is provide insights about
how to choose a better combination of model depth
and width with limited resources.
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