
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2673–2692
December 7-11, 2022 ©2022 Association for Computational Linguistics

Experimental Standards for Deep Learning in
Natural Language Processing Research

Dennis Ulmer☼ Elisa Bassignana☼ Max Müller-Eberstein☼ Daniel Varab☼

Mike Zhang☼ Rob van der Goot☼ Christian Hardmeier☼ Barbara Plank☼UÆ

☼Department of Computer Science, IT University of Copenhagen, Denmark
UCenter for Information and Language Processing (CIS), LMU Munich, Germany

ÆMunich Center for Machine Learning (MCML), Munich, Germany
dennis.ulmer@mailbox.org

Abstract

The field of Deep Learning (DL) has under-
gone explosive growth during the last decade,
with a substantial impact on Natural Language
Processing (NLP) as well. Yet, compared
to more established disciplines, a lack of
common experimental standards remains an
open challenge to the field at large. Starting
from fundamental scientific principles, we
distill ongoing discussions on experimental
standards in NLP into a single, widely-
applicable methodology. Following these best
practices is crucial to strengthen experimental
evidence, improve reproducibility and support
scientific progress. These standards are further
collected in a public repository to help them
transparently adapt to future needs.

1 Introduction

Spurred by the advances in Machine Learning (ML)
and Deep Learning (DL), the field of Natural Lan-
guage Processing (NLP) has seen immense growth
over the span of the last ten years, as illustrated by
the number of publications in Figure 2. While such
progress is remarkable, rapid growth comes at a
cost: Akin to concerns in other disciplines (John
et al., 2012; Jensen et al., 2021), several authors
have noted major obstacles with reproducibility
(Gundersen and Kjensmo, 2018; Belz et al., 2021)
and a lack of significance testing (Marie et al.,
2021) or published results not carrying over to dif-
ferent experimental setups, for instance in text gen-
eration (Gehrmann et al., 2022) and with respect
to new model architectures (Narang et al., 2021).
Others have questioned commonly-accepted proce-
dures (Gorman and Bedrick, 2019; Søgaard et al.,
2021; Bouthillier et al., 2021; van der Goot, 2021)
as well as the (negative) impacts of research on
society (Hovy and Spruit, 2016; Mohamed et al.,
2020; Bender et al., 2021; Birhane et al., 2021) and
environment (Strubell et al., 2019; Schwartz et al.,
2020; Henderson et al., 2020). These problems
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Figure 1: Visualization of the Scientific Process in
Deep Learning. Uncertainty is introduced at each step,
influencing the resulting evidence as well as the docu-
mentation required for reproducibility or replicability.

have not gone unnoticed—many of the mentioned
works have proposed a cornucopia of solutions. In
a quickly-moving environment however, keeping
track and implementing these proposals becomes
challenging. In this work, we weave these open
issues together into a cohesive methodology for
gathering stronger experimental evidence, that can
be implemented with reasonable effort.

Based on the scientific method (Section 2), we
divide the empirical research process—obtaining
evidence from data via modeling—into four steps,
which are depicted in Figure 1: Data (Section 3),
including dataset creation and usage, Codebase
& Models (Section 4), Experiments & Analysis
(Section 5) and Publication (Section 6). For each
step, we survey contemporary findings and sum-
marize them into actionable practices for empirical
research. Using insights from adjacent sub-fields
of ML / DL, we extract useful insights to help over-
come current challenges with replicability in NLP.

Contributions 1 We survey and summarize a
wide array of proposals regarding the improvement
of the experimental (and publishing) pipeline in
NLP research into a single accessible methodology
applicable for a wide and diverse readership. At the
end of every section, we provide a summary with
the most important points, marked with ⋄ to indi-
cate that they should be seen as a minimal require-
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Figure 2: Development of NLP publications. Shown
is the development of NLP measured by the number of
peer-reviewed publications between 2012–2022 based
on the data by Rei (2022) and manual additions.

ment, and ⋆ for additional recommended actions.
2 We create, point to, or supply useful resources

to support everyday research activities and improve
soundness of research in the field. We furthermore
provide examples and case studies illustrating these
methods in Appendix A. We also provide an addi-
tional list of resources in Appendix C. The same
collection as well as checklists derived from the
actionable points at the end of sections are also
maintained in an open-source repository,1 and we
invite the research community to discuss, modify
and extend these resources. 3 We discuss current
trends and their implications, hoping to initiate a
more widespread conversation about them in the
NLP community to facilitate common standards
and improve the quality of research.

2 Preliminaries

Our proposed methodology must be built on the sci-
entific principles for generating strong evidence for
the general advancement of knowledge, as defined
by the following terms:

The Scientific Method Knowledge can be ob-
tained through several ways including theory build-
ing, qualitative methods, and empirical research
(Kuhn, 1970; Simon, 1995). Here, we focus on the
latter aspect, in which (exploratory) analyses lead
to falsifiable hypotheses that can be tested and iter-
ated upon (Popper, 1934).2 This process requires
that anyone must be able to back or dispute these
hypotheses in the light of new evidence.

1https://github.com/Kaleidophon/experimental-
standards-deep-learning-research

2While such hypothesis-driven science is not always ap-
plicable or possible (Carroll, 2019), it is a strong common
denominator that encompasses most empirical ML research.

In the following, we focus on the evidence-based
evaluation of hypotheses and how to ensure the sci-
entific soundness of the experiments which gave
rise to the original empirical evidence, with a focus
on replicability and reproducibility. In computa-
tional literature, one term requires access to the
original code and data in order to re-run experi-
ments exactly, while the other requires sufficient
information in order to reproduce the original find-
ings even in the absence of code and original data
(see also Figure 1).3

Replicability Within DL, we take replicability
to mean the exact replication of prior reported ev-
idence. In a computational environment, access
to the same data, code and tooling should be suf-
ficient to generate prior results. However, many
factors, such as hardware differences, make exact
replication difficult to achieve. Nonetheless, we
regard experiments to be replicable if a practitioner
is able to re-run them to produce the same evidence
within a small margin of error dependent on the
environment, without the need to approximate or
guess experimental details.

Reproducibility In comparison, we take repro-
ducibility to mean the availability of all neces-
sary and sufficient information such that an exper-
iment’s findings can be independently reaffirmed
when the same research question is asked. As dis-
cussed later, the availability of all components for
replicability is rare—even in a computational set-
ting. An experiment then is reproducible if anyone
with access to the publication is able to re-identify
the original evidence, i.e. exact results differing,
but patterns across experiments being equivalent.

We assume that the practitioner aims to fol-
low these principles in order to find answers to
a well-motivated research question by gathering
the strongest possible evidence for or against their
hypotheses. The following methods therefore aim
to reduce uncertainty in each step of the experi-
mental pipeline in order to ensure reproducibility
and/or replicability (visualized in Figure 1).

3 Data

Frequently, it is claimed that a model solves a par-
ticular cognitive task, however in reality it merely

3Strikingly, these central terms already lack agreed-upon
definitions (Peng, 2011; Fokkens et al., 2013; Liberman, 2015;
Cohen et al., 2018), however we follow the prevailing defini-
tions in the NLP community (Drummond, 2009; Dodge and
Smith, 2020) as the underlying ideas are equivalent.

2674

https://github.com/Kaleidophon/experimental-standards-deep-learning-research
https://github.com/Kaleidophon/experimental-standards-deep-learning-research


scores higher than others on some specific dataset
according to some predefined metric (Schlangen,
2021). Of course, the broader goal is to im-
prove systems more generally by using individ-
ual datasets as proxies. Admitting that our exper-
iments cover only a small slice of the real-world
sample space will help more transparently mea-
sure progress towards this goal. In light of these
limitations and as there will always be private or
otherwise unavailable datasets which violate repli-
cability, a practitioner must ask themselves: Which
key information about the data must be known in
order to reproduce an experiment’s findings? In
this section we define requirements for putting this
question into practice during dataset creation and
usage such that anyone can draw the appropriate
conclusions from a published experiment.

Choice of Dataset The choice of dataset will
arise from the need to answer a specific research
question within the limits of the available resources.
Such answers typically come in the form of com-
parisons between different experimental setups
while using the equivalent data and evaluation met-
rics. Using a publicly available, well-documented
dataset will likely yield more comparable work,
and thus stronger evidence. In absence of public
data, creating a new dataset according to guidelines
which closely follow prior work can also allow for
useful comparisons. Should the research question
be entirely unexplored, creating a new dataset will
be necessary. In any case, the data itself must con-
tain the information necessary to generate evidence
for the researcher’s hypothesis. For example, a
model for a classification task will not be learn-
able unless there are distinguishing characteristics
between data points and consistent labels for eval-
uation. Therefore, an exploratory data analysis is
recommended for assessing data quality and antic-
ipating problems with the research setup. Simple
baseline methods such as regression analyses or
simply manually verifying random samples of the
data may provide indications regarding the suit-
ability and difficulty of the task and associated
dataset (Caswell et al., 2021).

Metadata At a higher level, data sheets and state-
ments (Gebru et al., 2020; Bender and Friedman,
2018) aim to standardize metadata for dataset au-
thorship in order to inform future users about as-
sumptions and potential biases during all levels
of data collection and annotation—including the

research design (Hovy and Prabhumoye, 2021). Si-
multaneously, they encourage reflection on whether
the authors are adhering to their own guidelines
(Waseem et al., 2021). Generally, higher-level doc-
umentation should aim to capture the dataset’s rep-
resentativeness with respect to the global popula-
tion. This is especially crucial for “high-stakes”
environments in which subpopulations may be dis-
advantaged due to biases during data collection and
annotation (He et al., 2019; Sap et al., 2021). Even
in lower–stake scenarios, a model trained on only
a subset of the global data distribution can have
inconsistent behaviour when applied to a different
target data distribution (D’Amour et al., 2020; Koh
et al., 2020). For instance, domain differences have
a noticeable impact on model performance (White
and Cotterell, 2021; Ramesh Kashyap et al., 2021).
Increased data diversity can improve the ability of
models to generalize to new domains and languages
(Benjamin, 2018), however diversity is difficult to
quantify (Gong et al., 2019) and full coverage is
unachievable. This highlights the importance of
documenting representativeness in order to ensure
reproducibility—even in absence of the original
data. For replicability using the original data, fur-
ther considerations include long-term storage and
versioning, as to ensure equal comparisons in fu-
ture work (see Appendix A.1 for case studies).

Instance Annotation Achieving high data qual-
ity entails that the data must be accurate and rele-
vant for the task to enable effective learning (Puste-
jovsky and Stubbs, 2012; Tseng et al., 2020) and re-
liable evaluation (Bowman and Dahl, 2021; Basile
et al., 2021). Since most datasets involve hu-
man annotation, a careful annotation design is cru-
cial (Pustejovsky and Stubbs, 2012; Paun et al.,
2022). Ambiguity in natural language poses inher-
ent challenges and disagreement is genuine (Basile
et al., 2021; Specia, 2021; Uma et al., 2021). As
insights into the annotation process are valuable,
yet often inaccessible, we recommend to release
datasets with individual-coder annotations, as also
put forward by Basile et al. (2021); Prabhakaran
et al. (2021) and to complement data with insights
like statistics on inter-annotator coding (Paun et al.,
2022), e.g., over time (Braggaar and van der Goot,
2021), or coder uncertainty (Bassignana and Plank,
2022). When creating new datasets such infor-
mation strengthens the reproducibility of future
findings, as they transparently communicate the
inherent variability instead of obscuring it.
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Pre-processing Given a well-constructed or well-
chosen dataset, the first step of an experimental
setup will be the process by which a model takes
in the data. This must be well documented or
replicated—most easily by publishing the asso-
ciated code—as perceivably tiny pre-processing
choices can lead to huge accuracy discrepan-
cies (Pedersen, 2008; Fokkens et al., 2013). Typi-
cally, this involves decisions such as sentence seg-
mentation, tokenization and normalization. In gen-
eral, the data setup pipeline should ensure that a
model “observes” the same kind of data across
comparisons. Next, the dataset must be split into
representative subsamples which should only be
used for their intended purpose, i.e., model train-
ing, tuning and evaluation (see Section 5). In order
to support claims about the generality of the results,
it is necessary to use a test split without overlap
with other splits. Alternatively, a tuning / test set
could consist of data that is completely foreign to
the original dataset (Ye et al., 2021), ideally even
multiple sets (Bouthillier et al., 2021). It should be
noted that even separate, static test splits are prone
to unconscious “overfitting” if they have been in
use for a longer period of time, as people aim to
beat a particular benchmark (Gorman and Bedrick,
2019). If a large variety of resources are not avail-
able, it is also possible to construct challenging
test sets from existing data (Ribeiro et al., 2020;
Kiela et al., 2021; Søgaard et al., 2021). Finally,
the metrics by which models are evaluated should
be consistent across experiments and thus benefit
from standardized evaluation code (Dehghani et al.,
2021). For some tasks, metrics may be driven by
community standards and are well-defined (e.g.,
classification accuracy). In other cases, approxi-
mations must stand in for human judgment (e.g.,
in machine translation). In either case—but espe-
cially in the latter—dataset authors should inform
users about desirable performance characteristics
and recommended metrics.

Appropriate Conclusions The results a model
achieves on a given data setup should first and fore-
most be taken as just that. Appropriate, broader
conclusions can be drawn using this evidence pro-
vided that biases or incompleteness of the data are
addressed (e.g., results only being applicable to
a subpopulation). Even with statistical tests for
the significance of comparisons, properties such as
the size of the dataset and the distributional char-
acteristics of the evaluation metric may influence

the statistical power of any evidence gained from
experiments (Card et al., 2020). It is therefore im-
portant to keep in mind that in order to claim the
reliability of the obtained evidence, for example,
larger performance differences are necessary on
less data than what might suffice for a large dataset,
or across multiple comparisons (see Section 5). Fi-
nally, a practitioner should be aware that a model’s
ability to achieve high scores on a certain dataset
may not be directly attributable to its capability
of simulating a cognitive ability, but rather due to
spurious correlations in the input (Ilyas et al., 2019;
Schlangen, 2021; Nagarajan et al., 2021). By for
instance only exposing models to a subset of fea-
tures that should be inadequate to solve the task, we
can sometimes detect when they take unexpected
shortcuts (Fokkens et al., 2013; Zhou et al., 2015).
Communicating the limits of the data helps future
work in reproducing prior findings more accurately.

Best Practices: Data
⋄ Consider dataset and experiment limitations when

drawing conclusions (Schlangen, 2021);

⋄ Document task adequacy, representativeness and pre-
processing (Bender and Friedman, 2018);

⋄ Split the data such as to avoid spurious correlations;

⋄ Publish the dataset accessibly & indicate changes;

⋆ Perform exploratory data analyses to ensure task ade-
quacy (Caswell et al., 2021);

⋆ Publish the dataset with individual-coder annotations,
besides aggregation;

⋆ Claim significance considering the dataset’s statistical
power (Card et al., 2020).

4 Codebase & Models

The NLP community has historically taken pride
in promoting open access to papers, data, code,
and documentation, but some have also noted
room for improvement (Wieling et al., 2018; Belz
et al., 2020). One practice has been to open-source
all components of the experimental procedure
in a repository, consisting of all code, necessary
scripts, and detailed documentation. The benefit
of such a repository is in its ability to enable direct
replication. In particular, a comprehensive code
base directly enables replicability. In practice, such
documentation is often communicated through a
README file, in which user-oriented information
is described.4 In DL, full datasets can be large

4In Appendix B, we propose minimal requirements for a
README file and give pointers on files and code structure.
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and impractical to share. Due to their importance
however, it is essential to carefully consider how
one can share the data with researchers in the
future. Therefore, repositories for long-term data
storage backed by public institutions should be
preferred (e.g., LINDAT/CLARIN by Váradi
et al., 2008, more examples in Appendix C).
Nevertheless, practitioners often can not distribute
data due to privacy, legal, or storage reasons. In
such cases, practitioners must instead carefully
consider how to distribute data and tools to allow
future research to produce accurate replications of
the original data (Zong et al., 2020).

Hyperparameter Search Hyperparameter tun-
ing strategies remain an open area of research (e.g.,
Bischl et al., 2021), but are central to the replication
of contemporary models. The following rules of
thumb exist: Grid search or Bayesian optimization
can be applied if few parameters can be searched
exhaustively under the computation budget. Other-
wise, random search is preferred, as it explores the
search space more efficiently (Bergstra and Bengio,
2012). Advanced methods like Bayesian Optimiza-
tion (Snoek et al., 2012) and bandit search-based
approaches (Li et al., 2017) can be used as well
if applicable (Bischl et al., 2021). To avoid un-
necessary guesswork, the following information
is expected: Hyperparameters that were searched
per model (including options and ranges), the final
hyperparameter settings used, number of trials, and
settings of the search procedure if applicable. As
tuning of hyperparameters is typically performed
using specific parts of the dataset, it is essential to
note that any modeling decisions based on them
automatically invalidate their use as test data.

Models Contemporary models (e.g., Vaswani
et al., 2017; Devlin et al., 2019; Dosovitskiy et al.,
2021; Chen et al., 2021) have very large computa-
tional and memory footprints. To avoid retraining
models, and more importantly, to allow for replica-
bility, it is recommended to save and share model
weights. This may face similar challenges as those
of datasets (namely, large file sizes), but it remains
an impactful consideration. In most cases, simply
sharing the best or most interesting model could
suffice. It should be emphasized that distributing
model weights should always complement a well-
documented repository as libraries and hosting sites
might not be supported in the future.

Model Evaluation The exact model and task
evaluation procedure can differ significantly (e.g.
Post, 2018). It is important to either reference the
exact evaluation script used (including parameters,
citation, and version, if applicable) or include the
evaluation script in the codebase. Moreover, to ease
error or post-hoc analyses, we highly recommend
saving model predictions whenever possible and
making them available at publication (Card et al.,
2020; Gehrmann et al., 2022).

Model Cards Apart from quantitative evalua-
tion and optimal hyperparameters, Mitchell et al.
(2019) propose model cards: A type of standard-
ized documentation, as a step towards responsible
ML and AI technology, accompanying trained ML
models that provide benchmarked evaluation in a
variety of conditions, across different cultural, de-
mographic, or phenotypic and intersectional groups
that are relevant to the intended application do-
mains. They can be reported in the paper or project,
and can help to collect important information for
reproducibility, such as preprocessing and evalu-
ation results. We refer to Mitchell et al. (2019);
Menon et al. (2020) for examples of model cards.

Best Practices: Codebase & Models
⋄ Publish a code repository with documentation and

licensing to distribute for replicability;

⋄ Report all details about hyperparameter search and
model training;

⋄ Specify the hyperparameters for replicability;

⋄ Publish model predictions and evaluation scripts.;

⋆ Use model cards;

⋆ Publish models;

5 Experiments & Analysis

Experiments and their analyses constitute the core
of most scientific works, and empirical evidence is
valued especially highly in ML research (Birhane
et al., 2021). Therefore, we discuss the most
common issues and counter-strategies at different
stages of an experiment.

Model Training For model training, it is advis-
able to set a random seed for replicability, and
train multiple initializations per model in order
to obtain a sufficient sample size for later statis-
tical tests. The number of runs should be adapted
based on the observed variance: Using for instance
bootstrap power analysis, existing model scores
are raised by a constant compared to the original
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sample using a significance test in a bootstrapping
procedure (Yuan and Hayashi, 2003; Tufféry, 2011;
Henderson et al., 2018). If the percentage of signif-
icant results is low, we should collect more scores.5

Bouthillier et al. (2021) further recommend to vary
as many sources of randomness in the training pro-
cedure as possible (i.e., data shuffling, data splits
etc.) to obtain a closer approximation of the true
model performance. Nevertheless, any drawn con-
clusion are still surrounded by a degree of statistical
uncertainty, which can be combated by the use of
statistical hypothesis testing.

Significance Testing Using deep neural net-
works, a number of (stochastic) factors such as
the random seed (Dror et al., 2019) or even the
choice of hardware (Yang et al., 2018) or frame-
work (Leventi-Peetz and Östreich, 2022) can influ-
ence performance and need to be taken into account.
First of all, the size of the dataset should support
sufficiently powered statistical analyses (see Sec-
tion 3). Secondly, an appropriate significance test
should be chosen. We give a few rules of thumb
based on Dror et al. (2018): When the distribution
of scores is known, for instance a normal distri-
bution for the Student’s t-test, a parametric test
should be chosen. Parametric tests are designed
with a specific distribution for the test statistic in
mind, and have strong statistical power (i.e. a lower
Type II error). The underlying assumptions can
sometimes be hard to verify (see Dror et al., 2018
§3.1), thus when in doubt non-parametric tests can
be used. This category features tests like the Boot-
strap, employed in case of a small sample size, or
the Wilcoxon signed-rank test (Wilcoxon, 1992),
when plenty observations are available. Depending
on the application, the usage of specialized tests
might furthermore be desirable (Dror et al., 2019;
Agarwal et al., 2021). We also want to draw atten-
tion to the fact that comparisons between multiple
models and/or datasets, require an adjustment of
the confidence level, for instance using the Bonfer-
roni correction (Bonferroni, 1936), which is a safe
and conservative choice and easily implemented
for most tests (Dror et al., 2017; Ulmer et al., 2022).
Azer et al. (2020) provide a guide on how to ad-
equately word insights when a statistical test was
used, and Greenland et al. (2016) list common pit-
falls and misinterpretations of results. Due to spa-
tial constraints, we here refer to Appendix A.4 for

5The resulting tensions with modern DL hardware require-
ments are discussed in Section 7.

a number of easy-to-use software packages and
further reading on the topic.

Critiques & Alternatives Although statistical
hypothesis testing is an established tool in many
disciplines, its (mis)use has received criticism
for decades (Berger and Sellke, 1987; Demšar,
2008; Ziliak and McCloskey, 2008). For instance,
Wasserstein et al. (2019) criticize the p-value as re-
inforcing publication bias through the dichotomy of
“significant” and “not significant”, i.e., by favoring
positive results (Locascio, 2017). Instead, Wasser-
stein et al. (2019) propose to report it as a contin-
uous value and with the appropriate scepticism.6

In addition to statistical significance, another ap-
proach advocates for reporting effect size (Berger
and Sellke, 1987; Lin et al., 2013), so for instance
the mean difference, or the absolute or relative gain
in performance for a model compared to a baseline.
The effect size can be modeled using Bayesian anal-
ysis (Kruschke, 2013; Benavoli et al., 2017), which
better fit the uncertainty surrounding experimental
results, but requires the specification of a plausi-
ble statistical model producing the observations 7

and potentially the usage of Markov Chain Monte
Carlo sampling (Brooks et al., 2011; Gelman et al.,
2013). Benavoli et al. (2017) give a tutorial for
applications to ML and supply an implementation
of their proposed methods in a software package
(see Appendix C) and guidelines for reporting de-
tails are given by Kruschke (2021), including for
instance the choice of model and priors.

Best Practices: Experiments & Analysis

⋄ Report mean & standard dev. over multiple runs;

⋄ Perform significance testing or Bayesian analysis and
motivate your choice of method;

⋄ Carefully reflect on the amount of evidence regarding
your initial hypotheses.

6 Publication

In this section, we discuss some additional trends in
the DL field that researchers should consider when
publishing their work, even though they might not
directly be related to reproducibility & replicability.

6Or, as Wasserstein et al. (2019) note: “statistically signifi-
cant—don’t say it and don’t use it”.

7Here, we are not referring to a neural network, but instead
to a process generating experimental observations, specifying
a prior and likelihood for model scores. Conclusions are drawn
from the posterior distribution over parameters of interest (e.g.,
the mean performance), as demonstrated by Benavoli et al.
(2017).
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Citation Control While frequently, researchers
cite non-archival versions of papers, the published
version of a paper is peer-reviewed, increasing the
probability that any mistakes or ambiguities have
been resolved. In Appendix C, we suggest tools to
verify the version of any cited papers.

Hardware Requirements The paper should re-
port the computing infrastructure used. At mini-
mum, the specifics about the CPU and GPU. This
is for indicating the amount of compute necessary
for the project, but also for the sake of replicabil-
ity issues due to the non-deterministic nature of
the GPU (Jean-Paul et al., 2019; Wei et al., 2020).
Moreover, Dodge et al. (2019) demonstrate that
test performance scores alone are insufficient for
claiming the dominance of a model over another,
and argue for reporting additional performance de-
tails on validation data as a function of computation
budget, which can also estimate the amount of com-
putation required to obtain a given accuracy.

Environmental Impact The growth of compu-
tational resources required for DL over the last
decade has led to financial and carbon footprint
discussions in the AI community. Schwartz et al.
(2020) introduce the distinction between Red AI—
AI research that seek to obtain state-of-the-art re-
sults through the use of massive computational
power—and Green AI—AI research that yields
novel results without increasing computational cost.
In the paper the authors propose to add efficiency
as an evaluation criterion alongside accuracy mea-
sures. Hershcovich et al. (2022) advocate for the us-
age of a climate performance model card, in which
energy and emission statistics are being detailed.
Strubell et al. (2019) approximate financial and en-
vironmental costs of training a variety of models
(e.g., BERT, GPT-2). In conclusion, to reduce costs
and improve equity, they propose (1) Reporting
training time and sensitivity to hyperparameters,
(2) Equitable access to computation resources, and
(3) Prioritizing computationally efficient hardware
and algorithms (Appendix C includes a tool for
CO2 estimation of computational models).

Social Impact The widespread of DL studies and
their increasing use of human-produced data (e.g.,
from social media and personal devices) means the
outcome of experiments and applications have di-
rect effects on the lives of individuals. Addressing
and mitigating biases in ML is near-impossible as
subjectivity is inescapable and thus converging in a

universal truth may further harm already marginal-
ized social groups (Waseem et al., 2021; Parmar
et al., 2022). As a follow-up, Waseem et al., 2021
argue for a reflection on the consequences the imag-
inary objectivity of ML has on political choices.
Hovy and Spruit (2016) analyze and discuss the
social impact research may have beyond the more
explored privacy issues. They make an ethical anal-
ysis on social justice, i.e., equal opportunities for in-
dividuals and groups, and underline three problems
of the mutual relationship between language, soci-
ety and individuals: exclusion, over-generalization
and overexposure.

Ethical Considerations There has been effort on
the development of concrete ethical guidelines for
researchers within the ACM Code of Ethics and
Professional Conduct (Association for Computing
Machinery, 2022). The Code lists seven principles
stating how fundamental ethical principles apply to
the conduct of a computing professional (like DL
and NLP practitioners) and is based on two main
ideas: computing professionals’ actions change
the world and the public good is always the pri-
mary consideration. Mohammad (2021) discusses
the importance of going beyond individual models
and datasets, back to the ethics of the task itself.
As a practical recommendation, he presents Ethics
Sheets for AI Tasks as tools to document ethical
considerations before building datasets and devel-
oping systems. In addition, researchers are invited
to collect the ethical considerations of the paper in
a cohesive narrative, and elaborate them in a para-
graph, usually in the Introduction/Motivation, Data,
Evaluation, Error Analysis or Limitations section
(Mohammad, 2020; Hardmeier et al., 2021).

Best Practices: Publication
⋄ Avoid citing pre-prints (if applicable);

⋄ Describe the computational requirements;

⋄ Consider the potential ethical & social impact;

⋆ Consider the environmental impact and prioritize com-
putational efficiency;

⋆ Include an Ethics and/or Bias Statement.

7 Discussion

Since previous sections have emphasized the need
to overhaul some experimental standards, we ded-
icate this last section to discuss some structural
issues that might pose obstacles to this.
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Compute Requirements Specifically with re-
gard to statistical significance in Section 5, there
is a stark tension between the hardware require-
ments of modern methods (Sevilla et al., 2022) and
the computational budget of the average researcher.
Only the best-funded research labs can afford the
increasing computational costs to account for the
statistical uncertainty of results and to reproduce
prior works (Hooker, 2021). Under these circum-
stances, it becomes difficult to judge whether the
results obtained via larger models and datasets actu-
ally constitute substantial progress or just statistical
flukes. At the same time, such experiments can cre-
ate environmental concerns (Strubell et al., 2019;
Schwartz et al., 2020).8 The community must de-
cide collectively whether these factors, including
impeded reproducibility and weakened empirical
evidence, constitute a worthy price for the knowl-
edge obtained from training large neural networks.

Incentives in Publishing As demonstrated by
Figure 2, NLP has gained traction as an empirical
field of research. At such a point, more rigorous
standards are necessary to maintain high levels of
scholarship. Unfortunately, we see this process
lagging behind, illustrated by repeated calls for im-
provement (Gundersen and Kjensmo, 2018; Narang
et al., 2021). Why is that so? We speculate that the
reason for many of these problems are caused by
adverse incentives set by the current publishing en-
vironment: As the career of researchers hinges on
their publications and more rigorous experimental
standards are often not required to get published, re-
producing and reproducible works are not rewarded.
Instead, actors are tempted to “rig the benchmark
lottery” (Dehghani et al., 2021), since achieving
state-of-the-art results remains important for pub-
lishing (Birhane et al., 2021). As of now, better
experimental standards often do not increase the ac-
ceptance probability: The more details are provided
for replicability purposes, the more potential points
of criticism are exposed to reviewers. This state
of affairs might still seem like progress to some,
but Chu and Evans (2021) show how an increased
amount of papers actually leads to slowed progress
in a field, making it harder for new, promising ideas
to break through. Furthermore, Raff (2022) shows
that reproducible work can actually have a positive
impact on a paper’s citation rates, and thus should
be more embraced.

8E.g., GPT-3’s training was estimated to have cost ca. 12M
USD (Turner, 2020) or 188,702 kWh (Anthony et al., 2020).

Culture Change How can we change this trend?
As researchers, we can start implementing the rec-
ommendations in this work in order to drive bottom-
up change and reach a critical mass (Centola et al.,
2018). As reviewers, we can shift focus from re-
sults to more rigorous methodologies (Rogers and
Augenstein, 2021), and allow more critiques and
reproductions of past works and meta-reviews to
be published (Birhane et al., 2021; Lampinen et al.,
2021). As a community, we can change the in-
centives around research and experiment with new
initiatives. Rogers and Augenstein (2020) and Su
(2021) give recommendations on how to improve
the peer-review process by better paper-reviewer
matching and paper scoring. Other attempts are
currently undertaken to encourage reproduction of
past works.9 Other ideas change the publishing pro-
cess more fundamentally, for instance by splitting
it into two steps: The first part, where authors are
judged solely on the merit of their research ques-
tion and methodology; and the second one, during
which the analysis of their results is evaluated (Lo-
cascio, 2017). In a similar vein, van Miltenburg
et al. (2021) recommend a procedure similar to
clinical studies, where whole research projects are
pre-registered, i.e., specifying the parameters of re-
search before carrying out any experiments (Nosek
et al., 2018). The implications of these ideas are
not only positive, however, as a slowing rate of
publishing might disadvantage junior researchers
(Chu and Evans, 2021).

8 Conclusion

Being able to (re-)produce empirical findings is
critical for scientific progress, particularly in fast-
growing fields like NLP (Manning, 2015). To re-
duce the risks of a reproducibility crisis and unre-
liable research findings (Ioannidis, 2005), experi-
mental rigor is imperative. Being aware of possible
harmful implications and to avoid them is therefore
important. Every step carries possible biases (Hovy
and Prabhumoye, 2021; Waseem et al., 2021). This
paper aims at providing a toolbox of actionable
recommendations for each research step, and a
reflection and summary of the ongoing broader
discussion. With concrete best practices to raise
awareness and call for uptake, we hope to aid re-
searchers in their empirical endeavors.

9See for instance the reproducibility certication of the
TMLR journal (TMLR, 2022) or NAACL 2022 reproducibility
badges (Association for Computational Linguistics, 2022).

2680



Limitations

This work comes with two main limitations: On the
one hand, it can only take a snapshot of an ongoing
discussion. On the other hand, this work was aimed
to primarily serve the NLP community, although
other disciplines using DL might also profit from
these guidelines. With these limitations in mind,
we invite members of the community to contribute
to our open-source repository.
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consequences in lieu with our work.
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A Case Studies & Further Reading

The implementation of the methods we advocate
for in our work can be challenging. This is why we
dedicate this appendix to listing further resources
and pointing to examples that illustrate their in-
tended use.

A.1 Data

Data Statement Following Bender and Fried-
man (2018), the long form data statement should
outline CURATION RATIONALE, LANGUAGE VA-
RIETY, SPEAKER DEMOGRAPHIC, ANNOTA-
TOR DEMOGRAPHIC, SPEECH SITUATION, TEXT

CHARACTERISTICS and a PROVENANCE AP-
PENDIX. A good example of a long form data
statement can be found in Appendix B in Plank
et al. (2020), where each of the former mentioned
topics are outlined. For example, with respect to
ANNOTATOR DEMOGRAPHIC, they mention “three
students and one faculty (age range: 25-40), gen-
der: male and female. White European. Native
language: Danish, German. Socioeconomic status:
higher-education student and university faculty.”
This is a concise explanation of the annotators in-
volved in their project.

Data Quality Text corpora today are building
blocks for many downstream NLP applications
like question answering and summarization. In
the work of Caswell et al. (2021), they audit the
quality of quality of 205 language-specific corpora
released within major public datasets. At least 15 of
these 205 corpora have no usable text, and a large
fraction contains less than 50% sentences of accept-
able quality. The tacit recommendation is looking
at samples of any dataset before using it or releas-
ing it to the public. A good example is Varab and
Schluter (2020, 2021), who filter out low-quality
news articles from their summarization dataset with
empty summaries or bodies, removing duplicates,
and removing summaries that are long than them
main body of text. More wide varieties of data
filtering can be applied, like filtering on length-
ratio, LangID, and TF-IDF wordlists (Caswell et al.,
2020). Note that there is no easy solution—data
cleaning is not a trivial task (Caswell et al., 2021).

Universal Dependencies Nivre et al. (2020) aims
to annotate syntactic dependencies in addition to
part-of-speech tags, morphological features etc. for
as many languages as possible within a consistent
set of guidelines. The dataset which consists of tree-

banks contributed by various authors is updated in a
regular half-yearly cycle and is hosted on the long-
term storage LINDAT/CLARIN repository (Váradi
et al., 2008). Each release is clearly versioned
such that fair comparisons can be made even while
guidelines are continuously adapted. Maintenance
of the project is conducted on a public git repos-
itory, such that changes to both the data and the
guidelines can be followed transparently. This al-
lows for contributors to suggest changes via pull
requests.

A.2 Models
There are several libraries that allow for model
hosting or distribution of model weights for “ma-
ture” models. HuggingFace (Wolf et al., 2020)
is an example of hosting models for distribution.
It is an easy-to-use library for practitioners in
the field. Other examples of model distribution
is Keras Applications10 or TensorFlow Model
Garden (Yu et al., 2020). Other ways of distribut-
ing models is setting hyperlinks in the repository
(e.g., Joshi et al., 2020), to load the models from the
checkpoints they have been saved to. A common
denominator of all the aforementioned libraries is
to list relevant model performances (designated
metrics per task), the model size (in bytes), model
parameters (e.g., in millions), and inference time
(e.g., any time variable).

A.3 Codebase
At the code-level, there are several examples of
codebases with strong documentation and clean
project structure. We define documentation and
project structure in Appendix B. Here, we give
examples going from smaller projects to larger
Python projects:

The codebase of CateNETS (Curth and van der
Schaar, 2021b,a; Curth et al., 2021)11 shows a clear
project structure. This includes unit tests, version-
ing of the library, and licensing. In addition, there
are specific files for each published work to repli-
cate the results.

Not all projects require a pip installation or
unit tests. For example—similar to the previous
project—MaChAmp (van der Goot et al., 2021)12

shows detailed documentation, including several
reproducible experiments shown in the paper (in-
cluding files with model scores) and a clear project

10https://keras.io/api/applications/
11https://github.com/AliciaCurth/CATENets
12https://github.com/machamp-nlp/machamp
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structure. Here, one possible complication lies
in possible dependency issues once the repository
grows, with unit tests as a mitigation strategy.

AdapterHub (Pfeiffer et al., 2020)13 demon-
strates the realization of a large-scale project.
This includes tutorials, configurations, and
hosting of technical documentation (https://
docs.adapterhub.ml/), as well as a dedicated
website for the library itself.

A.4 Experimental Analysis

Statistical Hypothesis Testing A general intro-
duction to significance testing in NLP is given
by Dror et al. (2018); Raschka (2018); Azer et al.
(2020). Furthermore, Dror et al. (2020) and Rie-
zler and Hagmann (2021) provide textbooks around
hypothesis testing in an NLP context. Japkowicz
and Shah (2011) describe the usage of statistical
test for general, classical ML classification algo-
rithms. When it comes to usage, Zhang and Plank
(2021) describe the statistical test used with all pa-
rameter and results alongside performance metrics.
Shimorina et al. (2021) report p-values alongside
test statistics for the Spearman’s ρ test, using the
Bonferroni correction due to multiple comparisons.
Apidianaki et al. (2018) transparently report the p-
values of a approximate randomization test (Riezler
and Maxwell III, 2005) between all the competitors
in an argument reasoning comprehension shared
task and interpret them with the appropriate degree
of carefulness.

Bayesian analysis Bayesian Data Analysis has a
long history of application across many scientific
disciplines. Popular textbooks about the topic are
given by Kruschke (2010); Gelman et al. (2013)
with a more gentle introduction by Kruschke and
Liddell (2018). Benavoli et al. (2017) supply an in-
depth tutorial for Bayesian Analysis for Machine
Learning, by using a Bayesian signed ranked test
(Benavoli et al., 2014), an extension of the fre-
quentist Wilcoxon signed rank test and a Bayesian
hierarchical correlated t-test (Corani and Benavoli,
2015). Applications can be found for instance by
Nilsson et al. (2018), who use the Bayesian corre-
lated t-test (Corani and Benavoli, 2015) to investi-
gate the posterior distribution over the performance
difference to compare different federated learning
algorithms. To evaluate deep neural networks on
road traffic forecasting, Manibardo et al. (2021)

13https://github.com/Adapter-Hub/adapter-
transformers

employ Bayesian analysis and plot Monte Carlo
samples from the posterior distribution between
pairs of models. The plots include ROPEs, i.e.,
regions of practical equivalence, where the judge-
ment about the superiority of a model is suspended.

A.5 Publication Considerations

Replicability Gururangan et al. (2020) report in
detail all the computational requirements for their
adaptation techniques in a dedicated sub-section.
Additionally, following the suggestions by Dodge
et al. (2019), the authors report their results on the
development set in the appendix.

Environmental Impact By introducing Multi-
BERTs (Sellam et al., 2021), the authors include
in their paper an Environmental Statement. In the
paragraph they estimate the computational cost of
their experiments in terms of hours, and consequen-
tial tons of CO2e. They release the trained models
publicly with the aim to allow subsequent studies
by other researchers without the computational cost
of training MultiBERTs to be incurred.

Hershcovich et al. (2022), instead, propose a cli-
mate performance model card as a way to system-
atically report the climate impact of NLP research.

Social and Ethical Impact Brown et al. (2020)
present GPT-3 and include a whole section on the
Broader Impacts language models like GPT-3 have.
Despite improving the quality of text generation,
they also have potentially harmful applications.
Specifically, the authors discuss the potential for
deliberate misuse of language models, and the po-
tential issues of bias, fairness and representation
(focusing on the gender, race and religion dimen-
sions).

The work of Hardmeier et al. (2021) assists the
researcher in writing a bias statement, by recom-
mending to provide explicit statements of why the
system’s behaviors described as “bias” are harm-
ful, in what ways, and to whom, then to reason on
them. In addition, they provide an example of a
bias statement from Basta et al. (2019).

B Contents of Codebase

The README First, the initial section of
the README would consist of the name of the
repository—to what paper or project is this code
base tied to? Including a hyperlink to the paper or
project itself. Second, developers also indicate the
structure of the repository—what and where are
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the files, folders, code, et cetera in the project and
how would they be used.

Empirical work requires the installation of li-
braries or software. It is important to install the
right versions of the libraries to maintain replicabil-
ity, and indicate the correct version of the specific
package. In Python, a common practice is to make
use of virtual environments in combination with
a requirements.txt file. The main purpose of a
virtual environment is to create an isolated environ-
ment for code projects. Each project can have its
own dependencies (libraries) regardless of what de-
pendencies every other project has to avoid clashes
between libraries. For example, this file can be
created by piping the output of pip freeze to a
requirements.txt file. For further examples of
virtual environment tools, we refer to Table 1 (Ap-
pendix C).

To ensure replicability, the practitioner writes a
description on how to re-run all experiments that
are depicted in a paper to get the same results. For
example, these are evaluation scores or graphical
plots. This can come in the form of a bash script,
that indicates all the commands necessary.14 Sim-
ilarly, one can also indicate all commands in the
README. To give credit to each others work, the
last section of the README is usually reserved for
credits, acknowledgments, and the citation. The
citation is preferably provided in BibTeX format.

Project Structure From the Python program-
ming language perspective, there are several refer-
ences for initializing an adequate Python project
structure.15 This includes a README, LICENSE,
setup.py, requirements.txt, and unit tests. To
quote The Hitchhiker’s Guide to Python (Reitz and
Schlusser, 2016) on the meaning of “structure”:

“By ‘structure’ we mean the decisions
you make concerning how your project
best meets its objective. We need to con-
sider how to best leverage Python’s fea-
tures to create clean, effective code. In
practical terms, ‘structure’ means mak-
ing clean code whose logic and depen-
dencies are clear as well as how the files
and folders are organized in the filesys-
tem.”

14See for instance https://robvanderg.github.io/
blog/repro.htm

15Some examples: https://docs.python-
guide.org/writing/structure/ and https:
//coderefinery.github.io/reproducible-research/
02-organizing-projects/

This includes decisions on where functions
should go into which modules. Also on how data
flows through the project. What features and func-
tions can be grouped together or even isolated? In
a broader sense, to answer the question on how the
finished product should look like.

C Resources

An overview over all mentioned resources in the
paper is given in Table 1.
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Table 1: Overview over mentioned resources.

Name Description Link

ACL Anthology Website hosting all the published proceedings of the ACL. https://aclanthology.org

ACL pubcheck Tool to check the format and the citations of papers written
with the ACL style files.

https://github.com/acl-org/aclpubcheck

Anonymous Github Website to anonymize a Github repository. https://anonymous.4open.science

baycomp (Benavoli et al., 2017) Implementation of Bayesian tests for the comparison of clas-
sifiers.

https://github.com/janezd/baycomp

BitBucket A website and cloud-based service that helps developers store
and manage their code, as well as track and control changes
to their code.

https://bitbucket.org/

Conda Open Source package management system and environment
management system.

https://docs.conda.io/

codecarbon (Schmidt et al., 2021) Python package estimating and tracking carbon emission of
various kind of computer programs.

https://github.com/mlco2/codecarbon

dbpl Computer science bibliography to find correct versions of
papers.

https://dblp.org/

deep-significance (Ulmer et al.,
2022) Python package implementing the ASO test by Dror et al.

(2019) and other utilities
https://github.com/Kaleidophon/deep-significance

European Language Resources As-
sociation (ELRA, 1995) Public institution for language and evaluation resources http://catalogue.elra.info/en-us/

GitHub A website and cloud-based service that helps developers store
and manage their code, as well as track and control changes
to their de.

https://github.com/

Google Scholar Scientific publication search engine. Note that the ACL An-
thology should be preferred, as Google Scholar often indexes
the first occurence of a paper (which is frequently a pre-print)

https://scholar.google.com/

Hugging Face Datasets (Lhoest
et al., 2021) Hub to store and share datasets https://huggingface.co/datasets

HyBayes (Azer et al., 2020) Python package implementing a variety of frequentist and
Bayesian significance tests

https://github.com/allenai/HyBayes

LINDAT/CLARIN (Váradi et al.,
2008) Open access to language resources and other data and services

for the support of research in digital humanities and social
sciences

https://lindat.cz/

ONNX Open format built to represent Machine Learning models. https://onnx.ai/

Pipenv Virtual environment for managing Python packages https://pipenv.pypa.io/

Protocal buffers Data structure for model predictions https://developers.google.com/protocol-buffers/

rebiber Python tool to check and normalize the bib entries to the
official published versions of the cited papers.

https://github.com/yuchenlin/rebiber

Semantic Scholar Scientific publication search engine. https://www.semanticscholar.org/

Virtualenv Tool to create isolated Python environments. https://virtualenv.pypa.io/

Zenodo General-purpose open-access repository for research papers,
datasets, research software, reports, and any other research
related digital artifacts

https://zenodo.org/
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