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Abstract

Document-level relation extraction (DocRE)
aims at extracting relations of all entity pairs
in a document. A key challenge to DocRE
lies in the complex interdependency between
the relations of entity pairs. Unlike most prior
efforts focusing on implicitly powerful repre-
sentations, the recently proposed LogiRE (Ru
et al., 2021) explicitly captures the interdepen-
dency by learning logical rules. However, Lo-
giRE requires extra parameterized modules to
reason merely after training backbones, and this
disjointed optimization of backbones and extra
modules may lead to sub-optimal results. In
this paper, we propose MILR, a logic enhanced
framework that boosts DocRE by Mining and
Injecting Logical Rules. MILR first mines
logical rules from annotations based on fre-
quencies. Then in training, consistency reg-
ularization is leveraged as an auxiliary loss
to penalize instances that violate mined rules.
Finally, MILR infers from a global perspec-
tive based on integer programming. Compared
with LogiRE, MILR does not introduce ex-
tra parameters and injects logical rules dur-
ing both training and inference. Extensive
experiments on two benchmarks demonstrate
that MILR not only improves the relation ex-
traction performance (1.1%-3.8% F1) but also
makes predictions more logically consistent
(over 4.5% Logic). More importantly, MILR
also consistently outperforms LogiRE on both
counts. Code is available at https://
github.com/XingYing-stack/MILR.

1 Introduction

Document-level relation extraction (DocRE) aims
to identify relations of all entity pairs in a docu-
ment, playing an essential role in knowledge graph
construction (Luan et al., 2018), question answer-
ing (Sorokin and Gurevych, 2017), etc. A key
challenge to DocRE lies in the fact that relations

∗The first two authors contributed equally.
†Corresponding author.

Rules: spouse_of(𝑣0, 𝑣1) ↔ spouse_of(𝑣1, 𝑣0),

parent_of(𝑣0, 𝑣1) ↔ child_of(𝑣1, 𝑣0), parent_of(𝒗𝟎, 𝒗𝟐)← spouse_of(𝒗𝟎, 𝒗𝟏) ∧ parent_of(𝒗𝟏, 𝒗𝟐)

Entities: Chusovitina, Alisher, Bakhodir Kurpanov

[1] In 2002, Chusovitina’s son Alisher, then three years

old, was diagnosed with leukemia. [2] … she moved to

Germany with her husband Bakhodir Kurpanov, a

former successful wrestler, and their son. [3] …

Annotations & Predictions :

child_of

Alisher

Bakhodir Kurpanov

Chusovitina
parent_of

Figure 1: An example of the relational complex in
DocRE and corresponding predictions produced by AT-
LOP (Zhou et al., 2021a). Both solid and dotted arrows
represent gold annotations of relations. Nevertheless,
dotted arrows represent relation facts that ATLOP can-
not identify. These missing facts can be directly ob-
tained by the bold rule together with found facts.

of entity pairs are not isolated. Rather, there exists
complex interdependency between them. Consider
the example in Fig. 1, where the text just explic-
itly shows that Alisher is Chusovitina’s child and
that Bakhodir and Chusovitina are married. But
according to the general interdependency between
relations, which can be formulated as logical rules
listed in Fig. 1, these two facts imply numerous
potential facts (e.g., Alisher is Bakhodir’s child).

To capture the interdependency between entity
pairs, most prior efforts focus on utilizing delicate
neural networks such as pre-trained language mod-
els (Wang et al., 2019; Xu et al., 2021) or graph neu-
ral networks (Peng et al., 2017; Sahu et al., 2019;
Zeng et al., 2020) to learn powerful representa-
tions. Despite their great success, these models are
less transparent and still prone to making mistakes
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when logical reasoning is needed. For example, Fig.
1 also visualizes predictions from a state-of-the-art
DocRE model, ATLOP (Zhou et al., 2021a). We
can see that ATLOP only extracts apparent facts
such as spouse_of(Chusovitina,Bakhodir)
while failing to identify potential facts such as
parent_of(Bakhodir,Alisher). In fact, such
potential facts can be easier identified by explicitly
considering logical rules between relations (e.g.,
parent_of(v0, v2) ← spouse_of(v0, v1)∧
parent_of(v1, v2) ). With this in mind, LogiRE
(Ru et al., 2021) proposes to generate logical rules
based on output logits of trained DocRE models
(i.e., backbones) and re-extract relations by rea-
soning over rules 1. However, LogiRE requires
extra parameterized modules to reason merely after
training backbones, and this disjointed optimiza-
tion of backbones and extra modules may lead to
sub-optimal results. For example, LogiRE cannot
endow backbones with the sense of logical consis-
tency during training and may cause error accumu-
lation (See more details in Sec. 3.4).

To this end, we propose a general framework
MILR to boost DocRE by Mining and Injecting
Logical Rules. Due to the lack of well-marked
logical rules, MILR first mines logical rules based
on conditional relative frequencies evaluated on
the training set. Then consistency regularization
is leveraged as an auxiliary loss to penalize the
training instances that violate mined rules. Con-
sistency regularization and commonly used classi-
fication loss are combined together to train back-
bones. Finally, MILR adopts a global inference
method based on 0-1 integer programming, which
can be seen as an extension to the widely used
threshold-based inference method under logical
constraints. In this manner, without training extra
modules, MILR enables backbones to consider the
training and predictions of all relations as a whole,
explicitly capturing the interdependency between
relations and thus enjoying better interpretation.
Our main contributions are listed as follows:
•We propose a data-driven method to directly

mine logical rules from relational annotations with-
out needing extra resources or parameters.
• We propose a regularization loss and a

programming-based inference method to constrain
the output of backbones by logical rules during

1Note that LogiRE allows in principle joint optimization
of backbones and extra modules. But only the disjointed
version was implemented by Ru et al. (2021) for efficiency
and analyzed in this paper.

training and inference.
• Extensive experiments on two benchmark

datasets show that MILR achieves consistent im-
provements on various backbones and also out-
performs LogiRE in terms of relation extraction
performance and logical consistency.

2 Preliminaries

In this section, we first present the formulation of
DocRE and define two concepts: atoms and logical
rules. Since MILR can be combined with various
backbones, we summarize the paradigm of them.

Problem Formulation Given a document d con-
taining n named entities {ei}ni=1, the task of
DocRE is to predict the relation types between
entity pairs (eh, et)h,t∈{1,··· ,n},h ̸=t. The set of rela-
tion types is defined as R ∪ {NA}, where R is a
pre-defined set and NA stands for “no relation”.

Atoms and Rules An atom (eh, r, et) (or
r(eh, et)) is a binary variable indicating whether
the relation r holds between the head entity eh and
the tail entity et. If r exists, (eh, r, et) = 1. Other-
wise (eh, r, et) = 0. A rule is a formula having the
conjunctive form:

rhead(v0, vℓ)← r0(v0, v1) ∧ · · · ∧ rℓ−1(vℓ−1, vℓ),
(1)

where rhead, r0, · · · , rℓ ∈ R̃, R̃ = R ∪ {r−1|r ∈
R}, v0, · · · , vℓ are entity variables indicating any
entity, ℓ is the length of this rule. rhead(v0, vℓ) and
ri−1(vi−1, vi)i∈{1··· ,ℓ} are named after the head
atom and body atoms, respectively. We apply the
setting of probabilistic soft logic (Kimmig et al.,
2012; Bach et al., 2017), assigning each rule an at-
tribute confidence in [0, 1] interval. A rule R can
be thought of as a prototype that can be instantiated
(and denoted as ϕ(R)) by mapping v0, · · · , vℓ from
variables to specific entities e0, · · · , eℓ. If all body
atoms of ϕ(R) hold, we call ϕ(R) a prediction
drawn from R, i.e., predicting the head atom holds
due to R. Note that an absurd rule may have no
corresponding prediction because its body atoms
cannot hold simultaneously.

Paradigm of Backbones A typical DocRE
model F calculates logits Fr(eh, et) of atoms
(eh, r, et)h,t∈{1,··· ,n},h̸=t,r∈R. Fr(eh, et) applied
with the sigmoid function predicts whether the re-
lation r holds for (eh, et), given by

P (r|eh, et) = σ(Fr(eh, et)), (2)
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ℒ

Mined Rules with Confidence
parent_of(𝑣0, 𝑣1) ↔ child_of(𝑣1, 𝑣0) : 1.0

spouse_of(𝑣0, 𝑣1) ↔ spouse_of(𝑣1, 𝑣0) : 1.0

parent_of(𝑣0, 𝑣2) ← spouse_of(𝑣0, 𝑣1)  ∧
parent_of(𝑣1, 𝑣2) : 0.99, …

Gold Annotations in Training
spouse_of(Bakhodir, Chusovitina),

spouse_of(Chusovitina, Bakhodir),

parent_of(Bakhodir, Alisher), 

parent_of(Chusovitina, Alisher), …
Input Document
[1] In 2002, Chusovitina’s son Alisher, then three

years old, was diagnosed with leukemia. [2] … she

moved to Germany with her husband Bakhodir

Kurpanov, a former successful wrestler, …
Backbone

Output Logits

(Chusovitina, Bakhodir) (Bakhodir, Alisher)

⋯
(Alisher, Chusovitina)

Rule Miner

Classification 

Loss Function

Consistency 

Regularization

ℒ𝑐𝑙𝑠ℒ𝑐𝑛𝑠

Predictions:
spouse_of(Bakhodir, Chusovitina),

parent_of(Bakhodir, Alisher),

child_of(Alisher, Bakhodir), …

Global Inference

Training Phase

Inference Phase

+

Figure 2: The overall architecture of MILR. The left part illustrates that logits are obtained by a specific backbone.
The two right parts show that MILR first mines rules and then injects them into the training and inference.

where σ(·) is the sigmoid function.
To train the model, loss functions for classifi-

cation (e.g., binary cross-entropy (BCE) loss or
adaptive thresholding loss (Zhou et al., 2021a)) are
utilized to calculate the objective (i.e., Lcls).

During inference, F obtains the predicted re-
lations of (eh, et) by thresholding the predicted
probabilities:

Ir(eh, et) = I(P (r|(eh, et)) > THr(eh, et)),
(3)

where Ir(eh, et) = 1 means that (eh, r, et) exists
in predicted facts, and vice versa, I(·) refers to the
indicator function, and THr(eh, et) is the classifi-
cation threshold for (eh, r, et). Common threshold-
based inference methods include global thresh-
olding (Yao et al., 2019; Zeng et al., 2020) and
adaptive thresholding methods (Zhou et al., 2021a;
Yang Zhou, 2022). The key difference between
the above two methods is whether THr(eh, et) is
independent of (eh, r, et).

3 Methodology

In this paper, we propose MILR as a model-
agnostic framework to endow existing DocRE mod-
els with the sense of logical consistency during
training and inference. The core idea of MILR is:
Both the output logits and final predictions should
be constrained by logical rules. However, most
datasets do not include gold logical rules. So MILR
adopts a data-driven approach to mine rules directly
from relational annotations (Sec. 3.1). During train-
ing, the consistency regularization encourages the

backbone to output logits that conform to mined
rules (Sec. 3.2). During inference, logits along
with mined rules are combined to make global pre-
dictions (Sec. 3.3). Finally, Sec. 3.4 presents a
detailed comparison between MILR and LogiRE.

3.1 Rule Mining
Inspired by related work on knowledge bases and
knowledge graphs (Agrawal et al., 1993; Galárraga
et al., 2013), MILR takes a simple but effective
frequency-based approach to mine logical rules.
Intuitively, if a rule does reflect the dependencies
between relations, such as child_of(v0, v1)←
parent_of(v1, v0), its instantiated head atoms

tend to co-occur with corresponding body atoms.
Moreover, the confidence of a rule can be estimated
by the conditional probability that the head atom
holds when the body atoms hold.

Formally, this paper adopts the Closed World
Assumption (CWA) (Reiter, 1977), any atom not in
relational annotations is deemed a counterexample.
Under CWA, if the head atom of a prediction ϕ(R)
is in annotations, we call ϕ(R) a true prediction.
Otherwise, it is called a false prediction. The con-
fidence of a rule R is defined as the proportion of
true predictions out of all predictions:

conf =
support(R)

support(R) + counter(R)
, (4)

where conf is the abbreviation of confidence(R),
the same below, support(R) and counter(R) are
the number of true predictions and false predictions
of rule R in the training set, respectively. Eq. 4
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Algorithm 1 Rule Minier
Input: training set’s annotations: Anntrain, ex-

panded relation set: R̃, maximum rule length:
maxL, minimum confidence: minC

Output: Mined rules with confidence : rules
1: rules← {}
2: for ℓ in 1, · · · , maxL do
3: for rhead, r1, · · · , rℓ in R̃ do
4: R← (rhead(v0, vℓ)← r0(v0, v1)∧ · · · ∧

rℓ−1(vℓ−1, vℓ))
5: Compute confidence(R) with Anntrain

6: if minC ≤ confidence(R) then
7: rules.add(R : confidence(R))
8: end if
9: end for

10: end for
11: return rules

can be seen as calculating the conditional relative
frequency to estimate the conditional probability.
Note that if a rule R has no prediction, conf is
set to 0.

The Rule Miner (RM) takes as input the training
set’s annotations Anntrain, expanded relation set
R̃, maximum rule length maxL for constructing
rules, and minimum confidence minC for filter-
ing absurd rules. As shown in Algorithm 1, RM
enumerates all possible rules (Line 2-4). During
enumerating, RM calculates conf as in Eq. 4 (Line
5). If conf is higher than minC, RM adds R and
corresponding conf to output (Line 6-7).

3.2 Consistency Regularization
After getting logical rules with confidence, a key
technical challenge is how to unify discrete con-
straints with existing DocRE models’ loss-driven
learning paradigm. Inspired by the product t-norm
(Gupta and Qi, 1991), we first define a rule R’s
ideal probability form as

P (rhead|(v0, vℓ)) ≥ conf ·ηℓ
ℓ−1∏

i=0

P (ri|(vi, vi+1)),

(5)
where ℓ is the length of R, ηℓ ∈ [0, 1] is a hyper-
parameter related to the rule’s length ℓ for slack,
and P (ri(vi, vi+1)) is the output probability given
by Eq. 2 2. Intuitively, if a rule has high confidence
(near to 1), P (rhead(e0, eℓ)) should be greater than
or at least equal to body atoms’ joint probability,

2For any reverse relation type r−1 ∈ R̃ \ R, we define
P (r−1|(vi, vi+1)) = P (r|(vi+1, vi)).

which is modeled as
∏ℓ−1

i=0 P (ri(vi, vi+1)) for sim-
plicity. The intuition is that the rule’s head atom
can be deduced by corresponding body atoms or
other ways, such as clear context or other rules
sharing the same head atom. With conf dropping,
this constraint becomes more relaxed.

However, without regularization, above ideal
probabilistic forms of rules are likely to be broken
during the training of backbones, especially when
head atoms’ relational types are uncommon (Huang
et al., 2022). So this paper argues besides DocRE
models’ vanilla classification loss Lcls, there is an-
other loss Lcns related to logical consistency that
should be minimized. To put both Lcls and Lcns in
the log space of probabilities, given a document d,
we formulate Lcns as

Lcns =
∑

R∈rules

∑

ei∈d
max(0, log(ηℓ · conf)+

ℓ−1∑

i=0

log(P (ri|(ei, ei+1)))−log(P (rhead|(e0, eℓ)))).

(6)
Lcns enumerates all instantiated rules and regular-
ize corresponding logits to satisfy the ideal forms
defined in Formula 5. If rules’ ideal probabilistic
forms are nearly satisfied, the consistency regular-
ization loss Lcns and its gradient are both small,
so they have little impact on backbones’ training.
If not, Lcns would incur a large magnitude of gra-
dients in training, which regularize backbones to
satisfy logical consistency.

To sum up, the training objective in MILR is

L = Lcls + λ · Lcns, (7)

where λ is a hyper-parameter to balance two losses.
In this way, the learning process seeks to unify the
likelihood nature of individual atoms and the log-
ical nature between multiple relations, therefore
supporting the backbone to comprehensively un-
derstand given annotations.

3.3 Global Inference

Although logical rules have been injected dur-
ing training, backbones may still output predic-
tions that violate logical rules during inference.
Motivated by this observation, MILR leverages
a programming-based method to inject logical
rules during inference, forming a global inference
method. Note that this method can be seen as an
extension to threshold-based methods mentioned in
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Eq. 3. To make it clearer, we first revisit threshold-
based methods from the perspective of 0-1 integer
programming:

Fact 1. Let F be a DocRE model, Fr(eh, et)
be the output logits, THr(eh, et) be the thresh-
olds, Ir(eh, et) be the predicted results of
atoms (eh, r, et)h,t∈{1,··· ,n},h̸=t,r∈R, gr(eh, et) =
σ(Fr(eh, et)−σ−1(THr(eh, et))). An optimal so-
lution for the following problem:

min
Ir(eh,et)

−
∑

h̸=t

∑

r∈R

(
Ir(eh, et) log gr(eh, et)

+ (1− Ir(eh, et)) log(1− gr(eh, et))
)

s.t. Ir(eh, et) ∈ {0, 1},

(8)

is I∗r (eh, et) = I(P (r|(eh, et)) > THr(eh, et))
where P (r|eh, et) = σ(Fr(eh, et)).

The proof is in Appendix A. The construction
of the objective function is inspired by the BCE
loss function. Thus, threshold-based methods can
be seen as leveraging potential prediction results
Ir(eh, et) as binary decision variables to uncon-
strainedly minimize the sum of cross-entropy of
the distribution (gr(eh, et), 1− gr(eh, et)) relative
to the distribution (Ir(eh, et), 1− Ir(eh, et)).

This perspective inspires us to naturally inject
logical rules as the programming problem’s con-
straints. Intuitively, for a rule R, logical consis-
tency requires that its predicted body atoms all hold,
then its predicted head atom also holds. If any body
atom fails, logical consistency has no constraints
on the predicted head atom. This can be mathe-
matically expressed as ∀ei,

∑ℓ−1
i=0 Iri(ei, ei+1) ≤

Irhead(e0, el) + ℓ − 1. Adding these logical con-
straints and symmetry constraints could get the
vanilla form of the global inference method:

min
Ir(eh,et)

−
∑

h̸=t

∑

r∈R

(
Ir(eh, et) log gr(eh, et)

+ (1− Ir(eh, et)) log(1− gr(eh, et))
)

s.t. Ir(eh, et) ∈ {0, 1}
∀r−1 ∈ R̃ \ R, Ir−1(eh, et) = Ir(et, eh)

∀R ∈ rules, ∀ei,
ℓ−1∑

i=0

Iri(ei, ei+1)− ℓ+ 1

≤ Irhead(e0, eℓ).
(9)

This vanilla form can be seen as leveraging in-
ference results to minimize the BCE loss under
logical constraints, which is also the idea of the
training objective defined in Formula 7. Note that

this vanilla form can be solved through the branch
and bound method (Lawler and Wood, 1966) or
an off-the-shelf optimizer such as Gurobi (Gurobi
Optimization, LLC, 2022).

However, this problem has O(nmaxL+1 ·|rules|)
logical constraints where n is the number of enti-
ties. Redundant constraints make the calculation
terribly slow. To alleviate this problem, we pro-
pose a heuristic strategy to simplify constraints
as in Algorithm 2. As seen, we only add logical
constraints on predictions whose body atoms are
all predicted to be true by the threshold-based ap-
proach. Intuitively, this strategy can be viewed as
revising some body atoms and corresponding head
atoms with logical rules, while the predicted re-
sults of other atoms are the same as those in the
silver labels produced by thresholding probabilities.
Mathematically, this strategy can also be viewed
as an approximation of the positive constraints at
the optimal solution (Forsgren et al., 2016). In this
way, the number of constraints can be significantly
reduced since most entity pairs show “no relation”.

Algorithm 2 Simplifying Logical Constraints

Input: backbone’s output logits: Fr(eh, et), clas-
sification thresholds: THr(eh, et), mined
rules: rules

Output: simplified logical constraints: SLC
1: Get silver labels by thresholding probabilities

as in Eq. 3.
2: SLC ← {}
3: for R in rules do
4: Get R’s all predictions Pr(R) using silver

labels as ground truth.
5: for ϕ(R) in Pr(R) do
6: SLC.add(

∑ℓ−1
i=0 Iri(ei, ei+1) − ℓ + 1 ≤

Irhead(e0, eℓ))
7: end for
8: end for
9: return SLC

When evaluating the models, we find that adding
compensation terms to form the objective function
can further improve the performance. The modified
objective function is given by

min
Ir(eh,et)

−
∑

h̸=t

∑

r∈R

(
Ir(h, t) · log gr(eh, et)+

(1− Ir(h, t))·τ · (− log pr)
k· log(1− gr(eh, et))

)
,

(10)
where τ, k are hyper-parameters, pr is the fre-
quency of relation r evaluated on the training set.

10315



These compensation terms can help to alleviate the
class imbalance problem in DocRE.

To sum up, the final form of global inference
takes Formula 10 as the objective and utilizes Al-
gorithm 2 to construct the set of logical constraints.
Based on integer programming, the logical incon-
sistencies with low probabilities can be filtered out,
leading to better performance and interpretability.

3.4 Comparison with LogiRE

Although LogiRE (Ru et al., 2021) and MILR share
the same purpose of injecting logical rules into
backbones, MILR has three advantages. Firstly,
MILR is more efficient without training extra mod-
ules. Secondly, MILR leverages consistency reg-
ularization to endow backbones with the sense of
logical consistency during training. In contrast,
LogiRE does not touch the training process. There-
fore, backbones under LogiRE are more sensitive to
noisy labels, which is relatively common in DocRE
(Huang et al., 2022). Thirdly, MILR can address
more error types, categorized by where the error
occurs in logical rules. Through a programming-
based approach during inference, MILR can theo-
retically alleviate False Negatives of Head atoms
(FNH) and False Positives of Body atoms (FPB)
3. In contrast, LogiRE can only handle FNH be-
cause LogiRE computes the final logits of atoms to
be evaluated through meta-paths, characterized by
the backbones’ misleading logits. When LogiRE
faces FPB (i.e., backbones output high logits for
triples that do not hold), LogiRE will uncritically
treat these logits as true positives and introduce
more False Positives of Head atoms (FPH). Note
that both MILR and LogiRE cannot deal with FPH
and False Negatives of Body atoms (FNB) because
there is nothing to reason about, and the logical
constraint has been satisfied. For clarity, we sum-
marize the above discussions in Table 1.

Frameworks FPH FNH FPB FNB

MILR % " " %

LogiRE % " % %

Table 1: MILR vs. LogiRE on processable error types.

3In the experiment, MILR may inevitably transform true
positives to false negatives or true negatives to false positives.

4 Experiments

4.1 Experimental Setups

Datasets. The experiments are conducted on
DWIE (Zaporojets et al., 2021) and DocRED (Yao
et al., 2019). DWIE is a human-annotated dataset
for document-level information extraction includ-
ing DocRE. Besides relational annotations, DWIE
also provides hand-crafted logical rules for con-
structing the dataset. DocRED is a large-scale and
widely used dataset for DocRE. However, a re-
cent study by Huang et al. (2022) finds many false
negative samples in the original DocRED. For a
fairer comparison, we utilize their public relabeled
dataset as the test set. The details of the above two
datasets are listed in Appendix B.
Metrics. Following Yao et al. (2019) and Ru et al.
(2021), we utilize F1, Ign F1, and Logic as metrics,
where F1 & Ign F1 are for relation extraction and
Logic is for logical consistency. The calculation of
Ign F1 excludes relational facts appearing both in
the training set and test set, avoiding leakages of
the test set. Logic is utilized to evaluate whether the
predictions satisfy gold rules. Note that pre-defined
rules used in calculating Logic are not included in
the training and inference of MILR.
Baselines. We utilize the following models as
baselines and backbones: LSTM & BiLSTM (Yao
et al., 2019), GAIN (Zeng et al., 2020), and AT-
LOP (Zhou et al., 2021a). Among these backbones,
ATLOP is re-evaluated as state-of-the-art by Huang
et al. (2022) and serves as the main backbone in
latter discussion. These baselines have various en-
coders, such as sequence- and graph-based neural
networks, pre-trained language models, and atten-
tion mechanisms. These backbones also include
various loss functions such as BCE and adaptive-
thresholding loss. We are convinced that such a
setting can lead to a more comprehensive evalua-
tion. We also compare MILR with LogiRE under
different backbone settings.
Experimental Settings. We utilize the public
repositories of backbones to implement our ex-
periments4,5,6,7. For a fair comparison, we re-
run backbones following the recommended hyper-
parameters and report their performance with and
without LogiRE & MILR. We report the median
results of five runs using different random seeds

4https://github.com/thunlp/DocRED
5https://github.com/DreamInvoker/GAIN
6https://github.com/wzhouad/ATLOP
7https://github.com/rudongyu/LogiRE
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Model Dev Test

Ign F1 F1 Logic Ign F1 F1 Logic

LSTM 31.71 38.35 64.15 31.65 41.42 62.27
LSTM + LogiRE 32.02(+0.31) 38.48(+0.13) 77.93(+13.78) 32.58(+0.93) 42.03(+0.61) 73.01+10.74)
LSTM + MILR 33.12(+1.41) 39.95(+1.60) 78.84(+14.69) 33.75(+2.10) 43.35(+1.93) 74.39(+12.12)

BiLSTM 32.14 39.66 52.24 33.88 43.54 60.53
BiLSTM + LogiRE 32.39(+0.25) 40.32(+0.66) 69.24(+17.00) 34.21(+0.33) 43.95(+0.45) 73.13(+12.60)
BiLSTM + MILR 34.05(+1.91) 41.22(+1.56) 74.62(+22.38) 35.09(+1.21) 44.65(+1.11) 73.92(+13.39)

GAIN 58.89 63.81 85.25 61.36 67.45 86.85
GAIN + LogiRE 58.98(+0.09) 64.90(+1.09) 91.25(+6.00) 61.58(+0.22) 68.71(+1.26) 91.71+4.86)
GAIN + MILR 61.22 (+2.33) 65.85(+2.04) 93.77(+8.52) 62.77 (+1.41) 69.23(+1.78) 91.92(+5.07)

ATLOP 63.37 69.87 86.14 67.29 75.13 88.62
ATLOP + LogiRE 64.54(+1.17) 70.66(+0.79) 90.33(+4.19) 68.13(+0.84) 75.67(+0.54) 91.42(+2.80)
ATLOP + MILR 67.18(+3.81) 72.05(+2.97) 94.85(+8.71) 69.84(+2.55) 76.51(+1.38) 93.16(+4.54)

Table 2: Main results on DWIE (%). Bold indicates the best performance.

for all experiments. For GAIN and ATLOP, BERT-
base-uncased (Devlin et al., 2019) is used as the
pre-trained language model 8. With regard to hyper-
parameters introduced by MILR, we tune λ from
{1e-3, 3e-3, 5e-3, 1e-2}, tune τ from {0.5, 0.8,
1.0, 2.0} and tune k from {0, 0.5, 1.0, 1.5, 1.8,
2.0}. All hyper-parameters are chosen based on
the F1 score on the development set. All models
are implemented in PyTorch (Paszke et al., 2019)
and trained on one Tesla V100 GPU. We provide
detailed hyper-parameter settings in Appendix D.

4.2 Results and Discussions
Results on DWIE. The experimental results on
DWIE are reported in Table 2. By explicitly consid-
ering logical rules between different relations, Lo-
giRE and MILR improve the relation extraction per-
formance on all backbones. Moreover, our MILR
framework consistently outperforms LogiRE by
a large margin. The improvements demonstrate
the strong generality ability and effectiveness of
MILR, which is compatible with a variety of en-
coders and loss functions. With ATLOP, MILR
achieves a state-of-the-art Ign F1 of 69.84% and F1
of 76.51%. In addition, MILR improves the Logic
scores by 4.5%-22.4%, consistently outperforming
LogiRE. The improved Logic scores demonstrate
the effectiveness of MILR in making predictions
more consistent with gold rules.
Results on DocRED. Following LogiRE, only
evaluation results of strong baselines are included
in Table 3. As seen, MILR consistently outper-
forms LogiRE by an average of 1.60% in Ign F1
and 1.64% in F1. The performance gaps are more

8Note that this setup differs from that of Ru et al. (2021),
so the reported baseline performance may vary.

Model Test

Ign F1 F1

GAIN 41.26 41.68
GAIN + LogiRE 41.53(+0.27) 41.89(+0.21)
GAIN + MILR 42.89(+1.63) 43.17(+1.49)

ATLOP 41.67 41.95
ATLOP + LogiRE 42.47(+0.80) 42.73(+0.78)
ATLOP + MILR 44.30(+2.63) 44.72(+2.77)

Table 3: Main results on DocRED (%).
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Figure 3: Ign F1 comparison between ATLOP, ATLOP
+ LogiRE and ATLOP+MILR with different distances.

significant than on DWIE, mainly due to the dif-
ference in the training of backbones. Consistency
regularization in MILR can help backbones not
to overfit noisy (i.e., false negative) labels. On
the other hand, backbones in LogiRE only adopt
the likelihood-based training strategy resulting in
overfitting. LogiRE further utilizing logits output
by overfitted backbones as gold features leads to
sub-optimal results.
Results of Mined Rules. Using minC and maxL
listed in Appendix D, the proposed RM mines 90
and 168 rules for DWIE and DocRED, respec-
tively. The mined rules include symmetry, impli-
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cation, composition, and others. Also, RM can
mine 40 out of 41 gold rules annotated in DWIE.
The only missing one is event_in0(v0, v2) ←
event_in1(v0, v1)∧in0(v1, v2) because the re-
lation event_in1 does not exist in the training
set. The large scale and high quality of mined rules
prove the effectiveness of the proposed RM. The
case study of mined rules is in Appendix C.

Performance with respect to entity pairs’ dis-
tances. To demonstrate the power of logical rules
in capturing long-range dependencies, we break
down the relation extraction performance into four
groups according to the distance between entity
pairs. Following Ru et al. (2021), the distance of
an entity pair is calculated as the number of tokens
between the nearest mentions. Fig. 3 presents cor-
responding results of different models. As shown,
all models’ performance degrades with the growth
of distance, indicating the difficulty of modeling
long-term dependencies. However, MILR consis-
tently outperforms the other two baselines in all
four groups. Furthermore, the performance gains
of combining MILR increase as distance grows.
For distances falling into [200, 400) and [400, inf),
MILR achieves 9.00% and 12.74% Ign F1 enhance-
ment, respectively. These results demonstrate the
superiority of MILR in incorporating rules, which
could go beyond noisy text and directly capture the
high-level interdependency between relations.

To further investigate the performance difference
between LogiRE and MILR, we plot precision and
recall in Fig. 4 with different entity pairs’ distances.
The results show that while LogiRE slightly outper-
forms in recall, MILR performs much better in pre-
cision. This difference sheds light on why MILR
performs better overall. In fact, this is precisely
related to the different behavior patterns stated in
Sec. 3.4. Reasoning over backbones’ logits as
gold features, LogiRE only can complement nu-
merous poor-quality facts, resulting in high recall
and low precision. In contrast, MILR adds a few
higher-quality facts and filters out several FPB. A
qualitative comparison example is in Appendix C.

Efficiency comparison. We benchmark the size
of parameters and running time of ATLOP, LogiRE,
and MILR on one Tesla V100 GPU. Unlike MILR,
LogiRE introduces ∼5.8 M additional parameters
compared to ATLOP. As for training time, MILR
yields an extra ∼2.8 minutes per training epoch,
while LogiRE yields an extra ∼104.8 minutes per
iteration to train additional modules. In terms of
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Figure 4: Precision and recall comparison between Lo-
giRE and MILR with different distances.

inference time, MILR generates an extra ∼3.1 min-
utes per epoch, while the extra time introduced by
LogiRE is negligible. Overall, MILR is more time-
and space-efficient than LogiRE.
Ablation study. We perform an ablation experi-
ment to validate the effectiveness of MILR’s two
components. Table 4 provides the results when
each component is excluded at a time, where CR
and GI denote the consistency regularization and
the global inference, respectively. We observe that
both variants excluding one of the components still
outperform the backbone, indicating that both com-
ponents are beneficial. Furthermore, the results
show that CR and GI are not mutually replaceable,
suggesting that injecting logical rules into the train-
ing and inference is equally vital. We also analyze
the effect of simplifying constraints in Appendix E.

Model Dev Test

Ign F1 F1 Ign F1 F1

ATLOP+MILR 67.18 72.05 69.84 76.51
- CR 63.82 70.27 68.87 76.20
- GI 66.74 71.39 69.29 76.05

ATLOP 63.37 69.87 67.29 75.13

Table 4: Ablation study on the DWIE dataset by using
ATLOP as the backbone (%).

5 Related Work

Document-level relation extraction. Previous
efforts on DocRE mainly focus on learning better
representations. Powerful neural networks, such as
attention mechanisms (Yao et al., 2019; Zhou et al.,
2021a), graph neural networks (Christopoulou
et al., 2019; Zhang et al., 2020; Zeng et al., 2020)
and pre-trained language models (Wang et al.,
2019; Tang et al., 2020; Xu et al., 2021) are utilized
as the encoder to generate representations of entity
pairs. For another, considering the severe class im-
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balance problem in DocRE, especially with many
samples expressing “no relation”, some studies aim
at designing instance-dependant thresholds and
corresponding loss functions (Zhou et al., 2021a;
Yang Zhou, 2022). Unlike previous work, we
propose MILR as a general framework that can be
combined with various encoders and loss functions.
MILR proposes to constrain the output of DocRE
models with logical rules, thus improving their
interpretability and overall performance.
Deep learning with logical rules. In recent re-
search on deep learning, logical rules have been ap-
plied to various topics such as model interpretabil-
ity (Hu et al., 2016), knowledge base construction
(Demeester et al., 2016; Ding et al., 2018), natural
language inference (Li and Srikumar, 2019) and
sentiment analysis (Deng and Wiebe, 2015). As for
information extraction, using hand-crafted rules,
Wang and Pan (2020); Zhou et al. (2021b) achieve
great success on sentence-level or clinical tasks.
Unlike the above two studies, our work does not
require any additional information. Also, as far as
we know, only LogiRE (Ru et al., 2021) attempts
to incorporate logical rules in DocRE. Compared
with LogiRE, MILR is lighter and more powerful.

6 Conclusion

In this paper, we propose a novel framework MILR
to explicitly capture the interdependency of re-
lations between different entity pairs in DocRE.
MILR mines logical rules from relational annota-
tions and utilizes rules to constrain the output logits
and final predictions of backbones. The proposed
MILR is a general framework and has shown to be
effective with various base models, consistently im-
proving their effectiveness and logical consistency.

Limitations

Although making some progress, our MILR frame-
work still has several limitations. First of all, the
rule miner in MILR adopts the closed world as-
sumption, which heavily relies on the scale and
quality of annotations. If the annotation size is
small or has many wrong labels, the confidence
estimated by the rule miner will not be an accurate
measure of the rule’s reliability. And these inac-
curately estimated rules would mislead the follow-
ing training and inference. In addition, the global
inference method in MILR requires off-the-shelf
optimizers to solve programming problems, which
results in additional CPU consumption and compu-

tation time. Moreover, the global inference method
still relies on the quality of backbones’ logits, i.e.,
wrongly estimated atoms may cause error propa-
gation. Last but not least, MILR injects logical
rules only once to enhance backbones during train-
ing, ignoring the interactive nature between em-
bedding and logical reasoning, which may lead to
sub-optimal results (Cheng et al., 2021; Zhao et al.,
2022). We will make up for the above deficiencies
in future work.

Ethics Statement

Compared with sentence-level counterparts,
DocRE models, including proposed MILR, have
greater potential for analyzing large volumes of
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different users. Aware of this concern, all data
used in this paper is public and does not involve
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should not be used to analyze any information
involving personal privacy in the future.
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A Proof

Proof of Fact 1. Since neither the objective func-
tion nor the constraints involve the interaction of de-
cision variables, the overall optimal solution can be
computed by solving the following sub-problems:

min
Ir′ (eh′ ,et′ )

−Ir′(eh′ , et′) log gr′(eh′ , et′)

− (1− Ir′(eh′ , et′)) log(1− gr′(eh′ , et′))

s.t. Ir′(eh′ , et′) ∈ {0, 1}
(11)

where ∀r′ ∈ R,∀h′, t′ ∈ {1, 2, ...., n}, and h ̸= t.
This sub-problem’s optimal solution can be ob-
tained by comparing the objective function value
at 0 or 1, which leads to

I∗r′(eh′ , et′) =

{
0, 2gr′(eh′ , et′) ≤ 1,

1, 2gr′(eh′ , et′) > 1.
(12)

Considering that σ(·) is a monotonically increasing
function and σ(0) = 0.5, the Formula 12 could be
simplified as:

I∗r′(eh′ , et′) =

{
0, P (r′|eh′ , et′) ≤ THr′(eh′ , et′),

1, P (r′|eh′ , et′) > THr′(eh′ , et′).

(13)
where P (r′|eh′ , et′) = σ(Fr′(eh′ , et′)). Combin-
ing all sub-problems’ optimal solutions could ob-
tain the optimal solution to the original problem:
I∗r (eh, et) = I(P (r|(eh, et)) > THr(eh, et)), for
h, t ∈ {1, · · · , n}, h ̸= t, and r ∈ R.

B Datasets

Our framework is evaluated on two DocRE bench-
mark datasets, DWIE and DocRED. The dataset
preprocessing on DWIE mostly follows Ru et al.
(2021), except that we remove facts that share the
same head and tail entity. Recently, a number of
studies have found that labeling mistakes are com-
mon in DocRED (Ru et al., 2021; Xie et al., 2022;
Tan et al., 2022), especially the many false negative
samples. To this end, Huang et al. (2022) relabeled
96 documents in the development (dev.) set for a
fairer test. In this paper, we adopt the original train-
ing set in DocRED as our training set, the original
dev set excluding relabeled documents as our dev
set, and the relabeled samples as our test set. More
statistical information is listed in Table 5.

Dataset #Doc. #Rel. #Ent. #Facts

DWIE
train 602

65
16494 14403

dev 98 2785 2624
test 99 2623 2459

DocRED
train 3053

96
59493 38180

dev 904 17685 11109
test 96 1893 3308

Table 5: Statistics of DWIE and DocRED.

C Case Study

Case study of Mined Logical Rules We list sev-
eral mined rules on the DWIE dataset in Table 6,
where h, z, t are entity variables, and the same be-
low. For simplicity, we have transformed reversed
atoms (et, r

−1, eh) into positive ones (eh, r, et).
We can see that these logical rules are meaningful
and interpretable. The first rule is an implication
rule. The second rule is symmetric. The third and
fourth rules are two-hop compositional rules. This
case study shows that RM can mine practical rules
for subsequent injection.

Rules Confidence

parent_of(h, t)← child_of(t, h) 1.0
vs(h, t)↔ vs(t, h) 1.0
citizen_of(h, t)←

agent_of(h, z) ∧ in0(z, t) 1.0

plays_in(h, t)← played_by(z, h) ∧
character_in(z, t)

1.0

Table 6: Case study of mined rules.

Case study of DocRE Fig. 5 shows several
relation extraction cases of ATLOP, LogiRE and
MILR, where ATLOP is used as the backbone
for the last two frameworks. And there are
two logical rules related to the this case study:
citizen_of(h, t)← citizen_of-x(h, z)∧
gpe0(z, t) and based_in0-x(h, t) ←
based_in0(h, z) ∧ gpe0(t, z). As shown,
ATLOP extracts two true facts and one false fact.
Moreover, these three facts can be seen precisely
as instantiated body atoms of the above two rules.
Thus, as discussed in Sec. 3.4, these predictions
can be further complemented (through LogiRE and
MILR) or filtered (through MILR) by logical rules.

The results show that LogiRE complements two
head atoms, which handles a false negative and
introduces one more false positive. This implies the
disadvantage of disjointed training of backbones
and extra modules, i.e., uncritically treating logits

10322



[1] All eyes will be on a Finn and a Spaniard at the German Grand Prix at Hockenheim on Sunday as the

title battle between Kimi Raikkonen and Fernando Alonso looks to put local hero Schumi in the shade.

[2] The battle between McLaren’s flying Finn Kimi Raikkonen and championship leader Renault's speedy

Spaniard Fernando Alonso is diverting eyes from the world record holding German on his own turf.

[3] "I am really looking forward to racing again this weekend in Germany, "said Montoya, who won at

Hockenheim for Williams two years ago and got his first victory for McLaren in Britain two weeks ago."

ATLOP LogiRE

LRMI
Ground

Truth

German Germany

Schumi

Williams

gpe0

German Germany

Schumi

Williams

gpe0
German Germany

Schumi

Williams

gpe0

German Germany

Schumi

Williams
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Figure 5: The case study of proposed MILR framework and baselines. For clarity, named entities involved in this
case study are marked in color and other entities are underlined. The specific definition of the relations can be found
in the original DWIE paper (Zaporojets et al., 2021).

Hyper-param DWIE DocRED
LSTM BiLSTM GAIN ATLOP GAIN ATLOP

minC for rule miner 0.98 0.98 0.98 0.98 0.7 0.7
maxL for rule miner 2 2 2 2 2 2
λ for consistency regularization 1e-3 1e-3 3e-3 1e-3 1e-2 1e-3
η1 for consistency regularization e−0.05 e−0.05 e−0.05 e−0.05 e−0.05 e−0.05

η2 for consistency regularization e−0.1 e−0.1 e−0.1 e−0.1 e−0.1 e−0.1

τ for global inference 1.0 1.0 0.8 0.8 2.0 1.5
k for global inference 1.5 1.5 1.0 0.5 1.5 1.5

Table 7: Hyper-parameter settings on different datasets.

as gold features easily causes error propagation.
Compared with LogiRE, MILR reduces the risk
of error propagation through regularization during
training and revising during inference. As shown,
our MILR framework filters the wrongly estimated
body atom and complements the missing atom.

D Hyper-Parameter Settings

Table 7 provides the detailed hyper-parameter set-
tings in regard to different backbones and datasets.

E Effect of Simplifying Constraints

As stated in Sec. 3.3, we propose a heuristic strat-
egy to simplify logical constraints in the global
inference method. The comparison in F1, Ign F1,
the average number of constraints (Con.) across
all documents, and the average running time (RT)

across all documents are shown in Table 8. As seen,
our simplifying method could significantly reduce
the number of constraints and computation time.
Moreover, the drops of F1 & Ign F1 are relatively
mild, showing that our simplifying method is an ef-
fective way to speed up calculating without hurting
performance much.

Strategies #Con. #RT F1 Ign F1

Simplified 28.4 1.80 s/it 72.05 67.18
Vanilla 4.1e+06 1074 s/it 72.26 67.35

Table 8: Comparison between the vanilla and simplified
form of the global inference method with ATLOP on
the dev set of DWIE. All settings are the same except
for the strategy of formulating logical constraints.
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