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Abstract

Active learning aims to deliver maximum bene-
fit when resources are scarce. We use COMET-
QE, a reference-free evaluation metric, to se-
lect sentences for low-resource neural machine
translation. Using Swahili, Kinyarwanda and
Spanish for our experiments, we show that
COMET-QE significantly outperforms two vari-
ants of Round Trip Translation Likelihood
(RTTL) and random sentence selection by up
to 5 BLEU points for 20k sentences selected
by Active Learning on a 30k baseline. This
suggests that COMET-QE is a powerful tool
for sentence selection in the very low-resource
limit.

1 Introduction

Active Learning (AL) is a technique that involves
querying an Oracle for labels based on a selection
strategy. For Neural Machine Translation (NMT),
active learning involves selecting sentences for
translation based on estimated model uncertainty
on the sentence or the diversity of the sentence.
The aim of AL is to choose sentences that would
maximally improve the NMT model. This is partic-
ularly attractive for low-resource languages where
budgets are small, which includes most of Africa’s
languages which have historically been neglected
(Nekoto et al., 2020).

There have been several advances in Active
Learning for NMT with Round Trip Translation
Likelihood (RTTL) being the current state of the
art (Zeng et al., 2019; Peris and Casacuberta, 2018;
Zhao et al., 2020; Koneru et al., 2022). These
advancements have typically been tested by arti-
ficially restricting high-resource languages which
mimic true low-resource languages. There have
been few empirical evaluations of how these AL
techniques perform on a low-resource African lan-
guage with less than 100K sentences. We tackle
this problem while simultaneously proposing a new
AL sentence selection strategy based on COMET-

QE (Rei et al., 2020) and show that it outperforms
two versions of RTTL, one of the most successful
AL selection algorithms, on Swahili, Spanish and
Kinyarwanda. Interestingly the RTTL variants per-
form worse than random sentence sampling in this
context.

2 Active Learning for NMT

There are several AL sentence selection frame-
works including pool-based AL, membership query
synthesis and stream-based AL (Settles, 2010). We
focus on pool-based AL where we assume their
exist a large pool of monolingual sentences for the
language. Pool-based AL in NMT is an iterative
process that involves selecting batches of sentences
after each given AL cycle (Arora and Agarwal,
2010). Given a set of parallel sentences L, a model
M is trained. M is then used to translate mono-
lingual data, U and a selection strategy scores and
ranks the sentences in U . The top sentences are
then selected for translation. After translation, the
selected sentences are added to set L and used to
retrain and improve the model (Ambati, 2012); see
Figure 1. This process is repeated until a specified
stopping criteria is fulfilled, e.g. total translation
budget reached.

The selection strategy aims to choose the N sen-
tences that will improve the model the most. Selec-
tion strategies are typically either model-driven or
data-driven. In Model-driven techniques a model
scores sentences whereas Data-driven methods,
also known as model-agnostic, involve comparing
the set of labelled and unlabelled vernacular sen-
tences to score the sentences. The current State-of-
the-art for model-driven selection is RTTL (Zeng
et al., 2019; Koneru et al., 2022) which we discuss
now.

2.1 Round Trip Translation Likelihood
(RTTL)

Zeng et al. (2019) proposed RTTL as an AL selec-
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Figure 1: Active Learning framework where the labelled
set L is used to train model M which score monolin-
gual sentences based on an uncertainty measure. After
scoring, the sentences selected based on the annotation
budget get translated and added to the training set for
retraining.

tion strategy. RTTL involves training 2 models: i)
Model M that translates from the source to target
language and ii) Model Mrev that reverse trans-
lates back to the source language. Given a source
sentence x, M generates a translation ŷ. Mrev

translates ŷ back to the source language. However,
instead of comparing of x and x̂, the probability
of getting the actual sentence x can be used to se-
lect sentences for translation. In RTTL, the key
likelihood is defined in terms of x and ŷ as:

ϕ(x,M,Mrev) = − 1

L
logPrev(x|ŷ)

where L is the length of the sentence and Prev is the
probability generated by the reverse model which
estimates the probability of the original sentence
given the translated sentence. The lower the proba-
bility the more uncertain the model is in translating
the sentence and the more likely it will thus be se-
lected for translation. We refer to this version as
RTTL and our variant, discussed below.

2.2 Random Baseline

In addition to RTTL we compare our new sentence
selection methods against a random baseline in
which sentences are selected at random.

3 New Active Learning Algorithms

In this section, we detail our proposed new sentence
selection techniques.

3.1 COMET-QE

Estimating the quality of a translation is a key area
in evaluating machine translation. There have been

Figure 2: The COMET-QE architecture. The model
receives a source sentence, s and a hypothesis, h, passes
them through the pre-trained XLM-Roberta model and
performs regression to estimate a quality score. Figure
source: (Unbabel).

several advancements in estimating the quality of
a translation without having the reference or label.
These reference-free metrics can be used as a selec-
tion strategy. Just as with RTTL, if the quality of
a model translation is poor, this sentence is a good
candidate for selection by active learning.

COMET-QE is a reference-free metric proposed
by Rei et al. (2020) under the WMT 2020 Shared
Task on Metrics. COMET-QE correlates well to
human assessments of translation quality.

COMET-QE uses a pre-trained model, XLM-
RoBERTa (XLM-R) (Conneau et al., 2020) to
encode both the source sentences as well as the
translation. Thereafter, a pooling layer converts the
embeddings into segment-level vectors and finally
the last layer produces a quality score; see Figure
2.

For our current work, Swahili, Spanish and Kin-
yarwanda source sentences and English hypotheses
were fed into the COMET-QE model, generating
quality estimates for each pair of sentences. This
AL algorithm then selects the lowest quality candi-
date sentence pairs for translation by the annotator.

3.2 Stratified RTTL

Since RTTL selects sentences with low likelihood
given the reverse translation model, one may be
concerned that it selects overly long/short sentences
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that do not truly add diversity to the training dataset.
Thus we propose stratified RTTL (S-RTTL) which
implements RTTL on length-based stratification of
the test or training sets.

S-RTTL looks at the distribution of sentence
length in the test or training set and selects the high-
est scoring sentences in each length bin/stratum pro-
portional to the number of test/training sentences
with that length. This ensures that RTTL is not bi-
ased to the sentences of a certain length. In effect,
given the initial training data distribution, S-RTTL
would select sentences that fall under the same
length distribution of test/training. An example,
if the training data has 10% sentences of length
1-10, S-RTTL picks the most uncertain sentences
of length 1-10 to fill 10% of sentences it selects.

When matching the test distribution (if it is avail-
able) S-RTTL provides a way to help deal with
dataset shift. Here we apply S-RTTL to match the
training data length distribution, though because
our test/training split is performed randomly there
is no functional difference.

4 Experiments

4.1 Datasets

We run experiments translating three languages
into English, namely Kinyarwanda, Spanish and
Swahili. We choose Swahili and Kinyarwanda be-
cause they are true low-resource African languages
whereas we chose Spanish because it was the orig-
inal language used to demonstrate RTTL, though
we mimic a very low-resource setting in our case.

Our experiments on Swahili-English uses the
SAWA Swahili dataset which consists of data from
various domains (De Pauw et al., 2009; Pauw et al.,
2011). The SAWA dataset is provided on request
by the authors (De Pauw et al., 2009). In total, there
were 272,544 parallel sentences. Pre-processing in-
cluded: removing missing rows with missing trans-
lations and removing sentences with more than 100
words. This clean set consisted of 89,505 parallel
sentences. We carried out 5 runs where we split
the data into 5 separate folds with each test consist-
ing of 17,901 parallel sentences. Of the remaining
sentences, we select 30,000 sentences as our base
training set and 1,000 sentences as our validations
set. This leaves 40,604 sentences to select from
using AL. With each iteration, we use AL to select
5,000 new sentences and add them to the training
set. The validation and test set remain the same for
each active learning strategy through all iterations

to ensure fair comparison of the methods. Byte Pair
Encoding with 4,000 merge operations was applied
to the dataset (Sennrich et al., 2016).

For the Spanish-English dataset, we utilised Eu-
roparl version 7 which consists of ∼ 2M parallel
sentences. For the Kinyarwanda-English dataset,
we used the JW300 dataset (Agić and Vulić, 2019)
which contains 436,753 parallel sentences. Pre-
processing for these 2 datasets included removing
sentences with more than 100 words and removing
sentences that are the same in both languages. We
then randomly chose 148,000 sentences to work
with. As with the Swahili-English dataset, we split
the data into 5 separate folds. With each test fold,
we randomly selected 17,000 sentences as the test
set. Thereafter, we concatenate the remaining sen-
tences with the other sentences in the training fold.
We randomly select 30,000 sentences as our base
training set and 1,000 sentences as our validations
set. Contrary to the Swahili-English dataset, due to
computational limitations we only conduct one AL
iteration where we select 20k sentence out of the
100k remaining pool of training sentences.

4.2 Training

We used the transformer-based NMT model
JoeyNMT library (Kreutzer et al., 2019). The con-
figuration for all the models were: 6 layers for both
encoder and decoder, 4 heads, embedding dimen-
sion of 256, feedforward size of 1,024. We train
over 60 epochs, applying Adam optimizer with β1
=0.9 and β2=0.98 and a learning rate of 0.001.

All training was done on Google Colab which
typically provides the Tesla K80 GPU. Every
model iteration, both training and testing, was run
an average of 4 hours with approximately 12M
parameters.

4.3 Results and Discussion

Despite its known limitations we choose the BLEU
score (Papineni et al., 2002) as a standard metric
for comparing the results for the different models.
We find that COMET-QE outperforms all of the
other methods (RTTL, S-RTTL and random) on
all three languages, often by a significant margin.
This is shown for Swahili in Figure (3) and for all
languages in Table (2). COMET-QE has nearly
double the BLEU score gain compared to RTTL
for Swahili after adding 25,000 sentences to the
baseline. Error contours are estimated 1-σ bounds
based on our multiple runs.
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Sentence Length Number of symbols
Iteration Random RTTL S- RTTL COMET-QE Random RTTL S-RTTL COMET-QE
35k 11 5.3 10.2 24.7 12.4 5.5 11.3 29.0
40k 10.7 9.0 10.4 16.4 12.1 9.9 11.5 18.7
45k 10.7 9.8 10.2 12.4 12.0 10.8 11.2 14.0
50k 10.8 11.0 10.5 9.8 12.1 12.3 11.7 10.9
55k 10.9 12.7 10.8 7.7 12.3 14.5 12.1 8.4
Average 10.82 9.56 10.42 14.2 12.18 10.6 11.56 16.2

Table 1: Analysis of the length of sentences and number of symbols in a sentence picked at each iteration of the AL
process for Swahili. COMET-QE favors longer sentences while RTTL favors shorter sentences. RTTL seems to also
pick sentences with a high ratio between sentence length and number of symbols.

Figure 3: Comparison of the four AL approaches used
on Swahili in terms of ∆ BLEU score relative to the
baseline of 30,000 sentences. COMET-QE as an AL
strategy outperforms the rest of the techniques whereas
the RTTL performs the poorest.

Our results show that COMET-QE is a promising
active learning selection strategy in the very low-
resource setting. Looking deeper into the sentences
that AL with COMET-QE selects (see Table 1), we
see that COMET-QE initially selects sentences that
are significantly longer (24.7 words per sentence)
with more symbols than any of the other methods.
With each iteration it progressively chooses shorter
and shorter sentences, ending with just 7.7 words
per sentence.

The exact opposite strategy is chosen by RTTL
which starts off selecting short sentences (5.3
words/sentence) and gradually lengthening them,
ending with 12.7 words per sentence. Ran-
dom and S-RTTL choose a middle path, with
the average length and symbol complexity being
roughly constant with each iteration (about 10.5
words/sentence).

This same pattern is seen in the number of

Language Random RTTL S-RTTL COMET-QE
Swahili 5.7± 0.8 3.0± 1.2 4.1± 0.9 7.7± 1.2
Spanish 3.2± 0.4 2.8± 0.3 1.7± 0.5 3.5± 0.4
Kinyarwanda 3.4± 0.3 2.3± 0.3 1.5± 0.5 5.1± 0.5

Table 2: Gains in BLEU score relative to a 30k sentence
baseline for each of Swahili, Spanish and Kinyarwanda
with 20k sentences selected using the various AL algo-
rithms. Error estimates are 1 − σ errors over the five
runs. The best algorithm is highlighted in bold: in all
cases COMET-QE outperforms the other AL techniques.
With these small amounts of data RTTL and S-RTTL
perform the poorest. The baseline scores for the lan-
guages with 30k sentences were: Swahili: 20.8± 0.7,
Spanish: 29.0± 0.2, Kinyarwanda: 15.7± 1.2.

unique words in each group of 5,000 sentences cho-
sen by the algorithms at each iteration. COMET-
QE’s initial choice has almost 20,000 unique words,
nearly double that of RTTL. In contrast, by the 5th
iteration, COMET-QE has halved the number of
unique words while RTTL has increased by ∼ 20%,
see Table (3).

In Figure (3) we notice that RTTL performs the
worst of all the AL strategies, contrary to what was
reported in Zeng et al. (2019) and Koneru et al.
(2022) where RTTL significantly outperforms ran-
dom. However, poor performance of RTTL relative
to random selection was also recently observed in
Hu and Neubig (2021). Here we attribute the poor
performance of RTTL to the fact that we are ex-
ploring the very-low resource setting (only 50k sen-
tences in total). RTTL requires using the learned
translation models in both directions, e.g. En-Sw
and Sw-En, and hence errors in each direction com-
pound and are amplified. In comparison COMET-
QE only requires translation in one direction and
therefore one might expect it to perform better in
the very low-resource setting. Exploring the se-
lections made by RTTL, we note that it tended to
select sentences that are not appropriate because
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Random RTTL S-RTTL COMET-QE
35k 12,448 10,662 14,356 19,995
40k 12,253 12,797 13,375 15,755
45k 12,299 12,709 12,719 13,258
50k 12,227 12,779 12,397 11,589
55k 12,394 13,095 12,107 9,948

Table 3: Number of unique Swahili words picked at
each iteration by each of the algorithms.

they are dominated by symbols or other noise of
no value to learning a translation model.

Interestingly, S-RTTL improves on RTTL but
despite choosing sentences with almost identical
average sentence length to the random selection
algorithm, still returns a BLEU score about 1.5
lower on average compared to random; see Table
(1).

Conclusions

We study various active learning strategies in a very
low-resource Neural Machine Translation (NMT)
setting, specifically using Swahili, Kinyarwanda
and Spanish to English as our target languages.
Our experiments show that using COMET-QE, a
reference-free quality estimation metric, as an Ac-
tive Learning strategy significantly performs Round
Trip Translation Likelihood (RTTL), the current
SOTA active learning method as well as random
selection.

COMET-QE initially selects long sentences with
a much greater diversity of words than the other
algorithms, leading to a BLEU score increase of
up to 5 over the 30k baseline for Swahili with just
an extra 5,000 sentences added. COMET-QE then
progressively chooses shorter sentences with fewer
rare words with each successive iteration. Con-
versely, we find that RTTL, performs worse than
random sentence selection. RTTL starts by select-
ing short sentences and then gradually increases
the sentence length in each iteration. To improve
its performance, we introduced Stratified RTTL
(S-RTTL) which matches the test or training set
sentence length distribution. This method leads to
improved performance for Swahili but not for Span-
ish and Kinyarwanda and was still worse than ran-
dom. We attribute the poor performance of RTTL
and S-RTTL to the very low-resource setting: the
translation models are still weak due to lack of data
and since RTTL uses them in both translation di-
rections its estimates of sentence quality are weak.

This shows that advances of translation quality

estimation metrics can be effectively leveraged to
improve active learning strategies for very low-
resource NMT.

Limitations

The above experiments were conducted on only
three languages and limit the study to a very low-
resource setting, below 55k sentences. This means
that the results may not apply to other languages
and investigating the performance of COMET-QE
as well as RTTL on other languages and settings is
left to future work.
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