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Abstract

Current approaches for fixing systematic prob-
lems in NLP models (e.g., regex patches, fine-
tuning on more data) are either brittle, or
labor-intensive and liable to shortcuts. In con-
trast, humans often provide corrections to each
other through natural language. Taking inspi-
ration from this, we explore natural language
patches—declarative statements that allow de-
velopers to provide corrective feedback at the
right level of abstraction, either overriding the
model (“if a review gives 2 stars, the sentiment
is negative”) or providing additional informa-
tion the model may lack (“if something is de-
scribed as the bomb, then it is good”). We
model the task of determining if a patch applies
separately from the task of integrating patch in-
formation, and show that with a small amount
of synthetic data, we can teach models to ef-
fectively use real patches on real data—1 to
7 patches improve accuracy by ~1–4 accuracy
points on different slices of a sentiment anal-
ysis dataset, and F1 by 7 points on a relation
extraction dataset. Finally, we show that fine-
tuning on as many as 100 labeled examples
may be needed to match the performance of a
small set of language patches.

1 Introduction

Natural language enables humans to communicate
a lot at once with shared abstractions. For example,
in teaching someone about the colloquial use of
the term “bomb”, we might say describing food as

‘bomb’ means it is very good, while saying someone
bombed means it was disappointing. This simple
sentence uses various abstractions (e.g., “food”) to
provide context-dependent information, making it
easy for humans to generalize and understand sen-
tences such as “The tacos were bomb” or “The chef
bombed” without ever having seen such examples.

⋆ Part of the work done at Microsoft Research.

There is a growing body of research focused
on using language to give instructions, supervi-
sion and even inductive biases to models instead
of relying exclusively on labeled examples, e.g.,
building neural representations from language de-
scriptions (Andreas et al., 2018; Murty et al., 2020;
Mu et al., 2020), or language / prompt-based zero-
shot learning (Brown et al., 2020; Hanjie et al.,
2022; Chen et al., 2021). However, language is yet
to be successfully applied for corrective purposes,
where the user interacts with an existing model to
improve it. As shown in Fig. 1a, if a developer
discovers that a model contains bugs (i.e., system-
atic errors; Ribeiro et al., 2020), common fixes
are either brittle regex-based patches (e.g., Fig. 1a
left, where patches either override predictions or
replace the word “bomb” with the word “good”),
or collecting hundreds of additional datapoints for
finetuning, a tedious and computationally demand-
ing process that can still lead to shortcuts such
as assuming the word “bomb” is always positive
(e.g., if the additional finetuning data mostly has
the word in its colloquial sense). Instead, we envi-
sion a setting where developers provide corrective
feedback through a Natural Language Patch—a
concise statement such as “If food is described as
bomb, then food is good”. Language makes it easy
for developers to express feedback at the right level
of abstraction without having to specify exactly
how the condition is applied. The patching system
is responsible for applying the patch and integrat-
ing the information appropriately, e.g., applying
it to “The tacos were the bomb” but not to “The
authorities found a bomb in the restaurant”.

In this work, we present an approach for patch-
ing neural models with natural language. Any
patching system has to determine when a patch
is relevant, and how it should modify model behav-
ior. We model these tasks separately (Fig. 1b): a
gating head soft-predicts whether the patch should
be applied (e.g., “food is described as bomb”), and

11600



Regex Patch

def patch_2(x): 
  if ‘ bomb ’ in x: 
    x = x.replace(‘bomb’, ‘good’) 
  return model(x)

def patch_1(x): 
  if ‘2 star’ in x: 
    return negative 
  else: 
    return model(x)

The restaurant was noisy, but tacos were bomb
The authorities found a bomb in the restaurant

2 stars,  but our waitress Wendy was really nice
Two stars for the place, but the ambience is great
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(a) Developer identifies bugs in model

Regex Patch
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(b) Incorporating Language Patches

Figure 1: (a) Developers typically fix bugs by writing
brittle regex patches or by finetuning on additional data,
which is prone to simple shortcuts. In contrast, natural
language patches are more expressive than regexes and
prevent shortcuts by abstractly specifying when they
should be applied. (b) Our proposed model uses a gating
head to predict whether a patch condition c applies to the
input. That (soft) prediction is then used to combine the
original model output with the output of an interpreter
head that uses textual features from both the input as
well as the patch consequent q.

an interpreter head predicts a new output by com-
bining the information in the patch (e.g., “food
is good”) with the original input. Both heads are
trained on synthetic data in a patch tuning stage
between training and deployment, such that new
patches can be combined into a library of patches
(or maybe various user-specific libraries), and ap-
plied at test-time without further training. In addi-
tion to the expressivity provided by abstractions,
language-based patching is lightweight, iterative
and easily reversible. Much like software, devel-
opers can write / edit / remove patches iteratively
until errors on unit tests or validation data are fixed,
without constantly retraining the model.

Our experiments are organized as follows. First,
in Section 5, we present controlled experiments
that indicate these patches work even for abstract
conditions, where regex patches would be infea-

sible or very difficult—that is, they are applied
correctly when the patch condition is met, and do
nothing otherwise. Perhaps surprisingly, this is true
even for test-time patches that are very different
than the ones used in the patch finetuning stage.
Next, in Section 6, we show that despite the syn-
thetic nature of the patch tuning phase, a small set
of very simple patches can fix bugs (and thus im-
prove performance) on real benchmarks for two
different tasks—1 to 6 simple language patches
improve performance by ~1–4 accuracy points on
two slices from the Yelp reviews dataset, while 7
patches improve performance by ~7 F1 points on
a relation extraction task derived from NYT. Fi-
nally, in Section 7.2, we compare language patch-
ing, a computationally lightweight procedure, with
finetuning, a computationally and human-labor in-
tensive procedure, and find that as many as 100
labeled examples are needed to match performance
gains from a small set of 1 to 7 patches. Further,
finetuning sometimes fixes bugs at the expense of
introducing new bugs, while patches maintain prior
performance on inputs where they do not apply.

2 Natural Language Patching

Setup. We are given a model f , mapping an
input text x to a probability distribution over its
output space, f(x) = Pr(y | x). The model
contains bugs—defined as behaviors inconsistent
with users’ preferences or the “ground truth”—
which we want to fix with a library of patches
P = {lp1, lp2, . . . , lpt}. Users explicitly indicate
the condition under which each patch applies and
the consequence of applying it, such that each patch
is in the form “If (condition) c, then (consequence)
q”. We use this format to make modeling easier,
noting that it still allows for very flexible patching
through high level abstractions (e.g., “if the cus-
tomer complains about the ambience”, “if food is
not mentioned”, etc), and that most patches have
an implicit applicability function, and thus can be
converted to this format.

Applying Patches. As indicated in Fig. 1b, our
model consists of two separate heads. The gating
head g computes the probability that the condition
specified by lp = (c, q) is true for a given input x
as g(x, c). The interpreter head I computes a new
distribution over the label space, that conditions on
x and the consequence q. This is then combined
with the original model output f(x) using the above
gating probability. A single patch lp = (c, q), can
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Template Examples

Patches

Override: If aspect is good, then
label is positive

e0: If service is good, then label is positive
e1: If food is good, then label is positive

Override: If aspect is bad, then label
is negative

e2: If service is bad, then label is negative
e3: If ambience is bad then label is negative

Override: If review contains words
like word, then label is positive

e4: If review contains words like zubin, then label is positive
e5: If review contains words like excellent, then label is positive

Override: If review contains words
like word, then label is negative

e6: If review contains words like wug, then label is negative
e7: If review contains words like really bad, then label is negative

Feature Based: If aspect is described
as word, then aspect is good / bad

e8: If food is described as above average, then food is good
e9: If food is described as wug, then food is bad
e10: If food is described as zubin, then service is good
e11: If service is described as not great, then service is bad

Inputs

The aspect at the restaurant was
adj

The service at the restaurant was really good. e0, e3
The food at the restaurant was wug. e6, e9

The restaurant had adj aspect The restaurant had really bad service. e7, e2, e11
The restaurant had zubin ambience. e4, e10

The aspect1 was adj1, the aspect2
was adj2

The food was good, the ambience was bad. e1, e3, e1
The service was good, the food was not good. e0, e1

The aspect1 was adj1 but the
aspect2 was really adj2

The food was good, but the service was really bad. e7, e1, e0
The ambience was bad, but the food was really not wug. e3, e9

The aspect1 was really adj1 even
though aspect2 was adj2

The food was really bad even though the ambience was excellent. e5, e7, e8
The food was really zubin, even though the service was bad e4, e10, e0

Table 1: Patch and Input templates used for the Patch Finetuning stage for the sentiment analysis task. We divide
our patches into 2 categories: Override and Feature Based (see Section 2 for more details). For each input, we
provide examples of patches that apply and patches that don’t apply. The simplistic nature of these templates
makes them easy to write without access to additional data sources or lexicons.

be applied to any input x as

Fix(f , x, lp) = g(x, c) · I(x, q) (1)

+ [1− g(x, c)] · f(x).

Given a library of patches P = {lp1, . . . , lpt},
we find the most relevant patch lp∗ for the given
input, and use that to update the model,

lp∗ = argmax
lpi∈P

g(x, ci), (2)

Fix(f , x, P ) = Fix(f , x, lp∗). (3)

Patch Types. We consider two categories of
patches (examples in Table 1). Override patches
are of the form “If cond, then label is l” i.e., they
override the model’s prediction on an input if the
patch condition is true. For these patches, we do not
use the interpreter head since I(x, “label is l”) = l.
Feature-based patches are of the form “If cond,
then feature”, i.e., they provide the model with a
contextual feature “hint” in natural language, e.g.,
in Fig. 3 the feature is “food is good”. For these
patches, the model needs to integrate the hints with
the original data, and thus both the gating and in-
terpreter heads are used.

3 Training Patchable Models

Assuming f has a text encoder and a classifica-
tion head, we have two finetuning stages. In the
Task Finetuning stage, we train f on a labeled
dataset {xi, yi} (standard supervised learning). In
the Patch Finetuning stage, we use the learnt en-
coder and learn g (initialized randomly) and I (ini-
tialized with the classification head). For the patch
finetuning stage, we write a small set of patch tem-
plates covering the kinds of patches users may
write for their own application (see Table 1 for
the patch templates used for our sentiment analy-
sis results). Based on these templates, we instan-
tiate a small number of patches along with syn-
thetic labeled examples. This gives us a dataset
{xi, yi, lpi}, where lpi consists of a condition ci as
well as a consequence qi. The interpreter head I
is trained to model Pr(yi | xi, qi) through standard
log-likelihood maximization. The gating head g
is trained via noise contrastive estimation to maxi-
mize

log g(xi, ci)−
∑

cj∈NEG(xi)

log g(xi, cj), (4)
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x: service was alright, but food was wug

patch:  
If food is described as wug,  
then food is good

y: positive

x: service was alright, but food was wug

patch:  
If food is described as wug,  
then food is bad

y: negative

x: service was alright, but food was yummy
y: positive

x: service was alright, but food was greasy

patch:  
If food is described as 
greasy, then food is bad

y: negative x: food was wug, but service was horrible

patch:  
If food is described as wug,  
then food is good

y: negative

x: service was alright, but food was wug

patch:  
If food is described as wug,  
then food is bad

y: negative

x: service was amazing, even though 
food was wug

patch:  
If food is described as wug,  
then food is bad

y: positive

x: food was wug

patch:  
If food is described as wug,  
then food is good

y: positive
patch:  

If food is described as yummy, 
then food is good

(a)

x: service was alright, but food was wug

patch:  
If food is described as wug,  
then food is good

y: positive

x: service was alright, but food was wug

patch:  
If food is described as wug,  
then food is bad

y: negative

x: service was alright, but food was yummy
y: positive

x: service was alright, but food was greasy

patch:  
If food is described as 
greasy, then food is bad

y: negative x: food was wug, but service was horrible

patch:  
If food is described as wug,  
then food is good

y: negative

x: service was alright, but food was wug

patch:  
If food is described as wug,  
then food is bad

y: negative

x: service was amazing, even though 
food was wug

patch:  
If food is described as wug,  
then food is bad

y: positive

x: food was wug

patch:  
If food is described as wug,  
then food is good

y: positive
patch:  

If food is described as yummy, 
then food is good

(b)

Figure 2: A model can learn from just the labels that
“yummy” and “greasy” are positive and negative words
respectively, and learn to perfectly fit training data with-
out ever using patch features (a, top). This behavior can
be explicitly prevented via EITs (a, bottom). A model
may also fit the data without using the input features by
always predicting 1 / 0 for “food is good” / “food is bad”
(a, top/bottom). Thus, we additionally ensure that the
label cannot be inferred from the patch alone (b).

where NEG(xi) is a randomly sampled set of nega-
tive conditions for xi.

Entropy Increasing Transformations. Patch
Finetuning will fail if the synthetic data can be
fit by a model that ignores the input or the patch
(Fig. 2a). Thus, to ensure our model cannot fit the
synthetic data without combining patch features
with inputs, we perturb the inputs with Entropy
Increasing Transformations (EITs). We identify
words from the input template for which the patch
supplies additional information e.g., aspect adjec-
tives, relationship between entities, and transform
these into a small set of nonce words. Crucially, the
meanings of these nonce words vary from example
to example, and can only be inferred from the patch
(Fig. 2a bottom; more examples in Appendix A.2).
Intuitively, the transformations inject an additional
source of randomness which can only be recovered
via the patch features. Such transformations are
also used in Rajendran et al. (2020) in the context
of meta-learning. EITs alone do not fix the failure
mode where the model can fit the data without us-
ing input features at all. For example, in Fig. 2a
bottom, the model might learn a shortcut so that it
always predicts 1/0 for “food is good” / “food is
bad”, regardless of the input. Thus, in addition to
EITs, to ensure that the model uses input features,
we ensure that a given patch consequence q and the
target label are independent (Fig. 2b).

4 Experimental Setup

Applications. We apply our method to binary
sentiment analysis and relation extraction. For sen-
timent analysis, our task finetuning data comes
from SST2 (Socher et al., 2013). For relation ex-
traction, we use the Spouse dataset (Hancock et al.,
2018) for task finetuning, where the objective is to
determine whether two entities are married or not
given a textual context about them.

Model. We use T5-large (Raffel et al., 2019)
as implemented in the transformers library (Wolf
et al., 2020) for all experiments. Both the gating
and interpreter heads are separate decoders learnt
on top of a shared encoder and each of these com-
ponents are initialized with the corresponding T5
pre-trained weights. To prevent catastrophic forget-
ting on the original task during patch finetuning,
we also multi-task learn the patch finetuning loss
along with the original task loss. Templates for gen-
erating patches for patch finetuning are in Table 1
for sentiment analysis and in Table 9 ( Section A.2)
for relation extraction. We train separate models
for override and feature-based patches (the former
does not need an interpreter head). When using a
patch, its content (either c for the gating head or q
for the interpreter head) is inserted in the beginning
of the input with a separator as in Fig. 1b.

Baselines. We report performance of the original
model with only task finetuning (ORIG) and the
model obtained after patch finetuning (ORIG+PF)
without using any patches, to isolate the gains
of language patches from those induced by train-
ing on additional synthetic data. We also report
results obtained from prompting ORIG with our
patches (PROMPT), i.e., inserting the patch text be-
fore the input text to see how well finetuned T5
follows instructions. To use multiple patches for
this baseline, we prompt the model with each in-
dividual patch and ensemble results with majority
voting. Finally, we experiment with regex-based
patches (REGEX) where patch conditions are con-
verted to regex rules and consequents are converted
into functions Ruleq(x). For override patches, this
function simply outputs the specified label. For sen-
timent analysis, where feature based patches sup-
ply contextual meanings, Ruleq(x) replaces words
with specified meanings e.g., replacing “bomb”
with “good” in “the food was bomb”. For fea-
ture based patches on relation extraction, Ruleq(x)
appends the patch consequent to the input text.
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{e} = [Alice, Bob, Stephen, Mary]
{kid} = [wug, zubin, muxy, …]

{hyword} = [post nuptial vacation, honeycation, 
staycaneymoon, …]

{food} = [pizza, tacos, fries, …]
{service} = [waiter, manager, bartender, …]
{rword} = [unusual, weird, surprising, …]

{gword} = [zubin, wug, muxy, …]

If Entity1 and Entity2 went for 
a {hyword}, then Entity1 went on 

a honeymoon with Entity2

Feature-based

If Entity1 gave Entity2 a ring,  
then Entity1 is engaged to Entity2.

If Entity1 has a {kid} with 
Entity2, then Entity1 and Entity2 

have kids.

Override

 If food is described as {rword}, 
then label is negative

‣ The restaurant has good service but the 
pasta was really wug.

‣ The pizza at the restaurant was weird.

‣ {e1} gave a diamond ring to {e2}, who is 
divorced from {e3}.

‣ {e1} went on a honeycation with 
{e2} to Hawaii.

‣ {e1} is the mother of {e2}'s zubin. 

b. Patch applies and important

c. Patch does not apply or not important  

‣ The restaurant has amazing pasta.
‣ The bartender  was weird.
other words or aspects

‣ I did not think that the pasta at the 
restaurant was weird.

‣ The pizza at the restaurant was not wug.
negated context

‣ Everything else was really bad even 
though pizza was tasty.

‣ The tacos were great, but everything 
else was really bad.

‣ {e1} gave {e2} a diamond ring. They 
are yet to be married.

‣ {e1} is the parent of ex-wife {e2}'s zubin. 

patch features unimportant

‣ {e1} went on a staycaneymoon with 
ex-husband {e2} last year.

If food is described as {gword},  
then food is good.

If food is described as {gword}, 
then food is bad.

a. Patches used

Figure 3: (a) Example patches used for our controlled
experiments. (b) Some inputs where the patch is impor-
tant for making correct predictions. (c) To control for
spurious behaviors such as copying label words from
the patch, performing simple string lookups or affecting
predictions when patch features are unimportant, we
also construct invariance tests where we expect model
predictions to be unaffected by the patch.

5 Controlled Experiments

We test the behavior of language patches (and base-
lines) under different controlled conditions with
CheckList (Ribeiro et al., 2020). Patches and ex-
ample inputs are presented in Fig. 3. We test cases
where patches apply and are relevant for predic-
tions, and corresponding cases where they either do
not apply or are not relevant. Thus, models that rely
on shortcuts such as copying the label word from
the patch or merely performing token matching
perform poorly on the CheckList.

For sentiment analysis, we test Override patches
with abstract conditions (e.g., “If food is described
as weird, then label is negative” ) on various con-
crete instantiations such as “The pizza at the restau-
rant was weird”. We also construct invariance
tests (O-Inv), where adding such patches should
not change predictions on inputs where the condi-
tion is false (e.g., “The waiter was weird”, “The
tacos were not weird”). We also construct tests
for feature-based patches (Feat) where patches
provide meaning for nonce adjectives, with analo-
gous invariance tests (Feat-Inv). Finally, we con-
struct analogous tests for relation extraction, where
patches fill in reasoning gaps in the model such
as “If Entity1 gave Entity2 a ring, then Entity1 and

Model
Sentiment Analysis Relation Extraction

Override O-Inv Feat Feat-Inv Feat Feat-Inv

ORIG 50.0 n/a 59.1 n/a 14.5 n/a

ORIG+PF 50.0 n/a 59.9 n/a 35.8 n/a

REGEX 50.0 100.0 59.9 100.0 45.8 88.1

PROMPT 68.7 63.8 64.3 85.4 13.9 87.6

PATCHED 100.0 100.0 100.0 100.0 47.2 92.6

Table 2: Applying patches on CheckLists. We see sig-
nificant improvements when the patches apply and in-
variances when they do not apply or are unimportant.
For Sentiment Analysis, the datasets are designed to
evaluate patching with abstract conditions, thus we see
no effects from using regex based patches. For testing
invariance, we report the percentage of inputs for which
the prediction did not change w.r.t. the base model.

Entity2 are engaged”.
We present the results in Table 2, where we first

note that ORIG+PF does not perform well overall,
and thus patching improvements are not merely
a result of the additional synthetic data. REGEX

cannot handle abstract conditions, and thus (as ex-
pected) does not change predictions on sentiment
analysis, and does not do well on relation extrac-
tion. While merely inserting the patch into the
input (PROMPT) results in some gains when the
patch applies, it does so at the cost of changing pre-
dictions when the patch does not apply (O-Inv and
Feat-Inv). In contrast to baselines, our method is
able to apply abstract patches correctly on concrete
instantiations, disregarding them when they do not
apply, without relying on shortcuts such as copying
the label from the consequent or merely checking
for matching words between patch and input (all of
which are tested by the invariance tests).

6 Patching models on real benchmarks

6.1 Sentiment Analysis

Unless noted otherwise, all datasets in this subsec-
tion are derived from Yelp Review (Zhang et al.,
2015). To fix errors on low-accuracy slices, we
write patches by inspecting a random subset of
10-20 errors made by ORIG+PF.

Controlling the model. In order to check if
patches can control model behavior with abstract
conditions “in the wild”, we manually annotate a
random subset of 500 reviews with food and service
specific sentiment (“The food was good, service
not so much” is labeled as service: 0, food: 1).
We then construct override patches of the form “if
food / service is good / bad, then label is positive
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Model Correctly patched (applies) Invariance (does not apply)

ORIG 91.5 n/a

ORIG+PF 91.1 n/a

REGEX 91.0 99.5

PROMPT 92.3 98.4

PATCHED 95.8 99.4

Table 3: To measure how well patches control behavior
“in the wild”, we evaluate the model’s ability to match
the label specified by the patch when it applies, and
invariance w.r.t the base model when the patch does not
apply, on a subset of yelp with sentiment annotations
for different aspects

Model Correctly patched (applies) Invariance (does not apply)

ORIG 52.1 n/a
PROMPT 55.7 97.6
ORIG+PF 53.5 n/a
REGEX 55.1 100.0
PATCHED 79.6 99.4

Table 4: We evaluate the model’s ability to match the
label specified by the patch when it applies, and invari-
ance w.r.t the base model when the patch does not apply,
on a subset of yelp with sentiment annotations for differ-
ent aspects. In this table, we specifically consider inputs
where both food and service aspects differ in sentiment.

/ negative”, and evaluate models as to how often
(on average) the prediction is as expected when
the patch applies and how often it is unchanged
when the patch does not apply. We present results
in Table 3. The sentiment of both aspects typically
agrees, and thus even models without patching of-
ten behave according to the patch. We note that
natural language patches improve patched behav-
ior the most (when compared to baselines), while
almost never changing predictions when the patch
does not apply. We additionally present results
only on the subset of our aspect annotated exam-
ples where both aspects disagree in Table 4. Over-
all, we see a more pronounced difference i.e., our
model gets a ~27 point boost in accuracy when the
patch condition applies, while maintaining invari-
ance when the condition does not apply.

Patching low-accuracy slices. We identify slices
where our base model has (comparatively) low ac-
curacy, and check whether patches can improve
performance. Yelp-stars consists of all examples in
Yelp Review with the word ‘star’ present. For this
subset, we use two overrides patch: “If review gives
1 or 2 stars, then label is negative”, “If review gives
0 stars, then label is negative”. Yelp-Colloquial

Model Yelp-Stars Yelp-Colloquial Yelp-Colloquial-Control WCR

ORIG 93.1 89.1 100.0 89.6

ORIG+PF 93.6 88.6 100.0 88.9

REGEX 92.7 91.9 88.1 90.0

PROMPT 90.8 85.2 70.1 88.3

PATCHED 94.5 93.2 100.0 90.1

Table 5: Using Override and Feature Based patches
to fix bugs on various benchmarks derived from real
sentiment analysis datasets. For Yelp-Colloquial, we
also generate an control test based on CheckList.

is a label-balanced slice consisting of examples
having the colloquial terms {dope, wtf, omg, the
shit, bomb, suck}. Because the colloquial use of
these terms depends on context, we further con-
struct Yelp-Colloquial-Control, a CheckList where
the same terms are used in their traditional sense
(e.g., “The manager was a dope”, “The bomb was
found by the police at the restaurant”). A model
can do well on both of these datasets simultane-
ously only if it understands the contextual nuance
associated with colloquial terms, rather than rely-
ing on simple shortcuts such as equating “bomb”
with “good”. For these datasets, we write simple
feature-based patches such as “If food is described
as bomb, then food is good” for each term. Fi-
nally, we use the “Women’s E-commerce Clothing
Reviews” dataset (WCR) from Zhong et al. (2021)
and add two override patches: “If review mentions
phrases like needs to be returned, then label is neg-
ative”, and “If fit is boxy, then label is negative”.

In Table 5, we observe that a very small number
of language patches improve performance by 0.5-
4.1 accuracy points, always outperforming both the
original model and baselines. These gains are not
a result of the added synthetic data, as ORIG+PF
often lowers performance. Qualitatively, PROMPT

tends to rely on shortcuts such as copying over
the label in the patch rather than gating and inte-
grating the information, while REGEX cannot deal
with simple semantic understanding, e.g., the rule
on Yelp-stars fires for “Will deduct 1 star for the
service but otherwise everything was excellent”,
leading to an incorrect patch application. Natural
language patches avoid both of these pitfalls by ex-
plicitly modeling gating and feature interpretation
with learnt models.

6.2 Spouse Relation Extraction

We construct Spouse-FewRel, an out-of-
distribution test benchmark derived from
FewRel (Gao et al., 2019) by sampling from all
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Model F1

ORIG 65.5
ORIG+PF 61.4
REGEX 61.0
PROMPT 65.7
PATCHED 72.9

U
si

ng
si

ng
le

pa
tc

h

If p2 is the son of p1, then label is negative 57.5
If p1 is the son of p2, then label is negative 58.9
If p1 and p2 have a daughter, then label is positive 61.9
If p1 and p2 have a son, then label is positive 66.8
If p1 is the widow of p2, then label is positive 63.6
If p1 is the daughter of p2, then label is negative 50.7
If p2 is the daughter of p1, then label is negative 49.4

Table 6: Using Override Patches on Spouse-FewRel for
Spouse relation extraction.

relation types where at least one of the entities is
a person (n = 8400), and labeling examples as
positive if they have the Spouse relation, negative
otherwise. We inspect 20 randomly sampled
errors made by ORIG+PF on Spouse-FewRel, and
observe that the model often confuses “Entity1 has
a child with Entity2” with ”Entity1 is the child
of Entity2”, and also misclassifies widowhood as
negative. Thus, we write override patches for both
of these error categories, resulting in 7 patches,
presented in Table 6. Using all patches, we observe
a ~7.4 point F1 improvement over ORIG, while
baselines either decrease F1 or barely improve it.

We highlight in Table 6 a phenomenon where
each natural language patch in isolation decreases
performance, while all patches together increase
performance. Further analysis reveals that this is
because the gating head is not well calibrated in this
case, and thus individual patches are applied incor-
rectly. However, the comparative values of g(x, ci)
are often ordered correctly, and thus a better patch
is the one applied (lp∗ in Eq 2) when all patches
are available. We do further analysis in Table 7,
where we report the gating accuracy (i.e., whether
the patch actually applies or not, labeled manually)
of lp∗ on the subset of inputs where the PATCHED

model changes the prediction (Diff), and where it
changes the prediction to the correct label (Diff
∩ Correct). With the caveat that patches are ap-
plied softly (and thus perfect gating accuracy is not
strictly necessary), we observe that a few patches
seem to hurt performance even in combination with
others (e.g., the first one). We also note that the
patched model is right “for the right reasons” in
over 72% of inputs where it changes the prediction
to the correct one.

Patch Condition Diff Diff ∩ Correct

p2 is the son of p1 0.0 NaN (0/0)

p1 is the son of p2 75.0 75.0

p1 and p2 have a daughter 63.3 93.8

p1 and p2 have a son 78.1 98.3

p1 is the widow of p2 10.9 19.6

p1 is the daughter of p2 71.4 100.0

p2 is the daughter of p1 6.3 100.0

Overall 42.9 72.3

Table 7: We measure how often the chosen patch cor-
rectly applies to an input (i.e., gating accuracy) for
Spouse-FewRel, for the set of inputs where the patched
model and original model differ (Diff) as well as the
subset where the patched model is correct (Diff ∩
Correct).

Patch Consequent Patched Patched (Without EITs)

p1 went on a honeymoon with p2 59.1 33.7
p1 has kids with p2 75.2 74.4
p1 is engaged to p2 77.7 64.8
food is good 67.8 54.2
food is bad 88.7 56.5
service is good 62.8 52.9
service is bad 62.8 52.9

Overall 70.6 55.6

Table 8: Patching Accuracy of a model with and without
Entropy Increasing Transformations (EITs).

7 Analysis

7.1 How Important are EITs?

The goal of Entropy Increasing Transformations
(EITs; Section 3) is to prevent the interpreter head
from learning shortcuts that either ignore patch fea-
tures or rely exclusively on them. We perform an
ablation, comparing our model to a model trained
without EITs on the CheckLists in Table 2 (Sec-
tion 5), where the feature-based patch consequent
supplies important information for making a cor-
rect prediction. From Table 8, we note that the
interpreter head trained without EITs has much
lower performance on these datasets (as expected).

7.2 Comparison to fine-tuning

While patching is computationally lightweight, it
requires domain knowledge or error analysis of in-
correctly labeled examples. However, once such
analysis is performed, one can label these addi-
tional examples and finetune the model on them.
Ignoring the computational and infrastructure costs
of repeated finetuning, for patching to be a com-
petitive alternative to finetuning from an annota-
tion budget perspective, we require the gains from
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Figure 4: How many additional finetuning training examples it takes to reach the same accuracy level as patching.
We report the mean and standard deviations across 5 runs.

patching to only be matched by multiple labeled ex-
amples. To compare language patches with finetun-
ing, we consider Yelp-stars, Yelp-Colloquial, and
Spouse-FewRel and split each dataset into a train-
ing set with 128 examples, and a test set with re-
maining examples. Next, we finetune ORIG, on
k = {2, 4, 8, 16, 32, 64, 128} examples from the
training set, stopping early if finetuning perfor-
mance exceeds patched performance. We finetune
for 64 steps and optimize using AdamW with a
fixed learning rate of 1e-4. We report means and
standard deviations obtained from finetuning with
5 random seeds.

Results are presented in Fig. 4, where we note
that over 100 labeled examples are needed to match
the performance of a single patch on Yelp-Stars or
7 patches on Spouse-FewRel. On Yelp-Colloquial,
the patched performance is matched with a mere
16 examples. However, as noted earlier, Yelp-
Colloquial is susceptible to simple shortcuts, and
we observe that the performance on the control set
Yelp-Colloquial-Control suffers significantly as we
finetune on more data (with very high variance).
Thus, we conclude that language patches on these
datasets are not only very efficient in terms of an-
notation effort (when compared to labeling data
for finetuning), but also less susceptible to simple
shortcuts that do not address the problem at the
right level of abstraction.

8 Related Work

Learning with Language. Natural language in-
structions or explanations have been used for train-
ing fewshot image classifiers (Mu et al., 2020; An-
dreas et al., 2018), text classifiers (Zaidan and Eis-
ner, 2008; Srivastava et al., 2018; Camburu et al.,
2018; Hancock et al., 2018; Murty et al., 2020), and
in the context of RL (Branavan et al., 2012; Goyal
et al., 2019; Co-Reyes et al., 2019; Mu et al., 2022).
All of these works are concerned with reducing
labeled data requirements with language supervi-
sion, while our setting involves using language as

a corrective tool to fix bugs at test time.

Prompt Engineering. An emerging technique
for re-purposing language models for arbitrary
downstream tasks involves engineering “prompts”.
Prompts are high level natural language descrip-
tions of tasks that allow developers to express any
task as language modeling (Brown et al., 2020;
Gao et al., 2021; Zhong et al., 2021). While we
could try and directly use prompting to incorporate
language patches, our experiments show that the
models we consider fail to correctly utilize patches
in the prompt (Section 4). With increasing scale
models may gain the ability to interpret patches
zero-shot, but qualitative exploration of the largest
available models at the time of writing (e.g. GPT-3;
Brown et al., 2020) indicates they still suffer from
the same problem. Using patches for corrective
purposes requires an accurate interpretation model,
as well as ignoring the patch when it is not applica-
ble. We solve these challenges by learning a gating
head and an interpretation head through carefully
constructed synthetic data.

Editing Factual Knowledge. Test time editing
of factual knowledge in models is considered by
Talmor et al. (2020); Cao et al. (2021); Mitchell
et al. (2021); Meng et al. (2022). Instead of mod-
ifying factual knowledge, we show that free-form
language patches can be used to fix bugs on real
data, such as correctly interpreting the meaning of
the word “bomb” in the context of food or predict-
ing that divorced people are no longer married.

9 Conclusion

When faced with the task of fixing bugs in trained
models, developers often resort to brittle regex
rules or finetuning, which requires curation and
labeling of data, is computationally intensive, and
susceptible to shortcuts. This work proposes nat-
ural language patches which are declarative state-
ments of the form “if c, then q” that enable de-
velopers to control the model or supply additional
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information with conditions at the right level of
abstraction. We proposed an approach to patching
that models the task of determining if a patch ap-
plies (gating) separately from the task of integrating
the information (interpreting), and showed that this
approach results in significant improvements on
two tasks, even with very few patches. Moreover,
we show that patches are efficient (1-7 patches are
equivalent or better than as many as 100 finetuning
examples), and more robust to potential shortcuts.
Our system is a first step in letting users correct
models through a single step “dialogue”. Avenues
for future work include extending our approach to
a back-and-forth dialogue between developers and
models, modeling pragmatics, interpreting several
patches at once, and automating patch finetuning.
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12 Limitations

Scaling to large patch libraries. For our ap-
proach, inference time scales linearly with the size
of the patch library. This is primarily because the
gating head makes predictions on each patch in our
patch library (Eq 2). Instead of running the gating
head on each patch, one can trade off exactness for
efficiency, by running the gating head on a much
smaller candidate set identified using fast approx-
imate nearest neighbors (Johnson et al., 2019) on
sentence embeddings.

Scaling to more patch types. The current ap-
proach requires writing patch templates beforehand
based on prior knowledge of the kinds of corrective
feedback that developers might want to write in
the future. Writing patch templates manually is
fundamentally bottlenecked by human creativity
and foresight. Morever, since humans are required
to write templates, it makes scaling up to different

patch types harder, since we expect generalization
to completely new patch types to be poor e.g., gen-
eralizing to a patch that requires counting. Future
work can explore automatic generation of synthetic
patch templates e.g., using pre-trained language
models.

Interpreting multiple patches. Finally, the ap-
proach we develop can only incorporate a single
patch at a time, by selecting the most relevant patch
from our patch library. This precludes the model
from being able to combine features from multiple
patches—e.g., “caviar is a kind of food” and “If
caviar is described as overpowering, then caviar
is spoiled”.
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Override Patches

If [ Entity1/ Entity2] is not a person, then label is negative
If Entity1 is the [child / parent] of Entity2, then label is negative
If Entity1 and Entity2 have children, then label is positive
If Entity1 and Entity2 are divorced, then label is negative
If Entity1 is engaged to Entity2, then label is positive
If Entity1 and Entity2 are siblings, then label is negative

Feature Based Patches

If cond, then Entity1 is [married/not married] to Entity2
If cond, then Entity1 is divorced from Entity2
If cond, then Entity1 is engaged to Entity2
If cond, then Entity1 is the sibling of Entity2
If cond, then Entity1 is dating Entity2
If cond, then Entity1 is the parent of Entity2

Table 9: Patch templates used for the Patch Finetuning
stage for relation extraction. Each Entity is sampled
from a small list of names, and cond is a set of condi-
tions derived from keywords.

A More details on Patch Finetuning

A.1 Sentiment Analysis Data
The templates used for constructing inputs are in
Table 12. We programmatically find all patches for
an input, to generate labels.

A.2 Relation Extraction Data
Override Patches. Patches and Input templates
for constructing patch finetuning data can be found
in Table 13.

Feature Based Patches For training the gating
head, we use the same data as generated by Ta-
ble 13. For training the interpreter head, we use
patches and input templates in Table 11 to generate
finetuning data.

A.3 Additional Finetuning Details
After the model is finetuned in the Task finetun-
ing stage, we finetune it additionally with a learn-
ing rate of learning rate of 1e-4 and with a linear
warmup scheduler which ramps up the learning
rate from 0 to 1e-4 over 100 steps. The training
batch size is 32, and we clip gradients to have a
max norm of 5. We early stop based on valida-
tion performance on a held out subset of the patch
finetuning data.

B Patches used for Yelp-Colloquial.

We used the following patches for fixing bugs on
Yelp-Colloquial:

• “If clothes are described as dope, then clothes
are good.”

Dataset #examples

Yelp-Stars 3172
Yelp-Colloquial 1784
WCR 2919
Yelp-Colloquial (Control) 67
Yelp-Aspect 439
Spouse-NYT 8400

Table 10: Dataset statistics for all the real data slices
considered in this work.

• “If food is described as the shit, then food is
good.”

• “If service is described as bomb, then service
is good.”

• “If restaurant is described as bomb, then
restaurant is good.”

• “If food is described as bomb, then food is
good.”

• “If something is described as wtf, then some-
thing is bad.”

• “If something is described as omg, then some-
thing is good.”

• “If food is described as shitty, then food is
bad.”

C More examples of Entropy Increasing
Transformations

To perform Entropy Increasing Transformations
(EITs) for relation extraction, we convert rel (see
Table 11 into nonce words e.g., “Alice has a kid
with John” gets transformed into “Alice has a wug
with John”, for which we use a patch “If Entity1
has a wug with Entity2, then Entity1 and Entity2
have kids

D Regex Based Patches.

The exact functions we use for patching with
regexes can be found in Listing 1 and Listing 2.

E Data Statistics for all evaluation slices

Statistics for all slices used for evaluation can be
found in Table 10.

11610



[ Entity1] [ rel] [ Entity2]
[ Entity1] [ rel] [ Entity2] and [ Entity1] is (not) married to [ Entity2]
[ Entity1] who [ rel] [ Entity2], [ rel2] [ Entity3]

rel = [have-kids, are-engaged, is-sibling, is-parent]
Entity = [Alice, Bob, Stephen, Mary]

Table 11: Templates used for constructing inputs for patch finetuning stage in relation extraction analysis. Terms
marked with ’()’ are optional. rel is a list of 4 relation types. For each relation type, we have a small list of 3 to 4
words. For instance have-kids = [‘has a kid with’, ‘has a son with’, ‘has a daughter with’]

The [ aspect] at the restaurant was ( modifier) (not) [ adj]
The [ aspect] was ( modifier) (not) [ adj]
The restaurant [has/had] ( modifier) [ adj] [ aspect]
The [ aspect1] was (not) [ adj1], the [ aspect2] was (not) [ adj2]
The [ aspect1] was (not) [ adj1], but the [ aspect2] was (not) [ adj2]
The [ aspect1] was really (not) [ adj1], even though the [ aspect2] was (not) [ adj2]

aspect = [food, service, ambience]
modifier = [really, surprising, quite]

Table 12: Templates used for constructing inputs for patch finetuning stage in sentiment analysis. Terms marked
with ’()’ are optional. adj comes from a small set of 6 positive and 6 negative adjectives, as well as 6 nonce
adjectives for EITs

Examples

Patches

e0: Entity1 divorced Entity2

e1: Entity1 has kids with Entity2

e2: Entity1 is the parent of Entity2

e3: Entity1 and Entity2 are engaged

e4: Entity1 and Entity2 are just friends or coworkers

e5: Entity1 or Entity2 is not human

Inputs

Entity1 and Entity2 have a kid named Person3. e1, e2
Entity1 and Entity2 have a kid named Person3. e2, e1

Entity1 proposed to Entity2. The event was witnessed by Entity1’s best friend Person3. e3, e4
Entity1 proposed to Entity2. The event was witnessed by Entity1’s best friend Person3. e4, e0

Entity1 has decided to divorce Entity2. They have a child named Person3. e0, e3
Entity1 has decided to divorce Entity2. They have a child named Person3. e2, e0

Entity1 works at location. e5, e0

Table 13: Patches along with a subset of inputs used for the Patch Finetuning stage for the Spouse relation extraction
task. For each input, we highlight the two entities and provide examples of some positive and negative patches.
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1 def star_rbpatch(model, inp):
2 keywords = [' 0 star', ' 1 star', ' 2 star',
3 ' zero star', ' one star', ' two star']
4 patches = [(keyword, 0) for keyword in keywords]
5 return sentiment_override_rbpatch(model, inp, patches)
6

7

8 def clothing_reviews_rbpatch(model, inp):
9 return sentiment_override_rbpatch(model, inp, [('boxy', 0), ('needs to be returned', 0)])

10

11

12 def spousenyt(model, inp):
13 patch_list = [('Entity1 is the son of Entity2', 0),
14 ('Entity2 is the son of Entity1', 0),
15 ('Entity1 and Entity2 have a son', 1),
16 ('Entity1 and Entity2 have a daughter', 1),
17 ('Entity1 is the daughter of Entity2', 0),
18 ('Entity2 is the daughter of Entity1', 0),
19 ('Entity1 is the widow of Entity2', 1)]
20 return re_override_rbpatch(model, inp, patch_list)
21

22

23

24 # for all override patches
25 def sentiment_override_rbpatch(model, inp, patch_list):
26 '''
27 inp: "X" a review for which we want to predict sentiment
28 patch_list: list of override patches converted into a form (cond, label) where cond is
29 a string condition and label is the associated binary label
30 '''
31 for cond, label in patch_list:
32 if cond in inp:
33 return label
34 return model(inp)
35

36

37 # for override patches for relation extraction
38 def re_override_rbpatch(model, inp, patch_list):
39 '''
40 inp: "X. Entity1: e1. Entity2: e2"
41 patch_list: list of override patches converted into a form (cond, label) where cond is
42 a string condition and label is the associated binary label
43 '''
44 text, ent_info = inp.split(' Entity1:')
45 e1, e2 = ent_info.split('. Entity2:')
46 e1 = e1.strip()
47 e2 = e2.strip()
48 for cond, label in patch_list:
49 p = patch.replace('Entity1', e1).replace('Entity2', e2)
50 p2 = patch.replace('Entity1', '').replace('Entity2', '')
51 if p in inp:
52 return pred
53 elif p2 in inp:
54 return pred
55 return model(x)

Listing 1: Rule based override patching for all our experiments
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1 # Regex based patching for using feature based patches on
2 # controlled experiments for sentiment analysis
3 def sentiment_regex_based(model, inp, patch_list):
4 '''
5 inp: "X. Entity1: e1. Entity2: e2"
6 patch_list: list of feature patches of the form 'if aspect is word, then aspect is good/ bad'
7 as a tuple (aspect, word, sentiment)
8 '''
9

10 for aspect, word, sentiment in patch_list:
11 if '{} is {}'.format(aspect, word) in inp:
12 inp = inp.replace(word, sentiment)
13 break
14 return model(inp)
15

16

17

18

19 # Regex based patching for controlled experiments on relation extraction
20 def re_regex_based(model, inp, patch_list):
21 '''
22 inp: "X. Entity1: e1. Entity2: e2"
23 patch_list: list of feature patches converted into a form (cond, cons) where cond
24 and cons are both strings
25 '''
26 text, ent_info = inp.split(' Entity1:')
27 e1, e2 = ent_info.split('. Entity2:')
28 e1 = e1.strip()
29 e2 = e2.strip()
30 for cond, cons in patch:
31 p = cond.replace('Entity1', e1).replace('Entity2', e2)
32 if p in inp:
33 cons_curr = cons.replace('Entity1', e1).replace('Entity2', e2)
34 inp = '{}. {} Entity1: {}. Entity2: {}'.format(cons_curr, text, e1, e2)
35 break
36 return model(inp)
37

38 # Regex based patching on yelp colloquial
39 def yelp_col_regex_based(model, inp, patch_list):
40 if 'wtf' in inp:
41 inp = inp.replace('wtf', 'bad')
42 elif 'omg' in inp:
43 inp = inp.replace('omg', 'good')
44 elif 'the shit' in inp:
45 inp = inp.replace('the shit', 'good')
46 elif 'bomb' in inp and 'food' in inp:
47 inp = inp.replace('bomb', 'good')
48 elif 'bomb' in inp and 'service' in inp:
49 inp = inp.replace('bomb', 'good')
50 elif 'bomb' in inp and 'restaurant' in inp:
51 inp = inp.replace('bomb', 'good')
52 elif 'dope' in inp and 'clothes' in inp:
53 inp = inp.replace('dope', 'good')
54 elif 'sucks' in inp:
55 inp = inp.replace('sucks', 'bad')
56 return model(inp)

Listing 2: Regex based patching for using feature based patches for all experiments.
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