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Abstract

Open Information Extraction (OpenIE) facili-
tates the open-domain discovery of textual facts.
However, the prevailing solutions evaluate Ope-
nIE models on in-domain test sets aside from
the training corpus, which certainly violates the
initial task principle of domain-independence.
In this paper, we propose to advance OpenIE
towards a more realistic scenario: generaliz-
ing over unseen target domains with different
data distributions from the source training do-
mains, termed Generalized OpenIE. For this
purpose, we first introduce GLOBE, a large-
scale human-annotated multi-domain OpenIE
benchmark, to examine the robustness of re-
cent OpenIE models to domain shifts, and the
relative performance degradation of up to 70%
implies the challenges of generalized OpenIE.
Then, we propose DragonIE, which explores
a minimalist graph expression of textual fact:
directed acyclic graph, to improve the OpenIE
generalization. Extensive experiments demon-
strate that DragonIE beats the previous methods
in both in-domain and out-of-domain settings
by as much as 6.0% in F1 score absolutely, but
there is still ample room for improvement.

1 Introduction

Open Information Extraction (OpenIE) aims to
mine open-domain facts indicating a semantic re-
lation between a predicate phrase and its argu-
ments from plain text (Etzioni et al., 2008), without
fixed relation vocabulary. OpenIE developments
have been demonstrated to benefit various domains
and applications, such as knowledge base popula-
tion (Dong et al., 2014), question answering (Fader
et al., 2014), and summarization (Fan et al., 2019)

Recently, OpenIE has seen remarkable advances.
Regarding different strategies for representing open
fact, recent techniques with deep neural models can
be subsumed under two categories, i.e., sequence-
based and graph-based. Sequence-based models
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predict the facts one by one in an auto-regressive
fashion with iterative labeling or generation frame-
work (Cui et al., 2018; Sun et al., 2018; Kolluru
et al., 2020a,b), which is the most classical solu-
tion in OpenIE. Graph-based method formulates
OpenIE as a maximal clique discovery problem
based on the span-level text graph (Yu et al., 2021),
in which the edge between two spans is defined
as the combination of their roles in corresponding
fact. To the end, O(m2) edges of O(r2) types are
constructed for a fact with m spans of r roles.

Owning to the exquisite design, both sequence-
based and graph-based models can identify com-
plicated facts, thus constantly refreshing perfor-
mance on benchmarks. Nonetheless, it is still un-
explored whether these models are sufficient for
true open-domain extraction. This doubt comes
from that the training and test data in existing Ope-
nIE benchmarks are generally independent and
identically distributed, i.e., drawn from the same
domain (Stanovsky et al., 2018; Sun et al., 2018;
Gashteovski et al., 2019). However, this assump-
tion does not hold in practice. Built on domain-
independence (Niklaus et al., 2018), OpenIE mod-
els have to process diverse text, it is common to
observe domain shifts among training and test data
in applications. Therefore, the performance on in-
domain benchmarks may not exactly measure the
generalization of out-of-domain extraction.

Starting from this concern, we carry out exten-
sive experiments to investigate whether state-of-the-
art OpenIE models preserve good performance on
unseen target domains. To provide a reliable bench-
mark, we publicize the first Generalized OpenIE
dataset containing 110,122 open facts annotated hu-
manly on 20,899 sentences collected from 6 com-
pletely different domains. We find out that, there
are some noticeable semantic differences between
open facts in different domains, posing challenges
to the generalization of OpenIE models. Because
of domain shifts, in sequence-based models, the
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accuracy in each step prediction declines signif-
icantly, and the early errors are magnified later.
Similarly, in the graph-based model, the reduced
edge prediction ability struggles to accurately con-
nect O(m2) edges of O(r2) types especially when
the span number m and role number r are both no
small in complicated facts. As a result, their F1
scores degrade as much as 70% relatively (from
43% to 13%) when applied to unfamiliar domains,
thus cannot work well in real-world extraction.

The above observations demonstrate full-fledged
open-domain extraction still has a long way to go,
and suggest a way for a more generalized OpenIE
model: we should reduce the extraction complexity
to lower the potential risk of prediction errors in
domain shifts. This is essentially the Occam’s Ra-
zor principle (Rasmussen and Ghahramani, 2000):
among all functions which fit the training data well,
simpler functions are expected to generalize better.
Therefore, we explore a minimalist expression of
open fact: by sequentially connecting the boundary
positions of all spans in the fact with their order in
the text, each open fact can be simply modeled as
a directed acyclic graph. Then OpenIE is equiva-
lent to predicting the graph adjacency matrix and
decoding facts from the directed graph. This idea
leverages the sequential priors to reduce the com-
plexity of function space (edge number and type)
in the previous graph-based model from quadratic
to linear, while avoiding auto-regressive extraction
in sequence-based models, thus improving general-
ization. We implement it in DragonIE, a Directed
acyclic graph based open Information Extractor.

We perform extensive in-domain and out-of-
domain experiments for OpenIE. On the previous
commonly used in-domain evaluation, DragonIE
outperforms the state-of-the-art method, with sub-
stantial gains of up to 3.6% average F1 score, 3x
speedup, and 5x convergence. Meantime, it re-
duces the number of edges by 66% and the number
of edge types by 88% compared with the previous
graph-based method. On our newly proposed out-
of-domain benchmark, DragonIE further improves
the performance gap to 6.0%, and still exceeds
the previous methods with only 10% training data,
showing better generalization. Detailed analysis
shows that DragonIE can effectively represent over-
lapping, nested, discontinuous, and multiple facts
despite its simplicity. We also perform a qualitative
analysis that summarizes typical extraction errors
and outlines the future directions.

Datasets #Sents #Facts Human? Shift?

OIE2016 (2016) 3,180 8,477 ✗ ✗
SAOKE (2018) 46,930 166,370 ✓ ✗
CaRB (2019) 1,282 5,263 ✓ ✗
OpenIE4 (2020b) 92,774 190,661 ✗ ✗
LSOIE-wiki (2021) 24,296 56,662 ✗ ✗

GLOBE (our) 20,899 110,122 ✓ ✓

Table 1: Comparison of representative OpenIE datasets.
Human means the dataset is human-annotated rather
than model-derived or converted from other corpus.
Shift denotes the dataset supports the evaluation of Ope-
nIE generalization performance with domain shift.

2 Pilot Experiment

To quantitatively evaluate the robustness of Ope-
nIE model against domain shifts, we first propose
a standard evaluation setup for generalized Ope-
nIE. Then, we conduct pilot experiments as well as
empirical analyses in this section.

2.1 Generalized OpenIE Evaluation Setup
Given a sentence, OpenIE aims to output a set of
facts in the form of (subject, predicate, object1, · · · ,
objectn), and all of them are stated explicitly in the
text (Yu et al., 2021). As shown in Table 1, Most
existing OpenIE datasets assume that the training
and test data are identically distributed without do-
main shift, which is certainly opposite to the task
principle of domain independence. To address this
issue, we present GLOBE, a GeneraLized OpenIE
BEnchmark. Firstly, sentences in GLOBE are col-
lected from six distinct data sources, including in-
surance, education, finance, government, medicine,
and news, which distinguishes GLOBE from exist-
ing datasets. Then, GLOBE is annotated following
the guidelines of SAOKE (Sun et al., 2018), the
largest human-annotated OpenIE dataset collected
from Baidu Encyclopedia. Thus they can com-
bine to produce a complete training-test evalua-
tion setup, comprehensively evaluating generalized
OpenIE. Specifically, the models are first trained
on the SAOKE training set, and then the model
with the best performance on the SAOKE dev set
is selected to output results on GLOBE. The anno-
tation details and descriptive statistics of GLOBE
are presented in Appendix A.

2.2 Result Analysis
We select the best-performing sequence model
IGL-OIE (Kolluru et al., 2020a), and graph model
MacroIE (Yu et al., 2021), for our pilot experiments.
The evaluation metric is gestalt F1 score (Yu et al.,
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Figure 1: Gestalt F1 score comparasion on six out-of-
domain test sets and the original in-domain test set.

2021). Note that there are ore datasets and metrics
in the main experiments (Section 4).

Figure 1 shows a detailed comparison across dif-
ferent domains and models on GLOBE. From the
results we can see that: compared with the perfor-
mances on SAOKE under in-domain setting, both
the sequence-based and graph-based models en-
counter great performance drops on out-of-domain
GLOBE, with a relative decline of 35%-70% in F1
score. This indicates that the robustness of OpenIE
model may be challenged in cross-domain general-
ization. Intuitively, there are obvious differences in
the topic and style of texts in different domains. For
example, in the medical domain, subject and object
are usually rare biological terminology, which is
less covered in the limited general-domain training
data. Such a semantic shift degrades the prediction
ability of the model fitted to the training set.

Exacerbating this issue further, modern OpenIE
models often contain multiple prediction steps. Un-
der domain shifts, every step is likely to go wrong,
resulting in a collapse in the overall performance.
Specifically, sequence-based models predict facts
auto-regressively, an mispredicted fact will directly
affect the extraction of all the following facts. The
graph-based model requires O(m2) edges of O(r2)
types for a fact with m spans of r roles. In GLOBE,
the built graph contains an average of 28.5 edges
with a total of 176 edge types for each open fact,
and the wrong prediction of any edge may lead to
the overall failure. Thus, these methods are vulner-
able to out-of-domain generalization.

3 Methodology

From the above observations, we know that recent
OpenIE models are too complex to generalize. In
this section, we propose a simplified expression of
open fact: directed acyclic graph. We start with
the motivation of our new graph structure, then go
through the implementation details.

John is the premier and first minister of British Columbia

John

premier first 
minister
ofof

British Columbia

John

premier of

first 
minister
of

British Columbia

subject predicate object

(a) undirected maximal clique (b) directed acyclic graph

Figure 2: An example of representing open facts as an
undirected maximal clique or a directed acyclic graph.

3.1 Motivation
How to properly model open fact is the most im-
portant problem in OpenIE system design. The
previous graph-based model treats spans belonging
to one open fact as an undirected clique such that
spans are pairwise connected with a combination
of their roles as the edge type. Whereas, as shown
in Figure 2, there is actually a natural reading order
from left to right between spans in the text. Such
sequential prior means we can simply connect the
edges between adjacent spans in the text to deter-
mine open facts. In this way, the model no longer
has to identify the pairwise relation between each
span pair, which lessens the learning burden by
reducing the edge numbers from O(m2) to O(m).
Moreover, benefiting from the directed edge, we
can assign the role of one connected span as the
edge type, and recursively obtain the roles of all
spans, thus greatly simplifying the edge type space
from O(r2) to O(r). Meanwhile, the edges can be
predicted in parallel, thus solving the cascade error
in previous auto-regressive models.

3.2 Directed Acyclic Graph
The above operation actually converts each input
text to a directed acyclic graph (DAG). In graph
theory, a DAG consists of vertices and edges, with
each edge directed from one vertex to another, such
that following those directions will never form a
closed loop. DAG can be topologically ordered,
by arranging the vertices as a linear ordering with
the edge directions. This feature is consistent with
what we want to combine span in the order that
it appears in the text. If we treat each continuous
span involved in one fact asserted by the input text
as a vertex in DAG, and connect oriented edges,
from one vertex to another one that later appears in
the text and belongs to the same fact. Then in the
simple case shown in Figure 2, each directed path
from root to leaf vertex represents an open fact.
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Figure 3: An overview of DargonIE. When building DAG, it enumerates each word pair and predict their edges.
Thus, for spans with a single word, such as As, there will be two vertexes refer to the beginning and ending words.

Unfortunately, such an elegant paradigm is not
suitable for all scenarios. When dealing with some
complex cases like Figure 3, it encounters the fol-
lowing challenges: (1) The granularity of text is
word, while the granularity of open fact is span,
so it is necessary to predict not only the relations
between spans but also what is a span in the fact;
(2) Different spans may be overlapping and share
some words, as the span of America is enclosed
in another span leadership of America in the case
of Figure 3. (3) Different facts may be overlap-
ping and share some fact elements (either subject,
predicate or object). For example, Biden acts as
the subject in all the three facts and is not the root
vertex. Therefore, we cannot simply assume that
each path in the DAG represents an open fact.

DAG Construction. These challenges prompt
us to design the following three types of edges to
avoid ambiguous extraction: (1) intra-span edge: it
connects the beginning and ending words of a span
with a I tag. (2) inter-span edge: it connects the
Ending word of a span and the Beginning/Ending
word of the next span in the fact with a EB-X/EE
tag, respectively, where X represents the role of the
next span. Intuitively, each span can be uniquely
identified by its two boundary words, and the dou-
ble inter-span edge design helps distinguish over-
lapping spans. If we only connect the ending words
of two spans, such as the and America, we cannot
determine whether the subsequent span of the is
leadership of America or of America, because they
have the same ending word, and it is the same with
just using the EB-X tag. (3) intra-fact edge: it con-
nects the Beginning word of the first span and the
Ending word of the last span in a fact with a BE-X
tag to delimit the boundary of a fact. In this way,
even for overlapping facts, we can accurately judge
the range of each fact within DAG. Because only
the role of the subsequent span is indicated in the
inter-span edge, the role of the first span in the fact

is unknown, so we specify it in BE-X.
DAG Decoding. With the edge definition above,

we first find all BE-X edges to determine the be-
ginning and ending words of target facts, and then
traverse all paths between them, in which each path
represents a fact. During decoding each path, all
the I edges are utilized to determine the spans in
the path, then we can judge the role of each span
according to the EB-X edge and distinguish over-
lapping spans with the EE edge. Finally, spans in
each path are combined according to their roles to
output structured facts. Besides, DAG can natu-
rally identify discontinuous facts, where each ele-
ment in open fact may contain multiple spans. we
can splice the spans of the same role in the order
of the text to get the discontinuous element. In
Section 5.2, we empirically conclude that our con-
structed DAG has been a minimalist expression
of open fact: arbitrarily removing any edge will
reduce the representation ability. The Occam’s Ra-
zor principle has stated that among all functions
that have a good training set fit, the simplest one is
likely to generalize better. Thus DAG is expected
to have great generalization in OpenIE.

3.3 Architecture
Therefore, OpenIE is transformed into how to build
a desired DAG. To this end, we propose DragonIE,
a Directed acyclic graph based open Information
Extractor. Intuitively, the edges defined in DAG
depict the relation between words in the text, so
DragonIE enumerates all word pairs and makes
parallel prediction1:

h1, · · · ,hn = Encoder(w1, · · · , wn), (1)

si,j = h⊤
i Uhj +W[hi;hj ] + b, (2)

pi,j = Sigmoid(si,j). (3)
1To clearly explore whether a more simplified graph struc-

ture can bring better generalization, we reuse the architecture
of previous graph-based method (Yu et al., 2021) here.
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It first maps each word wi into a d-dimensional
contextual vector hi ∈ Rd with a basic encoder
such as BERT (Devlin et al., 2019). Then each
(hi,hj) is fed to a pairwise score function, followed
by a Sigmoid layer to yield the probability of each
edge type pi,j ∈ Rc (Wang et al., 2020, 2021).
During training, we optimize the parameters θ of
DragonIE to minimize the cross-entropy loss:

J(θ) =−
n∑

i=1

n∑

j=i

c∑

k=1

(yi,j [k]log(pi,j [k])

+ (1− yi,j [k])log(1− pi,j [k])), (4)

where pi,j [k] ∈ [0, 1] is the predicted probability
of (wi, wj) along the k-th edge type, and yi,j [k] ∈
{0, 1} is ground truth. At inference, a threshold δ
tuned on the dev set is applied to filter low confi-
dence prediction and get the final edge labels.

4 Experimental Setup

4.1 Datasets
In our experiments, we evaluate the models on
three datasets. (1) SAOKE (Sun et al., 2018) is the
largest human-annotated OpenIE dataset annotated
from Baidu Encyclopedia. It contains 20k samples
for training, 2k for validation, and 2k for testing.
Their division is independent and identically dis-
tributed so that SAOKE can be used as the standard
dataset under the in-domain setting. (2) GLOBE is
the largest multi-domain OpenIE test set proposed
in Section 2.1. It follows the annotation scheme of
SAOKE, but the domains are different, so it can ef-
fectively verify the performance of OpenIE models
under the out-of-domain setting. (3) CarB (Bhard-
waj et al., 2019) is the first crowdsourced OpenIE
dataset containing 1,282 sentences. Recently, it
is widely used in testing models trained on Ope-
nIE4 (Kolluru et al., 2020b). However, OpenIE4
is automatically-derived with great data noise, and
the annotation scheme is inconsistent with CarB,
so the results on CarB are relatively unreliable.

4.2 Implementation Details
We implement DragonIE by initializing the encoder
parameters from BERT for English (Devlin et al.,
2019) and Chinese (Cui et al., 2020). DragonIE is
optimized by BertAdam with a maximum sequence
length of 200, an epoch number of 30, and a learn-
ing rate of 1e-5. The threshold δ is selected from
[0.2, 0.4]. We select the model with best perfor-
mance on validation set to output results on test

set. Hyper-parameters are selected based on the
validation set, and all experiments are conducted
on a single Tesla V100 GPU.

4.3 Baselines and Evaluation metrics
We employ recent neural models as strong base-
lines: sequential labeling (IGL-OIE (Kolluru et al.,
2020a)), sequential generation (IMoJIE (Kolluru
et al., 2020b)), and graph-based (MacroIE (Yu et al.,
2021)) models. Following the convention (Yu et al.,
2021), we evaluate the performance with three
most widely adopted metrics: CaRB-single (Kol-
luru et al., 2020a), CaRB-multi (Bhardwaj et al.,
2019) and Gestalt (Sun et al., 2018). Each criterion
produces three values: F1 score, the area under
P-R curve (AUC), and the point in the P-R curve
corresponding to the optimal F1 (Opt. F1).

5 Experimental Results

Our experiments aim to answer three questions:

Q1 How does DragonIE compare to other methods
in both in-domain and out-of-domain settings?

Q2 Does DragonIE effectively handle complex ex-
traction scenarios despite its simplicity?

Q3 What causes the performance gap between out-
of-domain and in-domain OpenIE?

5.1 Overall Performance (Q1)
Table 2-4 report the results of different models on
all three datasets. We can see that DragonIE estab-
lishes a new state-of-the-art for this task, and the
improvement is statistically significant on the 5%
level for all datasets. On the standard in-domain
OpenIE benchmark SAOKE, DragonIE improves
upon the previous best-performing model MacroIE
in F1 score by absolute margins of 3.8, 3.9, and 3.3
points in CaRB-single, CaRB-multi, and Gestalt,
respectively. We use the models trained on SAOKE
to get predictions on the out-of-domain benchmark
GLOBE. DragonIE constantly achieves better re-
sults than existing methods, and the absolute gains
are more impressive compared with the in-domain
setting: from 3.6 to 6.0 F1 points on average, al-
though there is still ample room for improvement
(we will discuss it in Section 5.3). The detailed
comparison results in each domain of GLOBE are
reported in Appendix B.2. Even for CaRB has
much noise in the training data, our method still
improves all evaluation metrics. These observa-
tions verify that DragonIE has the flexibility to
fact extraction, generalization to domain shift, and
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Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IMoJIE (Kolluru et al., 2020b) 36.6 22.6 37.0 38.7 25.4 39.5 36.4 22.5 37.3
IGL-OIE (Kolluru et al., 2020a) 37.6 22.8 38.4 39.3 25.5 40.6 37.1 23.6 38.4
MacroIE (Yu et al., 2021) 41.2 24.5 41.5 42.7 27.8 43.7 42.8 27.2 43.7

DragonIE (ours) 45.0 29.0 45.1 46.6 31.3 46.7 46.1 30.1 46.1

Table 2: In-domain Evaluation: Main results on the in-domain benchmark SAOKE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE (Kolluru et al., 2020a) 24.9 10.5 25.1 27.5 10.5 27.7 21.1 8.2 21.7
MacroIE (Yu et al., 2021) 25.5 10.0 25.6 27.1 11.4 27.2 22.4 7.5 22.5

DragonIE (ours) 30.9 15.1 31.0 33.3 17.5 33.5 28.6 13.1 28.7

Table 3: Out-of-domain Evaluation: Main results on the out-of-domain benchmark GLOBE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE (Kolluru et al., 2020a) 41.0 22.9 41.1 52.2 33.7 52.4 10.1 5.4 9.7
MacroIE (Yu et al., 2021) 43.5 25.0 43.8 54.8 36.3 55.1 12.9 6.0 13.1

DragonIE (ours) 43.9 25.3 44.1 55.1 36.4 55.1 13.6 6.3 13.7

Table 4: Out-of-domain Evaluation: Main results on CaRB. The models are trained on the noisy OpenIE4 dataset.

great robustness to data noise. We believe this is
because DragonIE explores a more concise and effi-
cient OpenIE formulation, which avoids autoregres-
sive prediction in previous sequence-based models,
and simplifies the complexity of open fact in the
graph-based model. In practice, to meet the com-
plex extraction requirements, the maximal clique
built by MacroIE for each open fact in SAOKE
and GLOBE contains an average of 28.5 edges,
with a total of 176 edge types, while DragonIE has
an average of only 9.6 edges under 21 types. We
provide a detailed edge space comparison in Ap-
pendix B.4. The simpler, the more essential, and
the more effective.

Another advantage of simpler design is faster
convergence and inference speed. As shown in
Table 5, with the same hyper-parameters, Drago-
nIE achieves the best results in 4 epochs, while
MacroIE requires 20 epochs to reach the peak.
Moreover, DragonIE accelerates the testing time
by 3 times. While the decoding of MacroIE needs
a time-consuming maximal clique discovery algo-
rithm like Bron–Kerbosch (Bron and Kerbosch,
1973), whose time complexity is O(3n/3) for an
n-vertex graph. DragonIE avoids this issue, thus
obtaining large speed improvement.

MacroIE DragonIE Speedup

Convergence (epoch) 4 20 5x
Testing (second) 136 409 3x

Table 5: Comparison in convergence and testing time on
SAOKE, measured in epochs and seconds respectively.

5.2 Detailed Analysis (Q2)

A potential concern is whether the better general-
ization of the simple DAG-based OpenIE formula-
tion is at the expense of extracting complex facts,
as simplicity usually leads to a reduction in repre-
sentation capability. To answer this question, we
perform a fine-grained evaluation on GLOBE. (1)
We select the sentences containing discontinuous or
overlapping or nested facts from GLOBE to form
three complex test sets. Here discontinuous means
that at least one fact element in the sentence is not
a continuous span, overlapping means that multi-
ple facts in the sentence share at least one element,
while nested means that different elements share
some common spans. These three patterns are the
most common complex facts in OpenIE, and their
distribution is detailed in Appendix A.1. (2) We
validate DragonIE’s capability in extracting differ-
ent numbers of open facts by splitting the sentences
into five classes according to the fact count. (3) We
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Figure 4: Gestalt F1 scores on (a) complicated extraction, (b) multiple extraction, and (c) low-resource extraction.
All the analyses are conducted on GLOBE. We also report the comparison results on SAOKE in Appendix B.3.

Model ↓ - Benchmark → GLOBE SAOKE

DragonIE 28.6 45.8
– inner-span edge EE 26.1 45.1
– inter-fact edge BE-X 25.4 42.0
– Next span role labeling 25.8 44.6

Table 6: Ablation study of DragonIE. Numbers denote
the corresponding Gestalt F1 scores.

conduct low-resource experiments on five differ-
ent partitions of the original SAOKE training sets
(1/10/30/50/70%). As presented in Figure 4, Drag-
onIE attains consistent gains in all classes across
three settings, indicating that our model is more
suitable for complicated scenarios than the base-
lines. It is worth noting that when using 1% of the
training data, only DragonIE achieves a non-zero
F1 score, and using 10% of the training data can
surpass the performance of baselines under the full
data, indicating better generalization.

In addition, we conduct a set of ablation tests
on the graph to verify that our DAG is already a
minimalist expression of open fact. Table 6 shows
that: (i) when only connecting the ending word
of one span and the beginning word of the next
span (EB-X) and removing the edge connected
with the ending word of the next span (EE), the
F1 score drops by 1.6% in average since it cannot
accurately represent nested facts, as demonstrated
in Section 3.2; (II) Removing the intra-fact edge
and treating each path from the root vertex to the
leaf vertex on the DAG as a fact hurts the results
by 3.5 F1 pts in average, which is difficult to ex-
tract overlapping facts; (III) Marking the role of
the next span on edge instead of the combination of
two-span roles brings a remarkable improvement
(2.0% averagely), since it effectively compresses
the edge type space from O(r2) to O(r). Note that
the intra-span edges cannot be ablated because they
recognize spans. On the whole, each edge in our
built DAG is indispensable.

Error ↓ - Benchmark → GLOBE SAOKE

Wrong Boundary 5 4
Wrong Extraction 5 7
Uninformative Extraction 13 10
Incomplete Extraction 12 2
Missing Extraction 26 17

Table 7: Error analysis of DragonIE. We report the num-
ber of false facts belonging to five major error classes on
the analysis set (containing 100 gold facts) of in-domain
and out-of-domain benchmarks.

5.3 Qualitative Evaluation (Q3)

Although DragonIE achieves state-of-the-art results
in all the benchmarks, there are still substantial dif-
ferences between the out-of-domain and in-domain
performance. We compare the mistakes made by
DragonIE with two analysis sets that sample from
the test set of GLOBE and SAOKE, respectively,
and summarize the error types. The sampling strat-
egy requires that the sentences in the analysis set
contain 100 gold open facts. Table 7 reports five
major error classes and the number of correspond-
ing false facts on the two benchmarks.

Wrong Boundary is a too large or too small
boundary for an element in an open fact. Wrong
Extraction describes an open fact that does not
hold in the original sentence. They are the least
common error types in both settings, showing that
our model can identify the correct span and fact
across domains. It would be interesting to see if
introducing causal inference (Nan et al., 2021), or
mutual information maximization (Zhang et al.,
2020) to strengthen the correlation between facts
and sentences, can improve the performance. Un-
informative Extraction is widely present in the
output of various domains, it usually does not pro-
vide information gain. We think a promising im-
provement direction is applying an additional post-
processing model to judge the informativeness of
each open fact. Incomplete Extraction omits crit-
ical information resulting in unclear fact seman-
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tics. Missing Extraction is an outcome where the
model fails to predict the open fact. According to
statistics from Table 7, these two types of errors
are the root cause of the performance gap between
in-domain and out-of-domain settings. We believe
the following research directions are worth follow-
ing for them: (1) Pre-training models on a massive
corpus with OpenIE-oriented self-supervised tasks
to sufficiently capture domain-robust OpenIE ex-
clusive features (Lu et al., 2022); (2) Leveraging
the domain generalization techniques to learn the
invariances across domains, i.g., meta learning (Li
et al., 2018a; Geng et al., 2019; Zhao et al., 2022),
adversarial learning (Li et al., 2018b), and con-
trastive learning (Kim et al., 2021).

6 Related Work

OpenIE. From rule-based systems and statistical
methods (Fader et al., 2011; Corro and Gemulla,
2013; Gashteovski et al., 2017), to neural mod-
els (Cui et al., 2018; Stanovsky et al., 2018; Roy
et al., 2019), OpenIE research has experienced
three technological evolutions in the past decade.
Each evolution brings a more expressive architec-
ture, and meantime requiring much more training
data. To this day, the best-performing OpenIE
model either predicts open facts in the sentence
auto-regressively (Kolluru et al., 2020a,b), or rep-
resents each open fact as a maximal clique on the
graph with quadratic edge numbers and types (Yu
et al., 2021). Such trends pose two potentially chal-
lenges: (1) The popular evaluation protocol mainly
operates with the i.i.d. assumption, i.e., the training
domain is the same as the test domain (Stanovsky
et al., 2018; Sun et al., 2018; Gashteovski et al.,
2019; Yu et al., 2020; Zhang et al., 2022), which
is contrary to the domain-independent discovery
objective of OpenIE (Niklaus et al., 2018). Al-
though the existing studies have achieved surpris-
ing performance under i.i.d. evaluation, their gen-
eralization for true open extraction has not been
evaluated. Some works try to use OpenIE4 (Kol-
luru et al., 2020b) to train the model and verify
it on CarB (Bhardwaj et al., 2019), but the noise
annotation of OpenIE4 and the different annotation
standards of the two datasets make the evaluation
results unreliable. (2) As revealed by our prelim-
inary experiments, recent OpenIE models always
encounter great performance drops in the out-of-
domain setting. Their complex auto-regressive pre-
diction process and graph structure may overfit

the training data specifics, resulting in unsatisfac-
tory cross-domain generalization. In this paper,
we present the first systematic study to examine
how robust OpenIE methods are when trained and
tested on different datasets (domains), and further
propose a minimalist expression of open fact to
implicitly improve the generalization behavior.
Domain Generalization. The main goal of domain
generalization is to learn a domain-invariant rep-
resentation from multiple source domains so that
a model can generalize well across unseen target
domains (Kim et al., 2021; Mi et al., 2021). Re-
cent advances mainly focus on three aspects: data
augmentation, model design, and robust training.
Augmenting the dataset with transformations such
as mix-up (Zhang et al., 2021) improves general-
ization (Pandey et al., 2021). A simplified model
design mines the task essence to resist domain
shifts (Ghosh and Motani, 2021). Robust training
methods hope to optimize a shared feature space,i.e,
by minimizing maximum mean discrepancy (Tzeng
et al., 2014), transformed feature distribution dis-
tance (Muandet et al., 2013), or covariances (Sun
and Saenko, 2016). This paper primarily explores
generalized OpenIE from the perspective of model
design. How to combine data augmentation and ro-
bust training to further improve the generalization
will be our future work.

7 Conclusion

In this paper, we lay out and study generalized Ope-
nIE for the first time. We release GLOBE, a large-
scale, high-quality, multi-domain benchmark with
110,122 open facts, to evaluate the generalization
of OpenIE models. Furthermore, we explore the
minimalist graph expression of open fact: directed
acyclic graph, to reduce the extraction complex-
ity and improve the generalization behavior. Ex-
perimental results show that our proposed method
outperforms state-of-the-art baselines in both in-
domain and out-of-domain settings. This work is a
starting point towards building more practical Ope-
nIE models with stronger generalization, and we
also present fine-grained analyses which point out
promising avenues for further improvement.

8 Limitations

While this work has made some progress towards
generalized OpenIE, it still has some limitations.
First, to produce a complete training-test evaluation
setup with the largest human-annotated OpenIE
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dataset SAOKE, our annotated GLOBE benchmark
is in Chinese. We speculate that the same con-
clusions can be observed in other languages, and
leave this for future work. Second, although the
proposed DragonIE method greatly exceeds the
baselines, there is still a significant performance
degradation under the out-of-domain setting com-
pared with the in-domain setting. We will continue
to work to narrow the performance gap.
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A GLOBE Dataset

A.1 Dataset Construction

To build GLOBE, we select six distinct data sources
for human annotation: (1) Insurance, we use 保险
条款 (insurance policy) as the query, and retrieve
relevant pdf documents in Baidu search engine2 as
the data source of the insurance domain; (2) Educa-
tion, we select the pages under the education topic
in the Wikipedia classification index3 as the data
source of the education domain; (3) Finance, we
crawl public financial reports, including the stock
market, business, investment, and other topics, as
the data source of the finance domain; (4) Govern-
ment, we download official documents issued by
government departments from the policy document
library of the State Council4 as the data source of
the government domain; (5) Medicine, we lever-
age the medical entity dictionary as a set of queries,
and searched relevant texts in medical forums5 and
online treatment manuals6 as the data source of the
medicine domain; (6) News, we crawl news under
the international news section of the Chinese News
Service7 as the data source of the news domain.
We used PDFPlumber8 to extract text from PDF
documents, and used goose39 to extract the text of
web pages.

We carefully select experienced annotators for
dataset construction. A principled training proce-
dure is adopted to ensure the annotators are well
trained, and the annotators are required to pass test
tasks. All annotators are required to study the an-
notation guidelines of SAOKE carefully. Before
annotating GLOBE, the annotators need to have
a test: labeling the sentences randomly selected
in SAOKE and comparing them with the original
annotations. Only those with a Gestalt F1 score
greater than 0.95 are qualified for the final anno-
tation. Two annotators label each sentence, and if
they have disagreements on one sentence, one or
more annotators are asked to judge it.

2https://www.baidu.com
3https://zh.wikipedia.org/wiki/
4http://www.gov.cn/zhengce/

zhengcewenjianku/index.htm
5https://www.dxy.cn
6https://www.msdmanuals.cn/home
7https://www.chinanews.com.cn/world/
8https://github.com/jsvine/pdfplumber
9https://github.com/goose3/goose3

Ins Edu Fin Gov Med News

Number 2,485 3,464 2,097 3,620 5,411 3822
Percentage 11.9% 16.6% 10.0% 17.3% 25.9% 18.3%

Table 8: The number and proportion of sentences be-
longing to different domains in GLOBE.

Overlapping Discontinuous Nested Complicated

Number 17,413 17,361 13,153 19,977
Percentage 83.3% 83.1% 62.9% 95.6%

Table 9: The number and proportion of sentences con-
taining complicated facts in GLOBE.

[0,3] [4,6] [7,9] [10,12] [13,∞]

Number 8,975 6,771 2,562 1,323 1,268
Percentage 42.9% 32.4% 12.3% 6.3% 6.1%

Table 10: The number and proportion of sentences con-
taining different number of facts in GLOBE.

A.2 Dataset Statistics

The final GLOBE dataset consists 110,122 open
facts annotated on 20,899 sentences spanning 6
distinct domains, making it the largest and most di-
verse human-annotated OpenIE test set. This new
dataset allows us to quantify the OpenIE perfor-
mance in various downstream applications, and to
better understand the limits of generalization ex-
hibited by the most recent OpenIE methodology.
Table 8 shows the number and proportion of sen-
tences belonging to different domains. It can be
found that there are at least 2k sentences in each do-
main, so the performance of OpenIE model can be
fully measured. We count the number of sentences
in the data set that contains at least one compli-
cated fact, as shown in Table 9. Here discontinuous
means that at least one fact element in the sentence
is not a continuous span, overlapping means that
multiple facts in the sentence share at least one ele-
ment, while nested means that different elements
share some common spans. It can be seen that iden-
tifying the discontinuous, overlapping, and nested
facts is very important for OpenIE, because the
sentences containing complicated facts account for
95.6% in GLOBE. We also report the fact number
distribution in Table 10. Most sentences contain
more than 4 facts, and even 6.1% sentences contain
more than 12 facts, which increases the difficulty
of extraction. As presented in the detailed analysis
part of the main experiment, our proposed Drago-
nIE model attains consistent gains in complicated
fact extraction and multiple fact extraction.
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Figure 5: Gestalt F1 scores on (a) complicated extraction, (b) multiple extraction, and (c) low-resource extraction.
All the analyses are conducted on the SAOKE test set.

B Detailed Experiments

B.1 Detailed Evaluation metrics
We report performance values computed by the
three most widely adopted metrics in the OpenIE
literature.: (1) CaRB-single considers the number
of common words in (gold, predicted) pair for each
argument of the fact by greedily matching gold with
one of the predicted facts; (2) CaRB-multi allows a
gold fact to be matched to multiple predicted ones,
thus more relaxed than CaRB-single; (3) Gestalt
converts each fact into a string and uses the Gestalt
function to measure the string similarity of (gold,
predicted) pair. Therefore, it requires not only the
coincidence of tokens, but also the consistency of
token order, thus being the most stringent metric.

B.2 Detailed Performance Comparison
Table 11-16 summarize the detailed results in 6
domains of the GLOBE dataset. DragonIE has
significantly exceeded the baseline model in 54
evaluation metrics of 6 domains, which once again
proves the effectiveness of our method. It is worth
noting that there are great differences in the extrac-
tion performance in different domains, the highest
F1 score of DragonIE is only 33.6%, indicating that
there is still much room for improvement toward
practical out-of-domain applications.

B.3 Detailed Analysis on SAOKE
Similar with the detailed analysis conducted on
GLOBE in the main experiment, we also perform
a fine-grained evaluation on SAOKE. (1) We select
the sentences containing discontinuous or overlap-
ping, or nested facts from SAOKE to form three
complex test sets. (2) We validate DragonIE’s capa-
bility in extracting different numbers of open facts
by splitting the sentences into five classes accord-
ing to the fact count. (3) We conduct low-resource
experiments on five different partitions of the orig-
inal SAOKE training sets (1/10/30/50/70%). As

presented in Figure 4, DragonIE again attains gains
in all classes across three settings, consistent with
the observation on GLOBE.

B.4 Deatiled Analysis on Edge Type Space
In Table 2, we list the edge type sets of MacroIE
and DragonIE on SAOKE (also GLOBE). MacroIE
needs 176 edge types, while DragonIE has only
21 edge types, reducing the edge types by 88%.
Next, let’s analyze the reasons carefully. Theo-
retically, MacroIE needs O(r2) edge types, while
DragonIE is O(r), r represents the number of pos-
sible role types in open facts. There are 6 roles
in SAOKE: {subject, predicate, object,
time, place, qualifier}.

For MacroIE, different spans belonging to the
same fact are connected to each other, by linking
the beginning position and ending position of two
spans, that is, there are 4 position types {B2B, B2E,
E2B, E2E}. There is also a NEXT edge between ad-
jacent spans belonging to the same kind of element
to indicate the original order of spans. Therefore,
a total of (6 × 6 + 1) × 4 = 148 edge types are
required to represent the relations between 6 kinds
of spans. In addition, SAOKE also defines 7 virtual
predicates{ =, BIRTH, DEATH, NOT, DESC, ISA,
IN}, which do not appear in the text. It is necessary
to set virtual nodes for them and connect them to
the boundary tokens of other elements in the fact.
Therefore, 7× 4 = 28 edge types are also required.
So MacroIE needs 148 + 28 = 176 kinds of edges.

For DragonIE, it needs to set up a EB type edge
and a BE type edge for each role, as well as a EE
edge and a I edge. To identify the virtual predi-
cate, DragonIE connects the object to the virtual
predicate node, so there are 7 additional edges. So
DragonIE needs 2×6+2+7 = 21 kinds of edges.
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Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE 18.1 5.6 18.7 21.3 7.7 22.2 15.0 4.0 14.0
MacroIE 16.7 4.6 16.9 18.8 6.0 19.0 13.2 2.9 13.3

DragonIE (ours) 24.7 9.5 25.3 28.1 12.5 29.0 20.8 7.4 21.4

Table 11: Out-of-domain Evaluation: Main results on the insurance domain of GLOBE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE 30.7 15.2 30.9 33.2 17.9 33.6 28.0 13.6 29.1
MacroIE 31.0 13.3 31.0 32.7 15.0 32.7 28.4 10.9 28.4

DragonIE (ours) 34.5 18.9 34.8 37.0 21.7 37.3 33.4 17.8 33.6

Table 12: Out-of-domain Evaluation: Main results on the education domain of GLOBE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE 22.2 8.6 22.6 24.5 10.4 25.0 19.0 6.2 19.5
MacroIE 23.8 8.6 23.8 25.3 9.8 25.4 21.4 6.5 21.4

DragonIE (ours) 30.1 13.5 30.1 32.6 15.7 32.7 26.9 11.0 27.2

Table 13: Out-of-domain Evaluation: Main results on the finance domain of GLOBE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE 26.3 11.1 26.4 28.9 13.2 28.9 24.8 10.2 25.3
MacroIE 28.3 12.5 28.3 30.1 14.3 30.3 26.1 10.2 26.2

DragonIE (ours) 32.6 16.5 32.7 35.1 19.2 35.4 32.9 16.2 33.0

Table 14: Out-of-domain Evaluation: Main results on the government domain of GLOBE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE 26.6 12.0 26.7 29.0 13.9 29.1 21.0 8.5 21.3
MacroIE 27.9 12.0 28.2 29.1 13.2 29.5 23.8 8.8 24.0

DragonIE (ours) 34.5 18.5 34.6 36.4 20.6 36.6 31.0 15.0 31.1

Table 15: Out-of-domain Evaluation: Main results on the medicine domain of GLOBE.

Model ↓ - Metric → CaRB-single CaRB-multi Gestalt

F1 AUC Opt.F1 F1 AUC Opt.F1 F1 AUC Opt.F1

IGL-OIE 21.5 7.4 21.7 23.9 9.1 24.2 16.8 4.9 17.3
MacroIE 20.1 5.9 20.1 21.6 6.9 21.7 17.2 4.1 17.2

DragonIE (ours) 23.6 9.1 23.7 25.9 10.6 26.0 20.7 7.2 20.8

Table 16: Out-of-domain Evaluation: Main results on the news domain of GLOBE.
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Model Edge Type Set

MacroIE ROLE-PAIR->predicate->qualifier-E2B, PREDEFINED-CLI->NOT-E2E, ROLE-PAIR->place->predicate-B2E,
PREDEFINED-CLI->BIRTH-B2B, ROLE-PAIR->place->time-E2B, ROLE-PAIR->qualifier->time E2B, ROLE-
PAIR->subject->qualifier-E2B, ROLE-PAIR->qualifier->predicate-E2E, ROLE-PAIR->subject->subject-E2E,
ROLE-PAIR->subject->time-E2E, ROLE-PAIR->object->qualifier-E2B, ROLE-PAIR->time->object-E2B,
PREDEFINED-CLI->DEATH-B2E, ROLE-PAIR->predicate->qualifier-B2B, ROLE-PAIR->object->qualifier-
E2E, ROLE-PAIR->place->subject-E2E, ROLE-PAIR->time->place-B2B, ROLE-PAIR->subject->object-B2E,
ROLE-PAIR->time->subject-E2E, PREDEFINED-CLI->NOT-B2E, ROLE-PAIR->place->subject-B2B, ROLE-
PAIR->subject->qualifier- E2E, ROLE-PAIR->object->subject-E2B, ROLE-PAIR->predicate->place-E2B,
ROLE-PAIR->subject->time-B2E, ROLE-PAIR->subject->place-B2B, ROLE-PAIR->place->object-B2E,
ROLE-PAIR->time->time-B2B, ROLE-PAIR->object->place-E2B, ROLE-PAIR->qualifier->predicate-B2B,
PREDEFINED-CLI->ISA-B2E, ROLE-PAIR->time->predicate-E2E, ROLE-PAIR->time->time-E2B, ROLE-PAIR
place->object-E2E, ROLE-PAIR->place->qualifier-B2B, PREDEFINED-CLI->=-B2E, ROLE-PAIR->qualifier-
>time-E2E, ROLE-PAIR->subject->place-B2E, ROLE-PAIR->subject->predicate-B2E, ROLE-PAIR->qualifier-
>object-E2E, ROLE-PAIR->predicate->place-B2B, PREDEFINED-CLI->DESC-B2B, ROLE-PAIR->place-
>predicate-E2E, ROLE-PAIR->subject->object-E2B, ROLE-PAIR->predicate qualifier-B2E, ROLE-PAIR-
>object->predicate-E2B, NEXT-E2E, ROLE-PAIR->time->qualifier-B2B, PREDEFINED-CLI->BIRTH-E2E,
ROLE-PAIR->predicate->predicate-B2E, ROLE-PAIR->time-> predicate-E2B, ROLE-PAIR->object->place-B2B,
ROLE-PAIR->qualifier->object-E2B, ROLE-PAIR->time->qualifier-E2E, ROLE-PAIR->subject->predicate-B2B,
ROLE-PAIR->place->qualifier-E2B, ROLE-PAIR->place->place-B2E, ROLE-PAIR->time->predicate-B2E,
ROLE-PAIR->subject->object-B2B, ROLE-PAIR->predicate->time-E2E, PREDEFINED-CLI->=-B2B,
PREDEFINED-CLI->NOT-B2B, ROLE-PAIR->predicate->subject-E2E, ROLE-PAIR->qualifier->object-B2E,
ROLE-PAIR->time->qualifier-E2B, ROLE-PAIR->time->time-E2E, ROLE-PAIR->place->predicate-B2B,
ROLE-PAIR->object->subject-B2B, ROLE-PAIR->subject->qualifier-B2E, PREDEFINED-CLI->DEATH-
B2B, ROLE-PAIR->object->place-B2E, ROLE-PAIR->object->predicate-B2B, PREDEFINED-CLI->IN B2E,
ROLE-PAIR->object->subject-E2E, ROLE-PAIR->qualifier->subject-E2E, ROLE-PAIR->time->object-E2E,
PREDEFINED-CLI->=-E2E, ROLE-PAIR->qualifier->predicate-E2B, ROLE-PAIR->subject->time-B2B,
ROLE-PAIR->time->object-B2E, ROLE-PAIR->time->subject-B2E, ROLE-PAIR->subject->subject-B2B,
ROLE-PAIR->object->qualifier-B2B, PREDEFINED-CLI->BIRTH-E2B, ROLE-PAIR->object->object-B2B,
ROLE-PAIR->subject->predicate-E2B, ROLE-PAIR->qualifier->qualifier-E2B, ROLE-PAIR->subject->place-E2E,
ROLE-PAIR->object->time-E2B, ROLE-PAIR->time->predicate-B2B, ROLE-PAIR->object->qualifier-B2E,
ROLE-PAIR->predicate->time-E2B, ROLE-PAIR->time->qualifier-B2E, ROLE-PAIR->predicate->object-B2B,
ROLE-PAIR->place->time-B2E, ROLE-PAIR->predicate->qualifier-E2E, PREDEFINED-CLI->DESC-E2E,
ROLE-PAIR->predicate->predicate-E2B, ROLE-PAIR->qualifier->predicate-B2E, ROLE-PAIR->predicate->place-
B2E, ROLE-PAIR->object->object-B2E, ROLE-PAIR->qualifier->place-B2E, PREDEFINED-CLI->DESC-B2E,
ROLE-PAIR->time->place-B2E, ROLE-PAIR->subject->predicate-E2E, PREDEFINED-CLI ISA-E2E, ROLE-
PAIR->object->predicate-E2E, ROLE-PAIR->predicate->object-E2B, PREDEFINED-CLI->DEATH-E2E,
PREDEFINED-CLI->IN-E2E, ROLE-PAIR->qualifier->qualifier B2E, ROLE-PAIR->object->time-B2E, ROLE-
PAIR->object->subject-B2E, ROLE-PAIR->place->subject-B2E, NEXT-B2E, PREDEFINED-CLI->NOT-E2B,
NEXT-B2B, ROLE-PAIR->place->object-E2B, ROLE-PAIR->predicate->subject-E2B, PREDEFINED-CLI-
>DESC-E2B, PREDEFINED-CLI->IN-E2B, ROLE-PAIR->subject->subject-E2B, ROLE-PAIR->qualifier-
>subject-B2E, PREDEFINED-CLI->DEATH-E2B, ROLE-PAIR->object->time-E2E, PREDEFINED-CLI->ISA-
B2B, ROLE-PAIR->place->subject-E2B, ROLE-PAIR->place->place-E2B, ROLE-PAIR-> subject->qualifier-B2B,
ROLE-PAIR->qualifier->place-E2B, ROLE-PAIR->object->predicate-B2E, ROLE-PAIR->qualifier->place-B2B,
ROLE-PAIR->qualifier->qualifier-B2B, ROLE-PAIR->predicate->subject-B2E, ROLE-PAIR->predicate->time-
B2E, PREDEFINED-CLI->BIRTH-B2E, ROLE-PAIR->predicate->time-B2B, ROLE-PAIR->qualifier->place-E2E,
ROLE-PAIR->qualifier->qualifier-E2E, ROLE-PAIR->time->subject-E2B, ROLE-PAIR->object->object-E2E,
ROLE-PAIR->qualifier->subject-B2B, PREDEFINED-CLI->=-E2B, ROLE-PAIR->place->qualifier-B2E,
ROLE-PAIR->predicate->predicate-B2B, ROLE-PAIR->subject->time-E2B, ROLE-PAIR->subject->object-
E2E, ROLE-PAIR->place->qualifier-E2E, ROLE-PAIR->subject->place-E2B, ROLE-PAIR->predicate->
object-B2E, ROLE-PAIR->subject->subject-B2E, ROLE-PAIR->time->place-E2B, ROLE-PAIR->place->place-
B2B, ROLE-PAIR->time->time-B2E, ROLE-PAIR->object->object-E2B, ROLE-PAIR->time->place-E2E,
ROLE-PAIR->place->time-B2B, ROLE-PAIR->time->subject-B2B, PREDEFINED-CLI->IN-B2B, ROLE-
PAIR->predicate->predicate-E2E, ROLE-PAIR->predicate->place-E2E, ROLE-PAIR->place->time-E2E,
ROLE-PAIR->object->place-E2E, ROLE-PAIR->qualifier->time-B2B, ROLE-PAIR->object->time-B2B, NEXT-
E2B, ROLE-PAIR->time->object-B2B, ROLE-PAIR->predicate->object-E2E, PREDEFINED-CLI->ISA-E2B,
ROLE-PAIR->qualifier->object-B2B, ROLE-PAIR->qualifier->subject-E2B, ROLE-PAIR->predicate->subject-
B2B, ROLE-PAIR->place->place E2E, ROLE-PAIR->qualifier->time-B2E, ROLE-PAIR->place->predicate-E2B,
ROLE-PAIR->place->object-B2B

DragonIE BE-object, BE-place, BE-predicate, BE-qualifier, BE-subject, BE-time, object->=, object-> BIRTH, object->
IN, object->NOT, object->DESC, object->ISA, object->DEATH, EE, I, EB-object, EB-place, EB-predicate, EB-
qualifier, EB-subject, EB-time

Table 17: The edge type set of MacroIE and DragonIE
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