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Abstract

This paper describes a framework to automat-
ically generate a spoken question answering
(QA) dataset. The framework consists of a
question generation (QG) module to generate
questions automatically from given text docu-
ments, a text-to-speech (TTS) module to con-
vert the text documents into spoken form and
an automatic speech recognition (ASR) mod-
ule to transcribe the spoken content. The final
dataset contains question-answer pairs for both
the reference text and ASR transcriptions as
well as the audio files corresponding to each ref-
erence text. For QG and ASR systems we used
pre-trained multilingual encoder-decoder trans-
former models and fine-tuned these models us-
ing a limited amount of manually generated QA
data and TTS-based speech data, respectively.
As a proof of concept, we investigated the pro-
posed framework for Turkish and generated
the Turkish Question Answering (TurQuAse)
dataset using Wikipedia articles. Manual evalu-
ation of the automatically generated question-
answer pairs and QA performance evaluation
with state-of-the-art models on TurQuAse show
that the proposed framework is efficient for au-
tomatically generating spoken QA datasets. To
the best of our knowledge, TurQuAse is the
first publicly available spoken question answer-
ing dataset for Turkish. The proposed frame-
work can be easily extended to other languages
where a limited amount of QA data is available.

1 Introduction

Spoken question answering (SQA) is the task of
finding the answer of a question from a given spo-
ken document. A typical approach in SQA is to
use a cascade of ASR and QA systems. ASR out-
puts transcriptions of spoken documents and QA
searches these potentially erroneous transcriptions
for the answers of given questions. Additionally,
end-to-end SQA systems that jointly train audio
and text have been proposed (Chuang et al., 2019;
Lin et al., 2022). Compared to QA on text docu-

ments, SQA has been less explored, partly due to
the limited amount of spoken datasets.

Spoken SQuAD (Li et al., 2018), which was gen-
erated from SQuAD (Rajpurkar et al., 2016, 2018)
using the Google TTS and CMU Sphinx (Walker
et al., 2004) ASR systems, is one of the largest
SQA datasets. Another example of a TTS-based
spoken dataset is Spoken-CoQA (You et al., 2022)
which was generated from CoQA (Reddy et al.,
2019). Open-Domain Spoken Question Answering
(ODSQA) (Lee et al., 2018) is a large SQA dataset
that contains the recordings of a machine reading
comprehension dataset by native Chinese speakers.

In this paper, we propose a framework to au-
tomatically generate SQA data. Our framework
contains (i) QG to automatically obtain question-
answer pairs from given text documents; (ii) TTS
to convert text into spoken documents; (iii) ASR
to transcribe spoken documents. For each module
in our framework, we use state-of-the-art systems
– mT5 for QG (Xue et al., 2021), Google Text-to-
Speech1 for TTS and XLSR (Conneau et al., 2021)
for ASR. Since both mT5 and XLSR are multilin-
gual pre-trained models and Google TTS supports
various languages, the proposed framework can
be easily utilized for different languages to gen-
erate spoken QA datasets. Only the pre-trained
models need to be fine-tuned with data from the
language of interest. Fine-tuning the QG and ASR
models requires limited amount of QA data and
TTS-based speech data, respectively. Even though
our framework follows a similar strategy with spo-
ken SQuAD in generating SQA data, the textual
QA data in our framework is also generated auto-
matically. To the best of our knowledge, our work
is the first study on automatic generation of SQA
data from scratch.

As a proof of concept, we explored the applica-
tion of the proposed framework to Turkish, where

1https://cloud.google.com/
text-to-speech
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there are limited textual (Soygazi et al., 2021) and
spoken (Ünlü and Arisoy, 2021; Ünlü et al., 2019)
QA datasets. A Turkish Question Answering
(TurQuAse) dataset was automatically generated
using Wikipedia articles and QA performance on
this dataset was evaluated with state-of-the-art mod-
els. Our main contributions can be summarized as
(i) an easily extensible framework for automatic
generation of an SQA dataset in a language of in-
terest and (ii) the first publicly available Turkish
SQA dataset, TurQuAse. We publicly share our
code, model, and datasets as open source 2.

This paper is organized as follows. Recent work
is summarized in Section 2. Section 3 presents the
proposed framework. Section 4 describes the ex-
perimental setups and reports the results on Turkish
datasets. Section 5 concludes the paper.

2 Related Work

2.1 Question Generation

Research in question generation has shifted from
RNN or LSTM based models (Du et al., 2017; Song
et al., 2018; Duan et al., 2017; Du and Cardie, 2018)
to transformer encoder-decoders. These encoder-
decoders take advantage of large pre-trained lan-
guage models as starting point and then fine-tune
the models with the dataset of interest (Lopez et al.,
2020; Dong et al., 2019). With the idea of com-
bining NLP tasks in a single framework, a text-to-
text transfer transformer (T5) (Raffel et al., 2020)
model was proposed. T5 allows the same architec-
ture to be used for multiple NLP tasks. Its multilin-
gual version, mT5 (Xue et al., 2021) has extended
this idea to various languages. In our research, we
utilize the pre-trained mT5 model to automatically
generate questions from given text documents.

2.2 Automatic Speech Recognition

Recently proposed ASR models exploit the idea of
large pre-trained models (Schneider et al., 2019;
Baevski et al., 2020; Conneau et al., 2021). To
be able to generalize the speech representations
across different languages, XLSR model (Conneau
et al., 2021) which is based on Wav2Vec 2.0 was
proposed. In our research, we use XLSR for ASR.

2.3 Spoken Question Answering

A typical SQA system relies on a cascade of ASR
and textual QA models to find answers to ques-

2https://github.com/mmerveunlu/
Framework-QA-Dataset.git

Figure 1: The proposed framework. Collected para-
graphs are taken as input and automatically generated
question-answer pairs, TTS-based audio files of the para-
graphs and corresponding ASR transcriptions are pro-
duced as output.

tions in spoken documents (Tseng et al., 2016; Lee
et al., 2019; Ünlü and Arisoy, 2021; Li et al., 2018).
To improve SQA performance, incorporating addi-
tional information from sub-words (Li et al., 2018;
Lee et al., 2018), contextualized word represen-
tations (Su and Fung, 2020), ASR confusion net-
works (Ünlü and Arisoy, 2021) and knowledge dis-
tillation using text and speech domains (You et al.,
2021a) have been investigated. Recent research on
SQA has focused on using large pre-trained mod-
els in which acoustic and text data can be trained
jointly (Chuang et al., 2019) or a self-supervised
learning followed by contrastive multi-task manner
can be used to learn the multi-modality representa-
tions (You et al., 2021b). To utilize the unlabeled
data, an ASR transcript-free model pretrained with
unpaired text and acoustic data was proposed (Lin
et al., 2022).

In our research, we evaluate the performance
of the generated textual data using BERT (Devlin
et al., 2019), mT5 (Xue et al., 2021) and Elec-
tra (Clark et al., 2020) QA models. We also evalu-
ate the performance of the generated spoken data
using BERT QA model on ASR transcriptions.

3 Framework

In this section, we describe the proposed frame-
work for generating a spoken QA dataset from
scratch. Figure 1 shows the framework where
the input is text documents and the output is
the dataset containing automatically generated
question-answer pairs, TTS-based audio files ob-
tained from the input texts and corresponding ASR
transcriptions.

3.1 Question Generation

For question generation, we utilized mT5 (Xue
et al., 2021), a multilingual encoder-decoder trans-
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former model. The encoder takes the input text
and generates vectors as inputs to the decoder. The
outputs of the decoder are generated in an autore-
gressive manner and passed to a softmax layer.

The mT5 model was fine-tuned in a multi-task
manner on the answer extraction, question gener-
ation, and question answering tasks. We modified
the QA dataset used for fine-tuning the mT5 model
to generate training data for all tasks. The answer
extraction task takes the context and predicts an
answer span. The QG task uses the predicted an-
swer span as input to generate a question. The QA
task takes the question and the context as input to
predict an answer span from the context.

In our framework, a single paragraph is given as
input to the QG model as the context. The model
first extracts possible answer spans and then uses
the extracted answer spans with the given context to
generate questions. For fine-tuning the QG model,
we used a limited amount of manually generated
QA data from the language of interest.

3.2 Text-to-Speech

We used the Google Text-to-Speech (TTS) frame-
work to generate audio data. The input paragraphs
were divided into smaller segments (10-word win-
dows) to allow XLSR to be trained with a large
batch size. Although Google TTS has an inter-
nal text normalizer, we normalized the text before
using it as input to TTS to fairly evaluate ASR
performance. Normalization involves converting
numbers to letters and removing punctuation. Qual-
ity of the normalized text affects the quality of the
synthesized audio and this may improve ASR per-
formance.

3.3 Automatic Speech Recognition

The TTS-based audio files were fed into ASR to
generate transcriptions. For ASR, we used the pre-
trained multilingual XLSR model (Conneau et al.,
2021). The ability to learn speech representations
across different languages allows this model to be
utilized for ASR in various languages.

4 Experiments

This section explains how we used the proposed
framework to generate the Turkish Question
Answering (TurQuAse) dataset, and presents our
Turkish QA and SQA experiments and results.

4.1 Turkish Text Data

For generating the TurQuAse data, we collected
460K Wikipedia pages using an XLM parser (Var-
dar et al., 2019). Each page contains a title, a
subject, a table, and several paragraphs. The title
indicates who/what the page is about. The table
contains structured information about the page. For
our framework, we used the first paragraph of each
page in our Wikipedia dataset, since the first para-
graph is usually a summary of the article with more
general information. Then, we filtered out the para-
graphs containing non-Turkish characters for better
TTS performance, the paragraphs with missing sub-
ject field to diversify the data based on subjects and
the paragraphs containing less than 40 words to
provide longer context to the QG module. Finally,
we ended up with 20.4K paragraphs.

4.2 Question Generation

The QG module was implemented in Python using
the HuggingFace library (Wolf et al., 2020). We
used the small pre-trained mT5 model with a batch
size of 8 and 32 gradient accumulation steps to
achieve an effective batch size of 256. The model
was fine-tuned for 30 epochs with a learning rate
of 1e-4 using two Turkish QA datasets, ThQuAD
(Soygazi et al., 2021) and an English to Turkish ma-
chine translated version of SQuAD. These datasets
contain 15.4K and 64.8K question-answer pairs,
respectively. After fine-tuning, the QG model re-
sulted in 83.6K question-answer pairs on the Turk-
ish Wikipedia data explained in Section 4.1. Each
paragraph has on average 4 questions, and the aver-
age question and answer lengths are around 7 and
3 words, repectively.

The performance of the QG model was evaluated
on the development set of ThQuAD and XQuAD
Turkish (Artetxe et al., 2020) with the BLEU and
ROUGE metrics. For the evaluation, we compared
the original and generated questions using both
lemmatized and surface form representations of
words. Table 1 shows that the results on ThQuAD
are better compared to XQuAD. The reason why

Rouge L BLEU 1 BLEU 2

ThQuAD
Lemmatized 0.478 0.485 0.297

Surface 0.443 0.390 0.235

XQuAD
Lemmatized 0.397 0.425 0.192

Surface 0.328 0.307 0.116

Table 1: QG performance evaluation.
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the model gives better results in ThQuAD than
XQuAD may be that the training set of ThQuAD
was also used to pre-train the QG model together
with the machine translated SQuAD3.

Among the 83.6K question-answer pairs gen-
erated from the Turkish Wikipedia articles, we
manually evaluated 2.8K paragraphs with 12.3K
question-answer pairs. This subset represents about
14% of the total data. A manual evaluation revealed
that 55% of the questions were annotated as gram-
matically correct and sensible, and among these
questions 11% had incorrect answer spans. In order
to better understand the generated questions, we an-
alyzed 168 randomly selected incorrect questions
generated by the QG module and found the follow-
ing distribution of errors: 37% factually inaccurate,
18% semantically incomplete, 39% grammatically
incomplete, and 6% incorrectly formed entities.

4.3 TTS and ASR

The TTS and ASR models were implemented in
Python using the TTS library 4 and the Hugging-
Face library (Wolf et al., 2020). Using TTS, we
generated the audio files for all 20.4K paragraphs
used as input to our framework and ended up with
223 hours of speech data. Then this data was de-
coded using the XLSR model to obtain ASR tran-
scriptions. To fine-tune the XLSR model, we used
a small amount of set apart text data from the col-
lected Turkish Wikipedia articles. After generating
the audio files with TTS for this subset, we ended
up with 8 hours of speech data for fine-tuning the
XLSR model and 2 hours of dev set for tuning the
hyperparameters. The model was fine-tuned with
an initial learning rate of 5e-4 for 30 epochs with
a batch size of 2. Note that the articles used in
QG and in fine-tuning the ASR model were dis-
joint. The ASR model yielded 14.8% WER on the
paragraphs used as input in QG. By using the QG,
TTS and ASR systems, we generated the TurQuAse
dataset. To sum up, TurQuAse contains 83.6K au-
tomatically generated question-answer pairs from
20.4K paragraphs, as well as TTS-based audio
files and ASR transcriptions corresponding to these
paragraphs.

4.4 Question Answering

For QA experiments, we trained three models:
BERT, mT5 and Electra. BERT and Electra models

3https://github.com/boun-tabi/SQuAD-TR
4https://github.com/pndurette/gTTS

ThQuAD XQuAD

EM F1 EM F1

BERTurk
ThQuAD 0.57 0.76 0.47 0.64

TurQuAse 0.46 0.67 0.43 0.58
Combined 0.57 0.76 0.50 0.64

mT5
ThQuAD 0.45 0.64 0.33 0.51

TurQuAse 0.32 0.52 0.32 0.47
Combined 0.47 0.66 0.39 0.55

Electra
ThQuAD 0.58 0.77 0.46 0.64

TurQuAse 0.45 0.66 0.44 0.58
Combined 0.57 0.77 0.52 0.66

BERTurk Zero-Shot 0.00 0.07 0.00 0.04
mBERT SQuAD 0.37 0.57 0.36 0.51

Table 2: Scores of different QA setups on ThQuAD test
set and XQuAD.

were trained with a batch size of 16 and a learning
rate of 2e-5 for 20 epochs. The mT5 model was
trained with a batch size of 8, 32 gradient accu-
mulation steps and a learning rate of 1e-3 for 20
epochs. All models were fine-tuned on ThQuAD,
TurQuAse, and a combination of these two datasets.
Models were evaluated on the ThQuAD test set and
the XQuAD Turkish set.

The Exact Match (EM) and F1 scores for the
QA experiments are given in Table 2. The first
column represents the models used in evaluation
(BERTurk (Schweter, 2020), mT5 and Turkish
Electra), the second column represents the QA
data used in fine-tuning the models (ThQuAD,
TurQuAse and combination of these two) and
the remaining columns show the QA results on
ThQuAD and XQuAD test sets.

In all experiments fine-tuning the models with
ThQuAD alone leads to better results than fine-
tuning the models with TurQuAse alone. This
might be due to TurQuAse being a noisy QA
dataset. Note that TurQuAse was generated au-
tomatically whereas ThQuAD was generated man-
ually by human annotators. However, the com-
bination of the ThQuAD and TurQuAse (Com-
bined in Table 2) improves the results especially for
XQuAD which is a QA test set from Wikipedia arti-
cles. For XQuAD, the EM improvements are 6.4%
(from 0.47 to 0.50) with the BERTurk model, 18%
(from 0.33 to 0.39) with the mT5 model and 13%
(from 0.46 to 0.52) with the Electra model. Even
though fine-tuning with the combined data did not
improve F1 for the BERTurk model, we obtained
7.8% (from 0.51 to 0.55) and 3.1% (from 0.64 to
0.66) F1 improvements with the mT5 and Electra
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ThQuAD XQuAD

EM F1 EM F1

ThQuAD 0.51 0.74 0.35 0.55
TurQuAse 0.47 0.69 0.40 0.58
Combined 0.53 0.74 0.47 0.63

Table 3: SQA Performance of the BERTurk model.

models. Fine-tuning with the combined data did
not really improve the performance on ThQuAD.
This might be due to the domain mismatch with the
ThQuAD and TurQuAse datasets.

For further analysis, we evaluated the BERTurk
model without any fine-tuning for the zero-shot
experiments (Second to the last row in Table 2).
However, the results have revealed that the Turkish
BERT model without any fine-tuning can not be
utilized for the given QA task. Additionally, we
tested a multilingual BERT model fine-tuned on
English SQuAD on Turkish datasets (The last row
in Table 2). The results of these experiments show
that using cross-lingual capabilities in QA models
can be a viable research direction.

For SQA experiments, we only used the
BERTurk model after fine-tuning with the ASR
transcriptions. In order to investigate the SQA
performance with the ThQuAD and the combined
datasets on the ThQuAD and XQuAD test sets,
we applied the TTS and ASR frameworks also to
ThQuAD and XQuAD and obtained the ASR tran-
scriptions for the paragraphs. Note that for a fair
evaluation we removed the question-answer pairs
from the training and test sets if the ASR system
did not correctly transcribe the answer.

The SQA results are given in Table 3. The
first column of the table represents the QA data
used in fine-tuning the BERTurk model and the
remaining columns represent the SQA results on
the ThQuAD and XQuAD test sets. Similar to the
QA experiments reported in Table 2, we did not
observe improvements on ThQuAD even with the
combined dataset. This might be again due to the
noise introduced by the automatically generated
TurQuAse data. However, we obtained improve-
ments on top of the model fine-tuned with ThQuAD
by using TurQuAse alone and in combination with
ThQuAD. For XQuAD, the EM improvements are
14.3% (from 0.35 to 0.40) and 34.3% (from 0.35
to 0.47) and the F1 improvements are 5.5% (from
0.55 to 0.58) and 14.5% (from 0.55 to 0.63) for the
models fine-tuned with TurQuAse alone and with

ThQuAD XQuAD

EM F1 EM F1

Reference 0.62 0.80 0.48 0.63
ASR 0.46 0.71 0.32 0.54

Table 4: QA Performance of the BERTurk model fine-
tuned on the reference transcriptions of ThQuAD.

the combined data, respectively. The best SQA per-
formance on XQuAD was obtained when ThQuAD
was combined with the TurQuAse dataset which
shows the effectiveness of the proposed framework
for the SQA task.

Additionally, we performed an experiment to in-
vestigate the effect of ASR errors on SQA. The
BERTurk model fine-tuned on the reference tran-
scriptions of ThQuAD was evaluated on the refer-
ence and ASR transcriptions of the ThQuAD and
XQuAD test sets. The results are reported in Table
4. The first row shows the QA results on reference
transcriptions and the second row shows the QA
results on the ASR transcriptions. The EM and
F1 scores have decreased when ASR transcriptions
were used in the test set. This is an expected perfor-
mance drop due to the ASR errors in the transcribed
data. Comparing the first row of Table 3 (both train-
ing and test data are ASR transcriptions) with the
last row of Table 4 (training data are reference
transcriptions and test data are ASR transcriptions)
shows that the performance drop can be alleviated
to some extent by using ASR transcriptions both in
training and test data.

5 Conclusion

In this paper we proposed a framework for generat-
ing SQA data from scratch. The framework outputs
automatically generated question-answer pairs, au-
dio data, and ASR transcriptions for a given input
text. We demonstrated the effectiveness of the pro-
posed framework by creating TurQuAse, the first
publicly available SQA dataset for Turkish. Exper-
imental results showed that the TurQuAse dataset
improves SQA performance. The framework pre-
sented in this paper can be easily extended to other
languages. As future work, we plan to improve
the quality of the automatically generated question-
answer pairs by including additional information
to QG. We are also planning to collect real speech
data for a subset of our Turkish dataset to compare
TTS and real speech performances in SQA.
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6 Ethics

The input text data used in this paper comes from
publicly available Wikipedia pages. The input data,
automatically generated questions and audio files,
do not contain any personal information. The an-
notators participated in manual annotations volun-
tarily. The Wikipedia pages used to generate the
dataset were compiled to cover as homogeneous
topics as possible to avoid any bias towards a par-
ticular topic. We will make the generated Turkish
dataset publicly available along with the implemen-
tation to ensure reproducibility.

7 Limitations

The empirical results reported herein should be con-
sidered in light of some limitations. The first limita-
tion is in the collection of the speech data. Google
TTS system is free and easy to use, but there is a
daily limit on the requests submitted. This limit
caused the audio data collection process to drag on.
As a result, we could only collect audio data for a
subset of large amounts of textual data. The second
limitation is in computational resources. Multilin-
gual state-of-the-art pretrained models require GPU
support and large memory sizes during fine-tuning,
even with small data. We utilized the models with
small number of parameters because of our limited
computational resources. The third limitation is in
working with a limited resource language for QA.
Due to the lack of Turkish QA datasets, we used the
same dataset (ThQuAD) to fine-tune both the QG
and QA models, which might impose a bias toward
this dataset. However, this bias was alleviated to
some extent when we used the spoken versions of
the datasets (noisy datasets due to ASR errors).
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