
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3337–3347
December 7-11, 2022 ©2022 Association for Computational Linguistics

Learning Cooperative Interactions for Multi-Overlap Aspect
Sentiment Triplet Extraction

ShimanZhao1,2 , WeiChen∗1,2,3 and TengjiaoWang1,2,3

1 School of Computer Science, Peking University, Beijing, China
2 Research Center for Computational Social Science, Peking University

3 Institute of Computational Social Science, Peking University (Qingdao)
shimanzhao@stu.pku.edu.cn, {pekingchenwei, tjwang}@pku.edu.cn

Abstract

Aspect sentiment triplet extraction (ASTE) is
an essential task, which aims to extract triplets
(aspect, opinion, sentiment). However, over-
lapped triplets, especially multi-overlap triplets,
make ASTE a challenge. Most existing meth-
ods suffer from multi-overlap triplets because
they focus on the single interactions between
an aspect and an opinion. To solve the above
issues, we propose a novel multi-overlap triplet
extraction method, which decodes the complex
relations between multiple aspects and opinions
by learning their cooperative interactions. Over-
all, the method is based on an encoder-decoder
architecture. During decoding, we design a
joint decoding mechanism, which employs a
multi-channel strategy to generate aspects and
opinions through the cooperative interactions
between them jointly. Furthermore, we con-
struct a correlation-enhanced network to rein-
force the interactions between related aspects
and opinions for sentiment prediction. Besides,
a relation-wise calibration scheme is adopted
to further improve performance. Experiments
show that our method outperforms baselines,
especially multi-overlap triplets.

1 Introduction

Aspect-based sentiment analysis (ABSA) (Pontiki
et al., 2016) is very important for natural language
processing (Atkinson-Abutridy, 2022), which in-
volves several fine-grained information extraction
tasks (Liang et al., 2020; Zhang et al., 2020b; Wan
et al., 2020; Wang et al., 2021; Liu et al., 2021;
Zhang et al., 2021; Hu et al., 2021). Recently,
aspect sentiment triplet extraction (ASTE) as an
essential ABSA task has received widespread at-
tention, which aims to extract triplets consisting
of an aspect, an opinion, and their corresponding
sentiment. Generally, there are some overlapped
triplets, especially multi-overlap triplets, due to
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Unstructured text:
The ease of use and the top (slightly expensive)
service from Apple never disappoint.
Aspect sentiment triplets:
(use, ease, positive)
(use, never disappoint, positive)
(service, never disappoint, positive)
(service, slightly expensive, negative)
(service, top, positive)

Table 1: Overlapped triplets under multi-aspect and
multi-opinion. And multi-overlap triplets are shown in
the dotted box. Besides, aspects, opinions, and senti-
ments are marked with red, blue, and green.

the complex relations between aspects and opin-
ions. Table 1 shows the example, “The ease of use
and the top ( slightly expensive ) service from Ap-
ple never disappoint”. Obviously, the aspect “use”
has two opinions “ease” and “never disappoint”,
whereas the other aspect “service” has three opin-
ions “top”, “slightly expensive ” and “never dis-
appoint”. And the opinion “never disappoint” is
shared by “use” and “service”. The multi-overlap
triplets are shown in Table 1 dotted box, and they
have an overlapped aspect and an overlapped opin-
ion. Obviously, multi-overlap triplets are more
challenging than other overlapped triplets in cap-
turing the relations between aspects and opinions.
Most existing methods suffer from multi-overlap
triplets. Thus, they cannot fully solve ASTE task.

There are two major research lines on ASTE task:
tag-aware methods and span-aware methods. Tag-
aware methods utilize tagging schemes to identify
three factors of a triplet. However, most of them
(Peng et al., 2020; Xu et al., 2020) cannot address
the words with multi-tag by assigning a fixed tag to
a word. Therefore, they fail to extract multi-overlap
triplets. Besides, these methods (Wu et al., 2020;
Chen et al., 2021b) suffer from triplets with multi-
word spans because they focus on the interactions
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between words. Span-aware methods are free from
the trouble of multi-word spans because they con-
sider the whole spans to identify the start and end
boundaries. Span-aware methods mainly include
question-driven (Mao et al., 2021; Gao et al., 2021)
and joint generation (Yan et al., 2021; Mukherjee
et al., 2021). However, these methods also fail to
solve multi-overlap triplets because they focus on
the single interactions between an aspect and an
opinion when extracting triplets.

In short, most existing methods are plagued with
multi-overlap triplets. In this paper, we propose an
effective multi-overlap triplet extraction method,
which decodes the complex relations between mul-
tiple aspects and opinions by learning their coop-
erative interactions. Overall, we adopt an encoder-
decoder architecture. And a joint decoding mech-
anism (JDM) is designed in the decoding process:
employing a multi-channel strategy to learn coop-
erative interactions between multiple aspects and
opinions and promote their generation in different
channels. Furthermore, we construct a correlation-
enhanced network (CEN) by encoding the context
with dependency relations, reinforcing the interac-
tions between related aspects and opinions when
predicting their sentiments. Besides, we design
a relation-wise calibration scheme to filter out un-
faithful triplets and alleviate error propagation. Our
method can effectively solve overlapped triplets, es-
pecially multi-overlap triplets.

Our contributions are summarized as follows:

• We propose a multi-overlap triplet extraction
method, which decodes the complex relations
between aspects and opinions by learning their
cooperative interactions. Our method can ef-
fectively solve multi-overlap triplets.

• We design a joint decoding mechanism, which
employs a multi-channel strategy to capture
the cooperative interactions between multiple
aspects and opinions and promote their gener-
ations in different channels.

• We construct a correlation-enhanced network
to enhance the interactions between related
aspects and opinions when predicting their
sentiments.

• Extensive experiments show that our method
outperforms baselines. Besides, it achieves
significant improvement for multi-overlap
triplets.

2 Related work

The ASTE task includes three fundamental tasks:
aspect term extraction (Xu et al., 2018), opin-
ion term extraction (Yu et al., 2018), and aspect-
oriented sentiment classification (Pontiki et al.,
2016). These fundamental tasks are point keys
in solving ASTE task. As a compound task, ASTE
has two main research lines, including tag-aware
methods (Xu et al., 2020; Zhang et al., 2020a; Chen
et al., 2021b) and span-aware methods (Chen et al.,
2021a; Mao et al., 2021; Xu et al., 2021). Then, we
introduce related works on each research line.

Tag-aware methods assign a single tag to each
word by tagging schemes. Peng et al. (2020) utilize
two BIEOS-based sequence tagging schemes to ex-
tract aspect-sentiment pairs and opinions and then
identify their relations. Xu et al. (2020) leverage a
unified sequence tagging scheme to jointly extract
three factors of a triplet. Chen et al. (2021b) pro-
pose a grid tagging scheme to tag relations between
word-word pairs to fill a sentiment relation table.
However, these methods limit the interactions be-
tween aspects and opinions by assigning a fixed
tag to each word, and they ignore the impact of the
relations between multiple aspects and opinions.
Therefore, they fail to solve multi-overlap triplets.

Span-aware methods identify the aspect and
opinion spans by considering the start and end
boundaries. Mao et al. (2021) propose a question-
driven method based on a reading comprehension
scheme. They select one or more answers to a ques-
tion to extract three factors of a triplet. Then, Chen
et al. (2021a) propose a bidirectional question-
driven method to solve ASTE task. However, these
methods focus on the interactions between a ques-
tion and its answers. Therefore, they still can-
not fully solve multi-overlap triplets. Mukherjee
et al. (2021) propose a generation method based
on a recurrent neural network (RNN) to decode
entire triplets. However, they also cannot fully
solve multi-overlap triplets due to the limitation
of the single interactions between an aspect and
an opinion. Yan et al. (2021) propose a unified
generation framework to extract triplets through a
sequence output. However, they still suffer from
multi-overlap triplets.

Unlike the above methods, our method considers
the complex relations between aspects and opinions
and captures their cooperative interactions to solve
multi-overlap triplets.
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Figure 1: The overall architecture consists of RE, JDM, and CEN components. The top-left green dotted box refers
to the CEN component, the bottom-left red dotted box refers to the RE component, and the right blue dotted box
refers to the JDM component.

3 Method

3.1 Task Formulation

For ASTE task, given a sentence X =
{x1, x2, ..., xn}. The sentence X is a sequence
of words, xi is the ith word, and n is the length
of the sentence. We use a, o, and s to represent
aspect spans, opinion spans, and sentiment polari-
ties, respectively. Besides, the superscript s and e

denote the start position and the end position of a
span. Therefore, we formulate that (as, ae) denotes
the span of an aspect and (os, oe) denotes the span
of an opinion. Besides, sp denotes sentiment po-
larities, where p ∈ (Positive,Neutral,Negative).
Each aspect sentiment triplet is defined as a 5-point
tuple T i = (asi , a

e
i , o

s
i , o

e
i , s

p
i ). ASTE task aims to

extract all aspect sentiment triplets in a text.

3.2 Model Architecture

As shown in Figure 1, our method consists of a
representation encoder (RE), joint decoding mech-
anism (JDM), and correlation-enhanced network
(CEN) components. Specially, three components
are depicted as follows:

RE. The RE component takes the Bart-encoder
as a backbone, which constructs an input sentence
and then encodes the sentence to obtain contextual-
ized hidden representations.

JDM. The JDM component consists of a sharing
decoder unit with a pointer-network and three chan-
nels (i.e., an aspect channel, an opinion channel,

and an auxiliary channel). The sharing decoder
unit takes the Bart-decoder as a backbone and then
replicates the same structure to these three channels
so that they can share parameters during training.
And the JDM component can jointly train and op-
timize these three channels through the sharing
decoder unit and generate some candidate aspect
and opinion spans.

CEN. The CEN component consists of an in-
teraction enhancement module and a relation-wise
calibration scheme. The interaction enhancement
module encodes the context with dependency rela-
tions to reinforce the interactions between related
aspects and opinions while predicting their senti-
ments. And the error propagation is alleviated by
the relation-wise calibration scheme.

3.2.1 The RE component

For a sentence X = {x1, x2, ..., xn}, we add a
special start token [CLS] and a special end token
[SEP] to X, which constructs "[CLS], X, [SEP ]"
as an input to the RE component. Then, the RE
component encodes the input into hidden states
HE . And we define HE = [hECLS , h

E
X , hESEP ],

where hEX = [hEx1
, hEx2

, ..., hExn
]. The HE is as

follows:

HE = RE([CLS], x1, x2, ..., xn, [SEP ]) (1)

where HE ∈ Rn∗d, and d is the hidden dimension.
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<CLS> I enjoyed   a caesar salad while my wife had  (  expensive   )   goat cheese - both very tasty . <SEP>
Positive

Tokens:

Pointer Indexes:     0     1       2       3     4        5        6      7     8     9  10      11         12  13     14     15 16    17    18  19   20     

PositiveNegative
Positive

Aspect Sentiment Triplets:  (4, 5, 2, 2, positive),  (4, 5, 18, 18, positive),  (13, 14, 11, 11, negative),  (13, 14, 18, 18, positive)

enjoyed caesar salad goat cheese tastyexpensive

Span Generation Channels Target Sequences
Aspect Channel [s], [AC], 4, 5, 13, 14, [/s]
Opinion Channel [s], [OC], 2, 2, 11, 11, 18, 18, [/s]
Auxiliary Channel [s], [AuxC], 0, 1, 3, 3, 6, 10, 12, 12, 15, 17, 19, 20, [/s]

Figure 2: The target sequence examples for the aspect channel, the opinion channel, and the auxiliary channel.
During training, we convert channel symbol tokens (i.e., [AC], [OC], and [AuxC]) and the special start token and
end token (i.e., [s] and [/s]) to corresponding class indexes.

3.2.2 The JDM component
We divide the whole sentence into aspect spans,
opinion spans, and other spans. Besides, we use
(auxs, auxe) to represent other spans. Then, we
construct target sequences for three channels.

To identify different channels, we add channel
symbol tokens [AC], [OC], and [AuxC] to different
target sequences. And, a special start token [s]
and a special end token [/s] are added to target
sequences. The target sequences are as follows:

• Aspect Channel:
Y = [s], [AC], as1, a

e
1, ..., a

s
i , a

e
i , [/s]

• Opinion Channel:
Y = [s], [OC], os1, o

e
1, ..., o

s
j , o

e
j , [/s]

• Auxiliary Channel:
Y = [s], [AuxC], auxs1, aux

e
1, ..., aux

s
k, aux

e
k, [/s]

The target sequence of each channel consists of
pointer indexes, which refer to the position indexes
of a sentence. Figure 2 presents a sentence with
pointer indexes and the examples of three channels.

Each channel takes the hidden states HE of the
RE component and previous outputs Ŷ<t of the
channel as inputs to get the next hidden state hDt .

hDt = Decoder(HE , Ŷ<t) (2)

where hDt ∈ Rd, the probability distribution Pt is
as follows.

HE ′
= MLP (HE) (3)

MD = Decoder.embed_tokens(X) (4)

MD ′
= Dropout(MD) (5)

Pt = Softmax(
1

2
(HE ′

+MD ′
)hDt ) (6)

where HE , HE ′
,MD,MD ′ ∈ Rn∗d, hDt ∈ R1∗d,

and Pt ∈ Rn is the probability distribution on word
indexes from a sentence.

During training, we define the target sequence
of the aspect channel as Y a = {ya1 , ya2 , ..., yaTa

},
the target sequence of the opinion channel as
Y o = {yo1, yo2, ..., yoTo

}, and the target se-
quence of the auxiliary channel as Y aux =
{yaux1 , yaux2 , ..., yauxTaux

}. Then, we utilize a cross-
entropy for optimization with LJDM :

LJDM =−
∑

(

Ta∑

t=1

yat log(ŷ
a
t ) +

To∑

t=1

yot log(ŷ
o
t )

+

Taux∑

t=1

yauxt log(ŷauxt ))

(7)

During inference, we put the start token [s]
and the channel symbol token (i.e., [AC], [OC],
or [AuxC]) instead of a single [s] into different
channels to decode the first token of the target se-
quences. Besides, we use beam search to get output
sequences Ŷ in an auto-regressive manner.

3.2.3 The CEN component
The CEN component aims to identify the relations
between aspects and opinions for multi-overlap
triplets. It includes an interaction enhancement
module and a relation-wise calibration scheme.
First, the interaction enhancement module en-
hances the interactions between related aspects and
opinions for sentiment prediction by encoding con-
text dependency. And then, a relation-wise calibra-
tion scheme is adopted to make error rectification.
The detailed descriptions are as follows.

The CEN component takes the hidden states HE

and the output sequences Ŷ a and Ŷ o as inputs. We
convert Ŷ a and Ŷ o into aspect and opinion spans.

3340



Datasets
D20a D20b

#S #MulPol #OverLap
triplets in a sentence

#S #MulPol #OverLap
triplets in a sentence

1 2 3 4 ≥ 5 1 2 3 4 ≥ 5

14res
train 1300 107 264 715 393 141 36 15 1266 122 388 605 397 165 67 32
dev 323 26 59 181 102 24 13 3 310 27 106 153 91 39 18 9
test 496 28 122 245 173 50 20 8 492 35 179 206 172 60 30 24

14lap
train 920 37 147 653 203 54 7 3 906 47 269 545 228 93 27 13
dev 228 5 53 146 61 17 2 2 219 10 63 133 62 14 5 5
test 339 14 62 226 83 22 8 0 328 18 99 184 101 23 15 5

15res
train 593 27 123 358 167 43 23 2 605 31 165 338 172 58 31 6
dev 148 11 33 84 44 16 3 1 148 8 45 76 51 15 5 1
test 318 24 48 221 66 23 7 1 322 25 68 210 77 22 10 3

16res
train 842 52 164 528 213 72 26 3 857 52 220 504 230 73 41 9
dev 210 9 39 133 58 11 7 1 210 10 56 118 63 23 5 1
test 320 10 58 204 93 18 4 1 326 11 79 192 97 23 11 3

Table 2: The sentence-level statistics of four datasets on D20a and D20b . #S denotes the overall number of sentences.
#MulPol denotes the number of sentences with triplets of different sentiments. #OverLap denotes the number of
sentences with overlapped triplets. And the items (i.e., 1, 2, 3, 4, and ≥ 5 ) denote the number of sentences with 1,
2, 3, 4, and more triples.

Datasets
D20a D20b

#S #T + 0 - #AOT #OOT #S #T + 0 - #AOT #OOT

14res
train 1300 2145 1575 143 427 568 33 1266 2337 1506 148 453 542 482
dev 323 524 377 32 115 114 16 310 577 352 48 111 144 145
test 496 862 675 45 142 258 16 492 994 666 50 146 274 242

14lap
train 920 1265 664 117 484 300 18 906 1460 696 111 480 355 362
dev 228 337 207 16 114 112 6 219 345 149 31 124 98 82
test 339 490 335 50 105 131 7 328 541 316 54 110 147 129

15res
train 593 923 703 25 195 258 20 605 1013 722 25 195 279 144
dev 148 238 179 9 50 64 6 148 249 174 9 53 69 27
test 318 455 291 25 139 98 8 322 485 297 25 139 100 55

16res
train 842 1289 933 49 307 336 30 857 1394 942 48 317 365 178
dev 210 316 225 10 81 82 4 210 339 235 11 73 81 45
test 320 465 362 27 76 114 10 326 514 371 28 76 118 71

Table 3: The triplet-level statistics of four datasets on D20a and D20b , where #T denotes the number of triplets.
‘+’, ‘0’, and ‘-’ denote the number of positive, neutral, and negative sentiments. And #AOT and #OOT denote the
number of aspect-overlapped and opinion-overlapped triplets.

Interaction Enhancement

We utilize a graph convolutional network (GCN)
to enhance the interactions between related aspects
and opinions. First, we obtain dependency relations
from the parser tree (Mrini et al., 2019). Then,
we leverage the GCN to encode the context with
dependency relations. The equation (Li et al., 2021)
is as follows.

hli = σ(
n∑

j=1

AijW
lhl−1

j + bl) (8)

where A is a dependency probability matrix, and
hli is the ith node at the lth layer. And the initial
representation of hli comes from HE . W l and bl are
learnable parameters. σ is an activation function.

We get enhanced states HG = [hG1 , h
G
2 , ...].

Then, we concatenate the start word representa-
tions of the aspect and opinion spans to predict

their sentiments. The equations are as follows.

srGao = [hGas ;h
G
os ] (9)

p(m|srGao) = Softmax((f(W 1
msrGao + b1m)W 2

m + b2m))

(10)
where srGao denotes the concatenation of the
start word representations of an aspect span and
an opinion span. Furthermore, W 1

m, b1m,W 2
m

and b2m are learnable parameters. And m ∈
{Positive,Negative,Neutral,None}.

GCN is valuable to the dependency graph, but it
heavily relies on the qualities of the parser tree. In
this component, a relation-wise calibration scheme
is adopted to alleviate dependency parser errors.
Therefore, GCN can effectively reinforce the inter-
actions between related aspects and opinions for
sentiment prediction. It is crucial to solving multi-
overlap triplets.
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Relation-wise Calibration

We can obtain the representations of aspect spans
and opinion spans based on HE . Every word can
not play an equal role in a multi-word span repre-
sentation. Therefore, we use self-attention to con-
vert a multi-word span representation into a vector,
emphasizing the meaning of important words. We
formulate that sr denotes the span representation.
The sr is described as follows:

Msr = [hEi : hEj ] (11)

Asr = Softmax(W 1
sr tanh(W

2
srM

T
sr)) (12)

sr = AsrMsr (13)

where Msr ∈ RL∗d denotes all word representa-
tions of the span from start position i to end posi-
tion j, and L denotes the number of words in the
span. Asr ∈ RL is a weight matrix, and sr ∈ Rd.
W 1

sr and W 2
sr are learnable parameters.

We formulate that sra and sro denote the rep-
resentations of the aspect span and the opinion
span. Then, we perform Cartesian Product on as-
pect spans and opinion spans to obtain candidate
aspect-opinion pair representations. The candidate
set SRao = {sr1ao, sr2ao, ..., srqao}, where srqao de-
notes the qth aspect-opinion pair representation:

srqao = [sria; sr
j
o; sr

i
a − srjo] (14)

where sria denotes the ith representation of the as-
pect span, srjo denotes the jth representation of the
opinion span, and sria - srjo denotes the difference
value between them.

Then, we use two linear layers to identify related
aspect-opinion pairs from the candidate set as a
calibration scheme to identify unfaithful triplets.
The equation is as follows.

p(r|srao) = Sigmoid((f(W 1
r srao + b1r)W

2
r + b2r)) (15)

where W 1
r ,W

2
r , b

1
r and b2r are learnable parameters,

f(.) denotes a non-linear activation function, and
r ∈ {V alid, Invalid}.

We utilize log-likelihood to optimize LCEN :

LCEN =−
∑

(
∑

srao∈SRao

logP (r∗|srao)

+
∑

srGao∈SRG
ao

logP (m∗|srGao))
(16)

where r∗ is a validation between positive and neg-
ative instances, and m∗ is the sentiment relation
between an aspect and an opinion.

3.2.4 Training
The training objective is the loss sum of the JDM
component and the CEN component.

L = αLJDM + βLCEN (17)

where α and β are hyperparameters.

4 Experiment

4.1 Datasets

We evaluate our method on D20a dataset (Peng
et al., 2020) and D20b dataset (Xu et al., 2020).
These two datasets include three sub-datasets (i.e.,
14res, 15res, 16res) in a restaurant domain and a
sub-dataset (i.e., 14lap) in a laptop domain. D20b

is the revised version of D20a , including more over-
lapped triplets. Specially, we calculate the number
of sentences with overlapped triplets, that is D20a

is 21.00%, 17.62%, 19.26%, 19.02% and D20b is
32.54%, 29.66%, 25.86%, 25.48% on 14res, 14lap,
15res, 16res, respectively. We give the sentence-
level and triplet-level statistics on D20a and D20b .
The detailed statistics are presented in Table 2 and
3. The datasets and codes are available 1.

4.2 Baselines

The baselines can be summarized as two groups:
tag-aware methods and span-aware methods.

Tag-aware methods. RINANTE model (Dai
and Song, 2019) and Li-unified model (Li et al.,
2019) use sequence tagging schemes to solve
aspect-opinion pair extraction task and aspect-
sentiment pair extraction task. Peng et al. (2020)
modify them to RINANTE+ and Li-unified+ for
ASTE task. Peng-stage model (Peng et al., 2020)
utilizes two sequence tagging schemes to jointly
solve ASTE task. JET model (Xu et al., 2020)
designs a joint tagging method to identify triplets.
GTS model (Wu et al., 2020) utilizes a table filing
method to fill a sentiment relation table.

Span-aware methods. Dual-MRC model (Mao
et al., 2021) transforms ASTE task into a reading
comprehension scheme to extract aspects, opin-
ions, and their corresponding sentiment polarities.
BART model (Yan et al., 2021) utilizes a unified
framework to decode triplets through a sequence
output. PASTE model (Mukherjee et al., 2021)
leverages RNN to construct a generative structure,
which generates an entire triplet at each time step.

1https://github.com/sentiments-Ananda/MOASTE
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Model 14res 14lap 15res 16res
ASPE AOPE ASTE ASPE AOPE ASTE ASPE AOPE ASTE ASPE AOPE ASTE

Tag

RINANTE+ 48.15 46.29 34.03 36.70 29.70 20.0 41.30 35.40 28.0 42.10 30.70
Li-unified+ 73.79 55.34 51.68 63.38 52.56 42.47 64.95 56.85 46.69 70.20 53.75 44.51
Peng-stage 74.19 56.10 51.89 62.34 53.85 43.50 65.79 56.23 46.79 71.73 60.04 53.62

JET - - 63.92 - - 50.0 - - 54.67 - - 62.98

Span
Dual-MRC 76.57 74.93 70.32 64.59 63.37 55.58 65.14 64.97 57.21 70.84 75.71 67.40

BART 78.47 77.68 72.46 68.17 66.11 57.59 69.95 67.98 60.11 75.69 77.38 69.98
Ours 79.22 78.85 74.53 71.20 69.94 62.30 71.79 69.69 63.10 78.29 78.94 74.27

Table 4: Comparison F1 score for ASPE, AOPE, and ASTE tasks on D20a . The baseline results are retrieved from
Li et al. (2019). We highlight the best results in bold.

Model 14res 14lap 15res 16res
P. R. F1. P. R. F1. P. R. F1. P. R. F1.

Tag

RINANTE+ 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.3 23.87
Li-unified+ 41.04 67.35 51.0 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
Peng-stage 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

JET 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
GTS 67.76 67.29 67.50 57.82 51.32 54.36 62.59 57.94 60.15 66.08 69.91 67.93

Span
PASTE 68.70 63.80 66.10 59.70 55.30 57.40 63.60 59.80 61.60 68.00 67.70 67.80
BART 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.6 68.68 67.62
Ours 71.78 72.84 72.28 62.83 59.59 61.16 63.53 62.77 63.06 72.73 75.23 73.95

Table 5: Comparison P (Precision), R (Recall), F1 score for ASTE task on D20b . The baseline results are retrieved
from Li et al. (2019), Xu et al. (2021), and Mukherjee et al. (2021).

4.3 Implementation Details
The uncased English version of BARTbase is our
backbone. We conduct experiments on a single
GCU (Nvidia GeForce RTX 2080 Ti) with CUDA
version 11.4. The model is trained for 30 epochs
with batch size of 8, linear warmup of 1e-1, and
weight decay of 1e-2. And we use AdamW opti-
mizer with a learning rate of 5e-5. The dropout
rate is 0.5 in Equation 5. And ReLU is the primary
activation function in equations. The number of
GCN layers is set to 2. We fix the hyperparameters
α and β as 0.1 and 0.3 for the joint training loss in
Equation 17. We report the average results of five
runs with different random seeds.

4.4 Main Results
As aforementioned, there are two research lines
on ASTE task: tag-aware methods and span-aware
methods. For each research line, we compare our
method with the above baselines and report results
in Table 4 and Table 5.

First, to conduct a detailed evaluation of ASTE
(aspect, opinion, sentiment) task, we take AOPE
(aspect, opinion) and ASPE (aspect, sentiment) as
the special cases of ASTE to verify the effective-
ness of our method on D20a . Under the F1 metric,
we report the results in Table 4 and highlight the

best results in bold. Our method dramatically im-
proves these three tasks, that is, 2.06 F1 points
for ASPE, 2.07 F1 points for AOPE, and 3.52 F1
points for ASTE on average. The results verify
the effectiveness of our method on ASTE task and
special cases of it.

Second, we use precision, recall, and F1 score
to further evaluate our method for ASTE task on
D20b . D20b presents a more challenging scenario
for overlapped triplets. The results are presented
in Table 5. Overall, we still obtain remarkable
improvement on four datasets. Our method outper-
forms the best tag-aware method (i.e., GTS) by an
average of 5.13 F1 points. And compared with the
best span-aware method (i.e., PASTE), we achieve
an average of 4.39 F1 improvement. Besides, we
observe that most span-aware methods are superior
to tag-aware methods. Tag-aware methods suffer
from triplets with multi-word spans because they
focus on the interactions between words. Span-
aware methods are free from the trouble, but most
of them don’t consider the impact of the complex
relations between multiple aspects and opinions
while decoding three factors of a triplet. Therefore,
their performances are worse than our method on
ASTE task. In conclusion, all results verify the
effectiveness of our method.
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Type Model 14res 14lap 15res 16res
P. R. F. P. R. F. P. R. F. P. R. F.

OverlapTriplet PASTE 83.40 60.76 70.34 78.58 45.52 57.56 72.64 49.06 58.50 80.80 64.14 71.54
Ours 85.05 69.43 76.45 79.74 54.96 65.06 77.55 58.04 66.39 87.06 69.54 77.32

AspectOverlap PASTE 86.38 62.04 72.32 83.42 44.12 57.18 68.84 50.00 57.88 81.80 62.66 70.82
Ours 88.64 71.53 79.16 85.37 53.52 65.78 79.07 64.40 70.97 86.96 70.00 77.55

OpinionOverlap PASTE 80.23 52.64 63.54 72.32 46.30 55.56 69.72 41.84 52.36 80.74 64.84 71.96
Ours 80.94 61.23 69.71 75.66 52.27 61.82 72.10 45.11 55.48 87.29 64.19 73.98

Table 6: Comparison P (Precision), R (Recall), F1 score for overlapped triplets (i.e., ‘OverlapTriplet’), aspect-
overlapped triplets (i.e., ‘AspectOverlap’) and opinion-overlapped triplets (i.e., ‘OpinionOverlap’) on D20b .

Model Lap Res
P. R. F. P. R. F.

PASTE 72.74 43.30 54.20 70.52 41.90 52.50
Ours 77.56 50.27 60.95 71.69 50.81 59.38
Δ 4.82 6.97 6.75 1.17 8.91 6.88

Table 7: Comparison P (Precision), R (Recall), F1 score
for sentences with multi-overlap triplets on datasets Res
and Lap. Δ indicates the gap value between ours and
PASTE. We report the average results of 5 runs.

5 Analysis & Discussion

5.1 Overlapped Triplets Analysis
We compare our method with PASTE to verify
the effectiveness on overlapped triplets. Besides,
we evaluate the performance for aspect-overlapped
triplets and opinion-overlapped triplets to further
identify the area of improvement. Experiment re-
sults are shown in Table 6. Our method outper-
forms PASTE for overlapped triplets and achieves
6.11, 7.5, 7.89, and 5.78 F1 improvements on four
datasets. Besides, we obtain an average of 8.82 F1
improvements for aspect-overlapped triplets and
an average of 4.39 F1 improvements for opinion-
overlapped triplets. The reason for the gap be-
tween them is imbalanced data distribution. Be-
sides, we observe that PASTE shows a better recall
for opinion-overlapped triplets on 16res, but it is
worse than our method due to low precision. This
fact suggests that we perform well on overlapped
triplets, including both aspect-overlapped triplets
and opinion-overlapped triplets. In short, all results
show that our method achieves significant improve-
ment for overlapped triplets.

5.2 Multi-Overlap Triplets Analysis
To verify the effectiveness of multi-overlap triplets,
we evaluate the performances on D20b . The ‘Res’
is a combined dataset from 14res, 15res, and 16res.
And the ‘Lap’ comes from 14lap. The results are
reported in Table 7. Obviously, our method can

Dataset Model ATE OTE
P. R. F. P. R. F.

14res
PASTE 81.94 81.24 81.94 81.96 81.26 81.60

Ours 84.09 85.99 85.03 83.76 87.12 85.40

14lap
PASTE 83.54 79.56 80.92 78.74 71.84 75.12

Ours 84.96 84.41 84.67 80.59 78.98 79.76

15res
PASTE 81.74 76.46 78.92 78.56 73.92 76.42

Ours 84.04 82.58 83.30 80.04 80.04 79.97

16res
PASTE 78.72 85.10 81.72 82.18 85.76 83.94

Ours 83.41 88.79 86.01 83.67 88.56 86.04

Table 8: Comparison P (Precision), R (Recall), F1 score
for ATE and OTE tasks on D20b .

effectively solve multi-overlap triplets. We obtain
convincing improvement, 6.75 F1 points on the Lap
dataset and 6.88 F1 on the Res dataset. Compared
to precision, our recall achieves more remarkable
improvement than the PASTE. Notably, we sur-
pass PASTE by 8.91 recall points at most on Res
dataset. PASTE focuses on the single interactions
between an aspect and an opinion when extracting
triplets, whereas our method considers the coop-
erative interactions between multiple aspects and
opinions. Therefore, we can better capture more
complex relations between aspects and opinions.
In conclusion, we gain significant improvement for
multi-overlap triplets.

5.3 Joint Decoding Mechanism Efficiency

In the JDM component, we employ the joint de-
coding of aspects and opinions to promote their
generation. To examine if the joint decoding mech-
anism can effectively generate aspect spans and
opinion spans, we evaluate our model for aspect
term extraction (ATE) and opinion term extraction
(OTE) tasks on D20b . As shown in Table 8, we
observe that our method outperforms PASTE on
four datasets. Moreover, we obtain significant im-
provements, 3.88 F1 points for ATE task and 3.52
F1 points for OTE task on average. The overall
performances verify the effectiveness of the joint
decoding mechanism.
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Sentence1: Surprisingly, everything is so easy and intuitive to setup or configure.
PASTE: (setup, easy, POS)

√
, (setup, intuitive, POS)

√
, (configure, intuitive, POS)

√

Ours: (setup, easy, POS)
√

, (setup, intuitive, POS)
√

, (configure, intuitive, POS)
√

(configure, easy, POS)
√

Sentence2: I enjoyed a caesar salad while my wife had (expensive) goat cheese - both very tasty.
PASTE: (caesar salad, enjoy, POS)

√
, (goat cheese, expensive, POS) ×, (goat cheese, tasty, POS)

√

Ours: (caesar salad, enjoy, POS)
√

, (caesar salad, tasty, POS)
√

, (goat cheese, expensive, POS) ×,
(goat cheese, tasty, POS)

√

Table 9: Case study for ASTE task on laptop and restaurant domains. The red and blue indicate the aspects and
opinions. Besides, ‘POS’, ‘NEU’, and ‘NEG’ indicate positive, neutral, and negative sentiments.

5.4 Cases Study

We compare our method with PASTE for two cases
in Table 9. The first case contains four multi-
overlap triplets, and we gain the best performance
for them, whereas PASTE misses a triplet. The
result indicates that our method can model the com-
plex relations between multiple aspects and opin-
ions. For the second case, our method and PASTE
make a mistake on a triplet (goat cheese, expensive,
NEG) while predicting its sentiment. The main rea-
son is the imbalanced distribution between positive
and negative triplets. Overall, we still outperform
PASTE because they miss a multi-overlap triplet
again. In short, all cases demonstrate that we can
perform well on multi-overlap triplets.

5.5 Ablation Study

We conduct an ablation study to examine the ra-
tionality of our method design, and the results are
reported in Table 10. The average F1 denotes the
results of our method on four datasets over 5 runs.
We remove the auxiliary channel, sharing decoder
unit, CEN component, and relation-wise calibra-
tion. The negative results indicate the absence of
any part can decrease our performance. Especially,
our performance dropped by 5.20 F1 points on aver-
age when the CEN component is replaced with two
linear layers. In short, the design of our method is
reasonable and achieves the best performance.

Model Average F1 Δ F1
Full model 67.61

w/o auxiliary channel 66.30 -1.31
w/o sharing decoder unit 66.19 -1.42
w/o CEN component 62.41 -5.20
w/o relation-wise calibration 64.55 -3.06

Table 10: Comparison of average F1 score for ablation
study on D20b .

6 Conclusion

We propose a multi-overlap triplet extraction
method to explore the complex relations between
multiple aspects and opinions by learning their co-
operative interactions. It addresses the limitation
that most methods focus on the single interactions
between an aspect and an opinion while decod-
ing three factors of a triplet. The ATE and OTE
tasks are solved in the decoding process through
a joint decoding mechanism. And a correlation-
enhanced network reinforces the interactions be-
tween related aspects and opinions while predicting
their sentiments. Our method obtains convincing
improvements on overlapped triplets, especially
multi-overlap triplets.

Limitations

Though we obtain convincing performances on
multi-overlap triplet extraction, the high time cost
is an obvious limitation. The multi-overlap triplet
extraction is hugely time-consuming by decoding
complex relations under multiple aspects and opin-
ions. Inevitably, our method may be slightly slower
than several previous methods. In the follow-up
work, we will pay more attention to time consump-
tion.
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A Additional Experimental Settings

We utilize PyTorch version 1.7.1 to implement our
model and conduct experiments on a single GCU
(Nvidia GeForce RTX 2080 Ti) with CUDA ver-
sion 11.4, NVIDIA-SMI 470.86, and transformer
version 3.4.0. The total number of our parameters
is 166.72M. During training, the average runtimes
(sec/epoch) for ASTE task are shown in Table 11.
An aspect sentiment triplet is correct when its three
factors match the ground-truth triplet.

Dataset 14res 14lap 15res 16res
D20a 63 42 29 41
D20b 62 42 28 42

Table 11: Average Runtime
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