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Abstract

The collection and availability of big data,
combined with advances in pre-trained models
(e.g. BERT), have revolutionized the predic-
tive performance of natural language process-
ing tasks. This allows corporations to provide
machine learning as a service (MLaaS) by en-
capsulating fine-tuned BERT-based models as
APIs. Due to significant commercial interest,
there has been a surge of attempts to steal re-
mote services via model extraction. Although
previous works have made progress in defend-
ing against model extraction attacks, there has
been little discussion on their performance in
preventing privacy leakage. This work bridges
this gap by launching an attribute inference at-
tack against the extracted BERT model. Our
extensive experiments reveal that model ex-
traction can cause severe privacy leakage even
when victim models are facilitated with ad-
vanced defensive strategies.

1 Introduction

The emergence of pre-trained language models
(PLMs) has revolutionized the natural language pro-
cessing (NLP) research, leading to state-of-the-art
(SOTA) performance on a wide range of tasks (De-
vlin et al., 2018; Yang et al., 2019). This break-
through has enabled commercial companies to de-
ploy machine learning models as black-box APIs
on their cloud platforms to serve millions of users,
such as Google Prediction API1, Microsoft Azure
Machine Learning2, and Amazon Machine Learn-
ing3.

However, recent works have shown that existing
NLP APIs are vulnerable to model extraction attack
(MEA), which can reconstruct a copy of the remote
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NLP model based on the carefully-designed queries
and outputs of the target API (Krishna et al., 2019;
Wallace et al., 2020), causing the financial losses
of the target API. Prior to our work, researchers
have investigated the hazards of model extraction
under various settings, including stealing commer-
cial APIs (Wallace et al., 2020; Xu et al., 2022),
ensemble model extraction (Xu et al., 2022), and
adversarial examples transfer (Wallace et al., 2020;
He et al., 2021).

Previous works have indicated that an adver-
sary can leverage the extracted model to conduct
adversarial example transfer, such that these ex-
amples can corrupt the predictions of the victim
model (Wallace et al., 2020; He et al., 2021). Given
the success of MEA and adversarial example trans-
fer, we conjecture that the predictions from a vic-
tim model could reveal its private information un-
consciously, as victim models can memorize side
information in addition to the task-related mes-
sage (Lyu and Chen, 2020; Lyu et al., 2020; Carlini
et al., 2021). Thus, we are interested in examining
whether the victim model can leak the private in-
formation of its data to the extracted model, which
has received little attention in previous research. In
addition, a list of defenses against MEA has been
devised (Lee et al., 2019; Ma et al., 2021; Xu et al.,
2022; He et al., 2022a,b). Although these technolo-
gies can alleviate the effects of MEA, it is unknown
whether such defenses can prevent private informa-
tion leakage, e.g., gender, age, identity.

To study the privacy leakage from MEA, we
first leverage MEA to obtain a white-box extracted
model. Then, we demonstrate that from the ex-
tracted model, it is possible to infer sensitive at-
tributes of the data used by the victim model. To
the best of our knowledge, this is the first attempt
that investigates privacy leakage from the extracted
model. Moreover, we demonstrate that the pri-
vacy leakage is resilient to advanced defense strate-
gies even though the task utility of the extracted
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model is significantly diminished, which could mo-
tivate further investigation on defense technology
in MEA.4

2 Related Work

MEA aims to steal an intellectual model from
cloud services (Tramèr et al., 2016; Orekondy et al.,
2019; Krishna et al., 2019; Wallace et al., 2020).
It has been studied both empirically and theoreti-
cally, on simple classification tasks (Tramèr et al.,
2016), vision tasks (Orekondy et al., 2019), and
NLP tasks (Krishna et al., 2019; Wallace et al.,
2020). MEA targets at imitating the functionality
of a black-box victim model (Krishna et al., 2019;
Orekondy et al., 2019), i.e., a model replicating the
performance of the victim model.

Furthermore, the extracted model could be used
as a reconnaissance step to facilitate later at-
tacks (Krishna et al., 2019). For instance, the ad-
versary could construct transferrable adversarial
examples over the extracted model to corrupt the
predictions of the victim model (Wallace et al.,
2020; He et al., 2021). Prior works (Coavoux et al.,
2018; Lyu et al., 2020) have shown malicious users
can infer confidential attributes based on the inter-
action with a trained model. However, to the best
of our knowledge, none of the previous works in-
vestigate whether the extracted model can facilitate
privacy leakage of the data used by the black-box
victim model.

In conjunction with MEA, a list of avenues has
been proposed to defend against MEA. These ap-
proaches focus on the perturbation of the posterior
prediction. Orekondy et al. (2019) suggested re-
vealing the top-K posterior probabilities only. Lee
et al. (2019) demonstrated that API owners could
increase the difficulty of MEA by softening the pos-
terior probabilities and imposing a random noise
on the non-argmax probabilities. Ma et al. (2021)
introduced an adversarial training process to dis-
courage the knowledge distillation from the victim
model to the extracted model. However, these ap-
proaches are specific to model extraction, which are
not effective to defend against attribute inference
attack, as shown in Section 5.

3 Attacking BERT-based API

We first describe the process of MEA. Then we de-
tail the proposed attack: attribute inference attack

4Code and data are available at: https://github.com/xlhex/
emnlp2022_aia.git

Figure 1: The workflow of attribute inference attack
against an extracted BERT model. We use an auxiliary
attribute inference model to infer the demographic in-
formation of a text.

(AIA). Throughout this paper, we mainly focus on
the BERT-based API as the victim model, which is
widely used in commercial black-box APIs.

Model Extraction Attack (MEA). To conduct
MEA, attackers craft a set of inputs as queries
(transfer set), and send them to the target victim
model (BERT-based API) to obtain the predicted
posterior probability, i.e., the outputs of the soft-
max layer. Then attackers can reconstruct a copy
of the victim model as an “extracted model” by
training on query-prediction pairs.

Attribute Inference Attack (AIA). After we de-
rive an extracted model, we now investigate how
to infer sensitive information from the extracted
model by conducting AIA against the extracted
model. Given any record x = [xns, xs], AIA aims
to reconstruct the sensitive components xs, based
on the hidden representation of xns, where xns and
xs represent the non-sensitive information and the
target sensitive attribute respectively. The intuition
behind AIA is that the representation generated by
the extracted model can be used to facilitate the
inference of the sensitive information of the data
used by the victim model (Coavoux et al., 2018).
Note that the only explicit information that is ac-
cessible to the attacker is the predictions output
by the victim model, rather than the raw BERT
representations.

Given an extracted model g′V , we first feed a
limited amount of the auxiliary data Daux with
labelled attribute into g′V to collect the BERT rep-
resentation h(xnsi ) for each xi ∈ Daux. Then,
we train an inference model f(·), which takes the
BERT representation of the extracted model as in-
put and outputs the sensitive attribute of the input,
i.e., {h(xnsi ), xsi}. The trained inference model
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AG news Blog TP-US
Victim model 79.99 97.07 85.53
TA = TV (DQ) 80.10 95.64 86.53
TA 6= TV (reviews)

0.1x 50.90 36.83 79.95
1x 69.94 88.16 85.15
5x 75.29 92.75 85.82

TA 6= TV (news)
0.1x 61.70 18.04 79.20
1x 71.95 83.13 84.15
5x 75.82 87.64 85.46

Table 1: Performance of MEA across different domains
and query sizes on the test set, compared to the victim
models. The evaluation metric is accuracy.

f(·) can infer the sensitive attribute; in our case,
they are gender, age and named entities (see Sec-
tion 4.1).

During test time, as illustrated in Figure 1, the
attacker can first derive the BERT representation
of any record by using the extracted model, then
feed the extracted BERT representation into the
trained inference model f(·) to infer the sensitive
attributes.

4 Experiments and Analysis

4.1 Experimental Setup

Data. We conduct experiments on three datasets:
i) Trustpilot (TP) (Hovy et al., 2015), ii) AG
news (Del Corso et al., 2005), and iii) Blog posts
(Blog) (Schler et al., 2006). To study AIA, we reuse
the data pre-processed by Coavoux et al. (2018).
For TP, Coavoux et al. (2018) use the subset from
US users, i.e., TP-US. The private attributes of
TP-US and Blog are gender and age. The private
attributes of AG news are the five most frequent
person entities. More details and statistics are pro-
vided in Appendix A.

Settings. For each dataset, we randomly split the
training dataD into two halvesDV andDQ, where
|DV |= |DQ|. The first half (DV ) is used to train
the victim model, whereas the second half (DQ) is
reserved for two folds. The first fold is to train an
extracted model, where the data distribution of the
victim’s training data (TV ) is the same as that of
the query (TA). The second fold is to train f(·) to
infer the private attributes, i.e., Daux.

Since API providers tend to use in-house
datasets, it is difficult for the attacker to know
the target data distribution as prior knowledge.
Thus, we sample queries from different distribu-
tions but semantically-coherent data as the origi-

AG news Blog TP-US

Majority class 49.94 49.57 38.15

BERT (w/o fine-tuning) 69.39 44.03 49.38

TA = TV (Daux) 15.68 34.41 36.19

TA 6= TV (reviews)
0.1x 20.63 35.03 35.04
1x 17.93 34.34 35.97
5x 18.31 34.45 36.82

TA 6= TV (news)
0.1x 13.95 35.60 35.38
1x 15.76 33.88 36.92
5x 17.91 35.39 37.68

Table 2: Empirical privacy of baselines and under AIA
attack over different datasets and settings. The ex-
tracted model is trained on the queries from different
distributions. Note higher value means better empirical
privacy.

nal data (TA 6= TV ). Specifically, we use Ama-
zon reviews dataset (Zhang et al., 2015) (reviews)
and CNN/DailyMail dataset (Hermann et al., 2015)
(news) as cross-domain queries. Empirically, each
query incurs a certain expense. Due to the budget
limit, attackers cannot issue massive requests. For
the cross-domain case, we vary query size from
{0.1x,1x,5x} size of DV .

In order to test AIA, we assumeDV is accessible
to attackers. We use the non-sensitive attributes of
DV as the test input. If the attacker can successfully
infer the sensitive attributes of DV given its non-
sensitive information, then it will cause a privacy
leakage of the victim model. Following Coavoux
et al. (2018), for demographic variables (i.e., gen-
der and age), we take 1−X as empirical privacy,
where X is the average prediction accuracy of the
attack models on these two variables; for named
entities, we take 1−F as empirical privacy, where
F is the F1 score between the ground truths and
the prediction by the attackers on the presence of
all the named entities. Higher empirical privacy
means lower attack performance.

Training Details. Victim and extracted models
are BERT-base (Devlin et al., 2018), trained for
5 epochs with the Adam optimizer (Kingma and
Ba, 2014) using a learning rate of 2 × 10−5. We
use the codebase from Transformers library (Wolf
et al., 2020). Attribute inference models are 2-layer
MLP, trained for 3 epochs with the same optimizer
and learning rate. All experiments are run with one
Nvidia V100 gpu.
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AG news BLOG TP-US

Utility ↑ MEA ↓ AIA ↑ Utility ↑ MEA ↓ AIA ↑ Utility ↑ MEA ↓ AIA ↑
No Defense 79.99 71.95 15.76 97.07 88.16 34.34 85.53 85.33 36.92

S
O

F
T. τ = 0.0 79.99 69.11 22.47 97.07 85.57 35.19 85.53 84.60 37.62

τ = 0.5 79.99 72.32 20.78 97.07 85.68 34.91 85.53 85.10 37.69
τ = 5 79.99 72.48 11.32 97.07 86.73 33.80 85.53 85.33 33.18

P
E

R
T. σ = 0.05 80.03 71.47 14.46 96.17 85.87 34.75 85.83 85.09 37.43

σ = 0.2 79.41 71.61 12.58 95.38 85.31 34.97 85.65 84.98 36.90
σ = 0.5 65.13 69.05 11.66 62.23 81.77 33.79 63.21 83.88 35.90

Reverse Sigmoid 79.99 71.59 12.17 97.07 85.08 33.09 85.53 85.34 32.81

NASTY 79.90 71.33 17.00 96.05 85.61 34.24 85.15 84.40 36.77

MOSTLEAST 79.99 47.98 17.86 97.07 48.29 34.44 85.53 39.40 37.60

Table 3: Attack performance under different defenses on AG News, BLOG and TP-US. τ is temperature parameter
on softmax. σ is the variance of Gaussian noise. Utility means the accuracy of the victim model after adopting
defense. For MEA, lower scores indicate better defenses. conversely for AIA. All experiments are conducted on
datasets with 1x queries.

Baselines. To gauge the private information leak-
age, we consider a majority value for each discrete
attribute as a baseline. To evaluate how the ex-
tracted model suffers from AIA, we also take the
pretrained BERT without (w/o) fine-tuning as a
baseline model to extract representation. Note that
BERT (w/o fine-tuning) is a plain model that does
not contain any information about the training data
of the target model.

4.2 Experimental Results

MEA results. We present the performance of
MEA for the same domain querying and cross-
domain querying in Table 1. Due to the domain mis-
match, the cross-domain querying underperforms
the same-domain querying. Although increasing
the cross-domain query size can boost the accuracy
of the extracted model, it is still inferior to the same-
domain competitor with fewer data. In addition,
we notice that AG news prefers news data, while
TP-US and Blog favor reviews data. Intuitively,
one can attribute this preference to the genre sim-
ilarity, i.e., news data is close to AG news, while
distant from TP-US and Blog. To verify this phe-
nomenon, we calculate the uni-gram and 5-gram
overlapping between test sets and different queries
in Appendix A.

Since we do not have access to the training data
of the victim model, we will use news data as
queries for AG news, and reviews data as queries
for TP-US and Blog, unless otherwise mentioned.

AIA results. We show AIA results using the
same-domain and cross-domain queries in Table 2.
Table 2 shows that compared to the BERT (w/o fine-

tuning) and majority baselines, the attack model
built on the BERT representation of the extracted
model indeed essentially enhances the attribute
inference for the victim training data, i.e., more
than 3.57-4.97x effective for AG news compared
with the baselines, even when using cross-domain
queries. The majority baseline is merely a random
guess, while BERT (w/o fine-tuning) is a plain
model that did not contain any information about
the victim training data. However, the extracted
model is trained on the queries and the returned
predictions from the victim model. This implies
that the target model predictions inadvertently cap-
ture sensitive information about users, such as their
gender, age, and other important attributes, apart
from the useful information for the main task.

Interestingly, compared with the queries from
the same distribution, Table 2 also shows that
queries from different distributions make AIA eas-
ier (see the best results corresponding to the lower
privacy in bold in Table 2). We provide a detailed
study of this phenomenon in Appendix B.1.

5 Defense

Although we primarily focus on the privacy vul-
nerability of BERT-based APIs in this work, we
also test four representative defenses: i): Soften-
ing predictions: Using τ on softmax layer to scale
probability vector (Xu et al., 2022). ii): Predic-
tion perturbation: Adding Gaussian noises with
a variance of σ to the probability vector (Xu et al.,
2022). iii). Reverse sigmoid: Softening the poste-
rior probabilities and injecting a random noise on
the non-argmax probabilities (Lee et al., 2019). iv).
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Nasty teacher: Using an adversarial loss to dis-
courage the knowledge distillation from the victim
model to the extracted model (Ma et al., 2021). We
also propose a new defense called Most Least, in
which we set the predicted probabilities of the most
and least likely categories to 0.5+ε and 0.5−ε, and
zero out others. ε could be set as small as possible.
For defense experiment, we set ε to 10−5.

According to Table 3, except MOSTLEAST, none
of the defense avenues can well defend against
MEA, unless we significantly compromise the util-
ity (or accuracy) of the victim model. However,
such degradation is more detrimental to the victim
model than the extracted model. Consequently, the
extracted model may surpass the victim model.

Regarding AIA, although MOSTLEAST manages
to defend against MEA, it still falls short of prevent-
ing privacy leakage from the extracted model (c.f.,
Table 2 and 3). Among these defenses, merely the
hard-labeling (τ = 0.0) can slightly mitigate the
information leakage caused by AIA. In addition,
some defenses, such as prediction perturbation and
reverse sigmoid, can even exacerbate privacy leak-
age. Given that these methods have been used to
defend against MEA, such a side effect requires
more investigation before it causes a severe impli-
cation. We leave this for future study.

6 Conclusions

This work reveals that the hazards of the extracted
model have been underestimated. In addition to the
violation of IP, it can vastly exacerbate the privacy
leakage even under challenging scenarios (e.g., lim-
ited query budget; queries from distributions that
are different from that of the training data used by
the victim APIs). Such a vulnerability cannot be
alleviated by the strong defensive strategies against
model extraction. We hope our work can raise the
alarm for more investigations to the vulnerability
of model extraction attack.

Limitations

Although our work has revealed the vulnerability of
model extraction through a lens of privacy leakage,
we have not proposed an effective enough defense
approach for AIA. Thus, we encourage the com-
munity to investigate this direction to mitigate the
adverse social impacts caused by this attack.

Statement of Ethics

There are two major ethical issues in this work. The
first one is the violation of intellectual property, as
model extraction attacks can illegally replicate com-
mercial APIs. The second relates to privacy leakage
in model extraction attacks. Both can bring severe
ethical concerns to the community when deploying
machine learning services on the cloud platform.
Although we have shown that some defensive av-
enues can partly mitigate their vulnerabilities, more
efforts should be dedicated to them in future work.
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A Datasets

This section first details the construction of each
dataset.

Trustpilot (TP) . Trustpilot sentiment
dataset (Hovy et al., 2015) contains reviews
associated with a sentiment score on a five point
scale, and each review is associated with 3
attributes: gender, age and location, which are
self-reported by users. The original dataset is
comprised of reviews from different locations,
however, in this paper, we only derive TP-US for
study. Following (Coavoux et al., 2018), we extract
examples containing information of both gender
and age, and treat them as the private information.

AG news . AG news corpus (Del Corso et al.,
2005) aims to predict the topic label of the docu-
ment, with four different topics in total. Following
(Zhang et al., 2015; Jin et al., 2019), we use both “ti-
tle” and “description” fields as the input document.

Dataset Private Variable #Train #Dev #Test

TP-US age, gender 22,142 2,767 2,767
AG named entity 11,657 1,457 1,457
Blog age, gender 7,098 887 887

Table 4: Summary of the studied NLP datasets.
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We use full AG news dataset for MEA, which we
call AG news (full). As AIA takes the entity as the
sensitive information, we use the corpus filtered
by (Coavoux et al., 2018), which we call AG news.
The resultant AG news merely includes sentences
with the five most frequent person entities, and
each sentence contains at least one of these named
entities. Thus, the attacker can identify these five
entities as five independent binary classification
tasks.

Blog posts (Blog) . We derive a blog posts
dataset from the blog authorship corpus (Schler
et al., 2006). We recycle the corpus preprocessed
by (Coavoux et al., 2018), which covers 10 differ-
ent topics. Similar to TP-US, the private variables
are comprised of the age and gender of the author.

We provide the statistics of all datasets in Ta-
ble 4. Table 5 presents the uni-gram and 5-gram
overlapping between test sets and different queries.
According to Table 5, AG news is closer to news
data, whereas Blog and TP-US are more similar
to reviews data, which validates our claim in Sec-
tion 4.2.

B Supplementary Studies

B.1 Impact of Prediction Sharpness

Interestingly, compared with the queries from the
same distribution, Table 2 also shows that queries
from different distributions make AIA easier (see
the best results corresponding to the lower privacy
in bold in Table 2). We hypothesize this counter-
intuitive phenomenon is due to that the posterior
probability of the same distribution is sharper than
that of the different distribution. This argument can
be further strengthened in Section 5, in which we
use a temperature coefficient τ at the softmax layer
to control the sharpness of the posterior probability.
We conjecture that if the model is less confident on
its most likely prediction, then AIA is more likely
to be successful. This speculation is confirmed by
Figure 2, where the higher posterior probability
leads to a higher empirical privacy.

B.2 Impact of Attribute Distribution

We further investigate which attribute is more vul-
nerable, i.e., the relationship between attribute dis-
tribution (histogram variance) and privacy leakage.
Table 6 empirically indicates that attributes with
higher variances cause more information leakage
or a lower empirical privacy. For example, for

AG-news, entity 2-4 with higher variances result
in lower empirical privacy, while entity 0-1 are
more resistant to AIA. For TP-US and Blog, as
age and gender exhibit similar distribution, AIA
performance gap across these two attributes is less
obvious.

B.3 Architecture Mismatch
In practice, it is more likely that the adversary does
not know the victim’s model architecture. A natu-
ral question is whether our attacks are still possible
when the extracted models and the victim mod-
els have different architectures, i.e., architectural
mismatch. To study the influence of the architec-
tural mismatch, we fix the architecture of the ex-
tracted model, while varying the victim model from
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019) to XLNET (Yang et al., 2019). According
to Table 7, when there is an architecture mismatch
between the victim model and the extracted model,
the efficacy of AIA is alleviated as expected. How-
ever, the leakage of the private information is still
severe (compare to the majority class in Table 2).
Surprisingly, we observe that MEA cannot bene-
fit from a more accurate victim, which is different
from the findings in (Hinton et al., 2015). For exam-
ple, the victim model performs best using XLNET-
large, while MEA shows best performance when
the victim model uses XLNET-base. We conjec-
ture such difference is ascribed to the distribution
mismatch between the training data of the victim
model and the queries. We will conduct an in-depth
study on this in the future.
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Query AG news Blog TP-US

uni-gram 5-gram uni-gram 5-gram uni-gram 5-gram

reviews 68.22% 0.53% 47.21% 0.73% 60.86% 2.57%
news 72.13% 1.24% 44.76% 0.06% 51.28% 0.12%

Table 5: Percentage of uni-gram and 5-gram recall-based overlap between different queries and test sets.

AG news
entity 0

(std=310.0)
entity 1

(std=1568.5)
entity 2

(std=2095.5)
entity 3

(std=2640.5)
entity 4

(std=2615.5)
TA = TV 15.61 15.10 7.71 6.95 5.49
TA 6= TV

(news)
14.79 12.38 3.84 5.33 2.02

TP-US Blog
gender

(std=1512.0)
age

(std=1440.0)
age

(std=28.0)
gender

(std=6.0)
TA = TV 36.40 37.12 32.18 39.02
TA 6= TV
(reviews)

36.44 37.40 31.20 38.01

Table 6: AIA performance on attributes of different datasets. All experiments are based on 1x queries. std is the
standard deviation of attribute distribution.
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Figure 2: The correlation between the empirical privacy of AIA and the maximum posterior probability. mean and
median denote the mean and median of the maximum posterior probability of the queries.

Victim Extracted TP-US

victim ↑ MEA ↑ AIA ↓
BERT-large BERT-base 86.82 85.36 36.65
RoBERTa-large BERT-base 87.20 85.72 37.33
RoBERTa-base BERT-base 86.66 85.40 37.52
XLNET-large BERT-base 87.21 85.99 37.68
XLNET-base BERT-base 86.91 86.13 38.09

BERT-base BERT-base 85.53 85.15 35.97

Table 7: Attack performance on TP-US with mis-
matched architectures between the victim model and
the extracted model.
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