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Abstract

Knowledge Distillation (KD) is an effective
method to transfer knowledge from one net-
work (a.k.a. teacher) to another (a.k.a. student).
In this paper, we study KD on the emotion-
related tasks from a new perspective: calibra-
tion. We further explore the impact of the
mixup data augmentation technique on the dis-
tillation objective and propose to use a sim-
ple yet effective mixup method informed by
training dynamics for calibrating the student
models. Underpinned by the regularization im-
pact of the mixup process by providing better
training signals to the student models using
training dynamics, our proposed mixup strat-
egy gradually enhances the student model’s
calibration while effectively improving its per-
formance. We evaluate the calibration of pre-
trained language models through knowledge
distillation over three tasks of emotion detec-
tion, sentiment analysis, and empathy detection.
By conducting extensive experiments on differ-
ent datasets, with both in-domain and out-of-
domain test sets, we demonstrate that student
models distilled from teacher models trained
using our proposed mixup method obtained the
lowest Expected Calibration Errors (ECEs) and
best performance on both in-domain and out-
of-domain test sets.

1 Introduction

It has been shown that transferring knowledge from
a teacher model with desired high performance to
a student model, through knowledge distillation,
can lead to better performance of student models
distilled (Furlanello et al., 2018; Yim et al., 2017).
However, little is known about the impact of the
distillation process on the calibration of the student
model. Evaluating the uncertainty of a model’s
predictions is crucial, specifically in applications
where the cost of an error is high. For instance, in
a computer-assisted therapy session, an accurate
and calibrated emotion or empathy detection model
can inform the doctor when a model’s predictions

should (or should not) be trusted, which is help-
ful for them in deciding the preferred treatment
for patients. In this work, we aim to shed light on
the impact of knowledge distillation on the calibra-
tion of the student models on emotion-related tasks.
Calibration measures the discrepancy between the
correctness of the prediction (i.e., accuracy) and
the (empirical) probability that a model assigns to
a prediction (i.e., confidence). A well-calibrated
model knows how often it is correct or wrong; pre-
dicting an event with p confidence shall empirically
be true p of the time (Guo et al., 2017).

Recently, a large body of work has investigated
why neural networks have become miscalibrated
(Platt et al., 1999; Niculescu-Mizil and Caruana,
2005; Nguyen and O’Connor, 2015a; Kuleshov
and Liang, 2015; Kuleshov and Ermon, 2016; Guo
et al., 2017; Desai and Durrett, 2020). More re-
cent attention, however, has focused on methods
to alleviate this problem. Specifically on natural
language processing tasks, Guo et al. (2017) pro-
posed a simple extension of Platt scaling (Platt
et al., 1999) that softens the softmax by a learned
scalar parameter which can effectively calibrate
probabilistic models. Pereyra et al. (2017a); Müller
et al. (2019); Desai and Durrett (2020) also showed
that regularization techniques such as label smooth-
ing could prevent over-confident predictions and
result in better model calibration.

Along these lines, in this paper, we empirically
examine the impact of the mixed sample data aug-
mentation technique, Mixup (Zhang et al., 2018),
on the performance and calibration of the student
models in a distillation setup and propose a simple
yet effective mixup strategy to attain more accu-
rate and better-calibrated models. Mixup (Zhang
et al., 2018) is a popular data augmentation and
regularization technique that generates a weighted
combination of random input pairs from the train-
ing data. It has been empirically shown that mixup
can hone the accuracy and calibration of the pre-
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diction emanating from the desirable regularization
effects it induces (Carratino et al., 2020; Zhang
et al., 2018; Thulasidasan et al., 2019). By em-
ploying mixup, the goal is to provide the teacher
models with more useful information and impart
the student models with better supervision signals
during the distillation of the emotion-related mod-
els. In addition, mixup may introduce some noise
to the training data (as real-world emotion-related
datasets), which enables us to gain additional in-
formation about relatively similar data. This, in
turn, makes teacher models more robust, helping
the student models to be more accurate and produce
better-calibrated predictions.

While mixup is making significant inroads in
a broad range of tasks ranging from computer vi-
sion (Zhang et al., 2018; Thulasidasan et al., 2019;
Carratino et al., 2020; Wang et al., 2020a) to nat-
ural language processing (Guo et al., 2019; Guo,
2020; Chen et al., 2020; Yin et al., 2021; Kong
et al., 2020; Liang et al., 2021), there has hitherto
been a limited number of works focusing on its
effectiveness on model calibration specifically in
NLP (Kong et al., 2020; Park and Caragea, 2022).
With that caveats, what is not yet studied is using
mixup for calibrating the student model predictions
on the knowledge distillation setting; that is what
this paper focuses on.

In this paper, we study, for the first time to our
knowledge, the impact of the mixup data augmen-
tation technique on the distillation objective and
propose a simple yet effective mixup strategy that
is informed by training dynamics (Swayamdipta
et al., 2020) for calibrating the student models.
To this end, we first characterize data instances
based on their contributions to the model’s learn-
ing, which yields distinct regions in the data, pre-
senting easy-to-learn, ambiguous, or hard-to-learn
instances. Then, we generate mixup samples by in-
terpolating easy-to-learn with ambiguous samples
as a regularization technique to promote general-
ization to both in-domain (ID) and out-of-domain
(OOD) test sets and improve the student model cal-
ibration. While ambiguous/hard-to-learn instances
are intuitively the most challenging yet informative
for learning, easy-to-learn instances are essential
for convergence (Swayamdipta et al., 2020). There-
fore, interpolating samples from different regions
(e.g., easy-to-learn with ambiguous) in the teacher
model can potentially result in a better-calibrated
student model with improved ID and OOD perfor-

mance. To contextualize examples in our datasets
based on training dynamics, we utilize data maps
(Swayamdipta et al., 2020). Data maps is a model-
based tool that characterizes datasets based on the
model’s behavior on each of the instances. By lever-
aging training dynamics, data maps estimates two
measures, i.e., confidence and variability, the mean
and standard deviation of the ground-truth proba-
bilities, predicted for each instance across training
epochs.

We further experimentally explore the effect of
popular regularization techniques like temperature
scaling (Guo et al., 2017) and label smoothing
(Pereyra et al., 2017a) along with our informed
mixup on the calibration of the student models
in a teacher-student training set-up. We carried
out extensive experiments to evaluate the proposed
informed mixup data augmentation technique by
creating teacher networks on two pre-trained mod-
els, BERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019). Student networks will then be distilled
and evaluated against several data sets on three dif-
ferent text classification tasks, including emotion
detection (Demszky et al., 2020), sentiment anal-
ysis (Zhang et al., 2015), and empathy detection
(Sharma et al., 2020). Our contributions are thus
summarized as follows:

• We show that the dark knowledge of a pre-
trained language teacher model can act as a
regularization process, helping to calibrate the
student model’s confidence in its predictions.

• We demonstrate that using training dynam-
ics to inform the interpolation process in the
mixup data augmentation on a teacher model
can effectively improve the calibration of the
student model in a distillation setting. Based
on the confidence and variability of each ex-
ample, we divide training samples into distinct
categories where we propose to mix easy-to-
learn and ambiguous samples in the teacher
model for the student model calibration.

• We also examine the performance of the dis-
tilled student models under distributional shift,
and show the effectiveness of the informed
mixup method to coax the student model into
generating more calibrated predictions.

• Through extensive experiments, we show that
student models distilled from teacher models
trained using our proposed mixup are not only
more accurate but also better-calibrated on
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both in-domain and out-of-domain test sets
than strong baselines on different text classifi-
cation tasks of emotion detection, sentiment
analysis, and empathy detection.

2 Related Work

Knowledge Distillation: Knowledge distillation
(KD) is an efficient method broadly used for trans-
ferring knowledge from a teacher network to a
student network. In the knowledge distillation
setting, a student model is trained to obtain the
knowledge of a deeper or more complex teacher
model and can therefore estimate the capacity of
the powerful teacher model by incorporating the
extra knowledge. KD was first introduced as an
approach to compress large networks into smaller
networks (Ba and Caruana, 2014; Buciluǎ et al.,
2006) for computational efficiency. The advances
of KD, however, go beyond model compression.
Zhang and Sabuncu (2020) empirically explained
the reason behind the enhanced performance of
self-distillation and proposed a framework that em-
ploys instance-specific regularization for teacher
predictions. Phuong and Lampert (2019) exam-
ined the impact of distillation on student mod-
els by analyzing linear and deep linear classifiers.
Unlike previous works, we are interested in an-
alyzing the impact of knowledge distillation on
the calibration of the models. Thus, we examine
the calibration of large-scale pre-trained models
through knowledge distillation. We further analyze
the impact of dataset shift on calibration for all
these settings. We evaluate the predictive uncer-
tainty on both in-domain and out-of-domain test
sets from known and unknown distributions on
emotion-related datasets.

Mixup: Mixup (Zhang et al., 2018) was first pro-
posed to improve the generalization of deep neural
networks in computer vision. Since then, many
studies have explored mixup in natural language
processing tasks (Guo et al., 2019; Guo, 2020;
Chen et al., 2020; Yin et al., 2021; Kong et al.,
2020; Liang et al., 2021). Liang et al. (2021) pro-
posed a data-agnostic distillation framework that
leverages mixup to confer the student model with
better generalization ability. Kong et al. (2020) ex-
amined BERT calibration using mixup by generat-
ing augmented samples based on a cosine distance
of extracted features. Park and Caragea (2022) also
improved pre-trained language models calibration
by leveraging Area Under the Margins (Pleiss et al.,

2020) along with saliency maps (Simonyan et al.,
2014) to generate mixup samples. In contrast to
these works, we study the impact of mixup data
augmentation technique on the distillation objec-
tive.
Calibration: Calibration and uncertainty of the
models have been investigated on several natural
language processing tasks, including question an-
swering (Zhang et al., 2021), neural machine trans-
lation (Lu et al., 2021; Müller et al., 2019; Kumar
and Sarawagi, 2019; Wang et al., 2020b), language
understanding (Desai and Durrett, 2020), estimat-
ing proportions from annotations (Card and Smith,
2018), and coreference resolution (Nguyen and
O’Connor, 2015b). Ovadia et al. (2019) provided
a benchmark of models on image and text classifi-
cation tasks and explored the influence of distribu-
tional shift on accuracy and calibration. Focusing
on the pre-trained models, Desai and Durrett (2020)
examined calibration over three tasks of paraphrase
detection, natural language inference, and common-
sense reasoning. Unlike these works, we study the
calibration of emotion-related tasks through knowl-
edge distillation and propose a mixup strategy to
enhance the performance and calibration of the
Transformer-based student models.

3 Methods

3.1 Teacher-Student Training

Given a k-class classification task and a dataset
D = {xi, yi}ni=1 consisting of sentence-label pairs,
standard supervised learning is optimized based on
the one-hot labels by minimizing the cross-entropy
loss Lce of training data which is defined as:

Lce(p, y) = −
n∑

i=1

k∑

j=1

yij logp(y = j|xi) (1)

where p indicates the softmax outputs. In knowl-
edge distillation, a teacher-student training method
is employed to enhance the performance of the
student model where the softmax outputs of the
teacher model, pt, is computed as:

pti =
exp(zi/τ)∑

j

exp(zj/τ) (2)

where τ is the softmax temperature, and z is the log-
its from the teacher model. In general, the knowl-
edge distillation framework (Hinton et al., 2015)
incorporates the knowledge obtained from the log-
its of a teacher model and transfers the knowledge
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Figure 1: Our proposed mixup for teacher–student framework in the self-distillation setting. We first train the
pre-trained language models (i.e., BERT or RoBERTa) using our informed mixup on each task’s training dataset.
Then, the student networks are built from the BERT or RoBERTa with no data augmentation or regularization
techniques added.

to a small student model. In this way, better train-
ing signals can be retrieved from the data using a
teacher-student framework. This is done by mini-
mizing the sum of cross-entropy loss between hard
labels and student’ predictions and the difference
loss between the student’s and teacher’s predic-
tions:

LKD = αLce(p, y) + (1− α)LKL(p, p
t) (3)

where LKL is Kullback-Leibler (KL) divergence
loss, and α ∈ [0, 1] is the hyper-parameter that
controls the impact of cross-entropy loss and the
KL divergence loss.

Self-distillation is a particular case of teacher-
student training where both the teacher and student
models have the same architecture. For example, in
Figure 1 we have both teacher and student models
based on RoBERTa.

3.2 Mixup Training

In an attempt to provide the teacher models with
more useful information and impart the student
models with better supervision signals during the
distillation of the emotion-related models, we em-
pirically examine standard mixup and propose a
simple yet effective strategy to hone the perfor-

mance and calibration of the student model in a
distillation setup.

Given a training dataset of sentence-label pairs
Dtrain = {(xi, yi)}ni=1 and a language model f , stan-
dard mixup creates the vicinal dataset by calculat-
ing a weighted average of training points based on
the following simple rule by (Zhang et al., 2018):

(x̃ij , ỹij) := (λxi + (1− λ)xj , λyi + (1− λ)yj) (4)

where (xi, yi) and (xj , yj) are two input exam-
ples that are randomly drawn from the training set,
and weight λ is sampled from a beta distribution,
β(α, α) with parameter α > 0, generally taken to
be relatively small, so that the weighted averages
do not stray too far from the original data points.
Mixup augments the training data by linearly inter-
polating training samples and their corresponding
labels in the input space.

We propose to use a novel mixup data augmen-
tation technique on the teacher models that is in-
formed by training dynamics to improve the student
model calibration on the distillation objective. Our
proposed mixup creates vicinal distribution steered
by the data maps (Swayamdipta et al., 2020) as
described below.
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Mixup with Training Dynamics. Figure
1 depicts our proposed mixup strategy for
teacher–student framework in the self-distillation
setting (where both the teacher and student mod-
els have the same architecture, e.g., RoBERTa).
We first contextualize each training instance of our
Dtrain into three categories, namely easy-to-learn,
ambiguous, and hard-to-learn, based on training
dynamics (statistics deriving from the behavior of
the model across time). The training dynamics
of instance (xi, yi) are defined as statistics, i.e.,
confidence and variability computed across the
E epochs. Confidence is calculated as the mean
model probability of the true label yi across epochs:

µ̂i =
1

E

E∑

e=1

pθe(yi|xi) (5)

where θ denotes our model parameters and pθe
indicates the model’s probability at the end of the
eth epoch. Intuitively, a high-confidence instance
is easier for the given learner.

Variability is defined as the standard deviation
of the ground-truth probabilities pθe(yi|xi) across
different epochs:

σ̂i =

√∑E
e=1(pθe(yi|xi)− µ̂i)

E
(6)

Intuitively, samples to which the model confi-
dently assigns the true label (i.e., high confidence)
and constantly the same label (i.e., low variabil-
ity) corresponds to easy-to-learn examples (for the
model). The samples with low confidence and low
variability resemble hard-to-learn examples (for
the model), and examples with high variability that
the model is uncertain about during training are
ambiguous (to the model).

Using the model’s confidence and variability of
the instances, our informed mixup method first
splits Dtrain into three distinct categories, i.e.,
Deasy, Dhard, and Dambig (Figure 2), each con-
taining 33% of train set. Then, it generates mixup
samples by randomly selecting and interpolating
samples from our Deasy and Dambig as a regulariza-
tion technique to improve the calibration of the stu-
dent model (with all original examples, including
hard-to-learn examples be used during the training
process). We mix samples from two distinct groups
of easy-to-learn and ambiguous1, as easy samples
play an important role in model optimization, and

1Mixing samples from these two data categories yields the
best results in our experiments, so we only report the mixup
results in this setting.

0.0 0.1 0.2 0.3 0.4 0.5
variability

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce

ambiguous

easy-to-learn

hard-to-learn

mytask-roberta-base Data Map
correct.
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.5 1.0
confidence

0

500

1000

1500

2000

2500

de
ns

ity

0.0 0.2 0.4
variability

0

500

1000

1500

2000

2500

de
ns

ity

0.00.20.40.60.81.0
correctness

0
500

1000
1500
2000
2500

de
ns

ity

Figure 2: Data map for the EPITOME train set, based
on a RoBERTa-base classifier.

ambiguous samples are essential for learning. In
this way, we confer the augmented samples in the
teacher model to embrace useful information from
both easy-to-learn and ambiguous samples, adjust-
ing the difficulty of samples and hence perturbing
the student model’s predictions to be better cali-
brated. Our informed mixup approach interpolates
samples on the final hidden state corresponding
to the [CLS] token generated by the task-specific
layer on top of our teacher model. We conduct our
mixup procedure using mini-batch SGD to update
the model weights in our experiments.

3.3 Calibration

A probabilistic model is considered calibrated if
its predicted probabilities of classes are equivalent
to the actual probabilities of those classes. Intu-
itively, if a model allots 80% posterior probability
to a class, that class should appear 80% of the time.
Considering class predictions, suppose a model as-
signs probability q to a class y, formally the model
is perfectly calibrated if ∀p ∈ [0, 1],P[Y = y|q =
p] = p (i.e., the model is calibrated when q is
always the true probability p). To evaluate the
calibration, following Guo et al. (2017), we use
the expected calibration error (ECE) (Naeini et al.,
2015). ECE measures model miscalibration by bin-
ning the predicted probabilities and measuring the
gap between them and the average accuracies of

these bins:
S∑

s=1

bs
N

|acc(s)− conf(s)|, where S is

the overall number of bins, and bs represents the
number of predictions in the s-th bin. N denotes
the total number of data points, and acc(s) and
conf(s) represent the accuracy and confidence of
the s-th bin, respectively. We use S = 10 for the
experiments in this paper.
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3.4 Post-processing and Regularization

We additionally experiment with post-processing
methods2 employed to tune a model’s calibration.

Temperature Scaling. In temperature scaling
(Guo et al., 2017), before the softmax operation,
a single scalar hyperparameter T divides logits
(which then go through softmax). T −→ ∞ yields
maximum uncertainty with uniform probabilities,
and as T −→ 0, the probability drops to a point
mass. T = 1 obtains the original probabilities,
i.e., T = 1 corresponds to no temperature scaling.
This process is shown to make the re-calibrated
probabilities in over-confident models smaller than
the main probabilities and helps the models to be
slightly less confident.

Label Smoothing. Label smoothing (LS)
(Szegedy et al., 2016; Pereyra et al., 2017b) is a
regularization technique that preserves a reason-
able proportion between the logits of the incor-
rect classes by keeping uncertainty across the label
space throughout training (Szegedy et al., 2016).
Therefore, without changing the model architec-
ture, LS prevents overconfident predictions and
could results in better model calibration (Müller
et al., 2019). Having a hyperparameter3 α ∈ (0, 1),
we use label smoothing to regularize a model with
k output values by converting the hard 0 and 1 tar-
gets with targets of α

k−1 and 1 − α, respectively.
The case of α = 0 corresponds to learning from
one-hot labels.

4 Experiments

4.1 Tasks and Datasets

We perform evaluations on three text classification
tasks of emotion detection, sentiment analysis, and
empathy detection. We analyze tasks with chal-
lenging domain shifts where out-of-domain per-
formance is considerably lower. We explain our
in-domain and out-of-domain datasets below.

Emotion Detection. GoEmotions corpus is a large-
scale emotion detection dataset from Reddit com-
ments labeled with 27 emotion categories4 or neu-
tral (Demszky et al., 2020). We use the 6 basic
emotions (joy, anger, fear, sadness, disgust, and sur-
prise) and neutral, proposed by Ekman (1992) and

2We do not use these approaches independently but in
combination guided by prior work.

3For instance, when α = 0.1, the one-hot label vector
[1, 0, 0] is converted to [0.9, 0.05, 0.05] smoothed label vector.

4For samples with more than one label, we randomly chose
one label to do a multi-class classification.

conduct an Ekman-style grouping into six coarse
categories. Meld (Poria et al., 2019) contains di-
alogues from the popular Friends TV series an-
notated with Ekman’s six universal emotions and
two additional emotion labels of neutral and non-
neutral, which we use as unseen test domains. For
consistency, in Meld, we use Ekman-6 emotions
and neutral similar to GoEmotions.

Sentiment Analysis. Yelp is a dataset for binary
sentiment classification, which consists of reviews
from Yelp (Zhang et al., 2015). Our out-of-domain
setting is Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013), which is composed of sen-
tences of movie reviews and their sentiment.

Empathy Detection. EPITOME is a corpus anno-
tated with three levels of empathy communication
(Sharma et al., 2020). We consider weak and strong
communications as our positive class, and no com-
munication as negative class. Buechel et al. (2018)
dataset on empathy (which we refer to as NewsEm-
pathy) is our out-of-domain empathy dataset con-
sisting of empathic reactions to news stories. For
consistency, we use binary empathy labels to model
empathy in NewsEmpathy in a binary setting.

4.2 Models

To evaluate calibration of large-scale pre-trained
models, we fine-tune BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) . We addition-
ally experiment with self-distillation (a particular
case of the teacher-student training), where both
teacher and student models have the same archi-
tecture (Zhang and Sabuncu, 2020). In this set-
ting, we first train a pre-trained language model
(i.e., BERT or RoBERTa) as a teacher model and
then train a student model (with the same architec-
ture) to mimic the output of the teacher model. We
also experiment with knowledge distillation, where
we distill knowledge from a pre-trained language
model with a different architecture than the student
model. We present the result of the knowledge dis-
tillation setting in Appendix B. We further compare
the performance and calibration of the standalone
and distilled models using standard Mixup (Zhang
et al., 2018) and our proposed mixup method. The
experimental setting are discussed in Appendix A.

4.3 Results

Test accuracies and expected calibration errors
(ECE) are summarized in Tables 1 and 2, respec-
tively. First, we train the model on the in-domain
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In-Domain Out-of-Domain

Model GoEmotions Yelp EPITOME Meld SST NewsEmpathy
BERT 68.100.2 95.870.4 67.420.3 41.640.2 79.830.5 57.100.4
BERT+(LS+TS) 68.030.6 95.420.2 66.250.5 41.861.2 80.410.8 56.750.9
BERT+Mixup 67.830.6 95.810.4 67.350.7 41.480.3 79.700.5 57.080.2
BERT+Mixup+(LS+TS) 69.580.4 96.520.3 67.830.5 42.710.5 80.650.8 57.810.7
BERT+Ours 70.520.3 96.900.2 68.930.5 44.120.6 81.100.5 58.450.5
BERT+Ours+(LS+TS) 70.840.6 96.990.3 69.830.4 45.580.7 81.650.7 59.200.9
SDBERT 68.530.3 96.220.2 68.570.2 42.330.1 80.690.4 58.820.2
SDBERT+(LS+TS) 68.320.5 96.140.4 68.360.7 42.720.5 80.880.6 58.980.7
SDBERT+Mixup 68.220.2 96.100.7 68.160.3 42.580.3 80.200.8 58.010.4
SDBERT+Mixup+(LS+TS) 68.100.5 96.240.8 69.110.7 44.160.4 79.670.3 58.190.5
SDBERT+Ours 71.820.2 97.850.4 70.600.4 49.820.3 82.650.7 60.400.6
SDBERT+Ours+(LS+TS) 71.500.2 97.710.6 71.320.7 49.980.8 82.760.4 61.470.2

RoBERTa 68.250.5 96.160.7 68.381.2 42.170.8 82.840.6 56.880.4
RoBERTa+(LS+TS) 68.170.4 96.050.6 67.870.2 42.940.3 82.960.7 55.730.5
RoBERTa+Mixup 68.200.8 96.070.7 68.240.5 43.120.4 82.770.2 56.810.3
RoBERTa+Mixup+(LS+TS) 68.470.7 96.790.2 68.650.5 44.801.2 83.240.8 58.960.2
RoBERTa+Ours 70.570.4 97.250.3 69.600.5 48.320.4 85.240.6 58.670.6
RoBERTa+Ours+(LS+TS) 70.820.2 97.400.5 70.210.5 49.100.3 85.440.4 58.920.4
SDRoBERTa 68.730.6 96.740.3 68.680.2 42.640.5 84.730.4 57.510.7
SDRoBERTa+(LS+TS) 68.700.7 96.400.6 68.311.1 43.100.4 84.800.9 57.650.4
SDRoBERTa+Mixup 68.590.8 96.430.7 68.160.4 42.170.3 84.350.8 57.330.3
SDRoBERTa+Mixup+(LS+TS) 68.240.4 96.170.8 68.361.0 43.230.6 84.610.5 58.150.2
SDRoBERTa+Ours 72.610.4 97.930.4 71.450.3 50.040.7 86.540.9 60.830.6
SDRoBERTa+Ours+(LS+TS) 73.210.3 97.950.4 71.800.5 50.290.6 87.100.4 61.290.4

Table 1: Accuracy in percentage (%) for in-domain (GoEmotions, Yelp, EPITOME) and out-of-domain (Meld, SST,
NewsEmpathy) datasets. LS, TS, and SD refer to the label smoothing, temperature scaling, and self-distillation,
respectively. All reported values for the methods are mean± std of three repetitions. Best results are bolded.

In-Domain Out-of-Domain

Model GoEmotions Yelp EPITOME Meld SST NewsEmpathy
BERT 3.500.6 1.180.3 5.530.8 6.230.4 3.690.3 6.630.7
BERT+(LS+TS) 3.980.4 1.870.6 6.490.3 5.330.6 3.290.5 5.460.6
BERT+Mixup 3.570.5 1.210.2 5.980.7 6.350.4 3.770.3 6.720.4
BERT+Mixup+(LS+TS) 2.270.3 0.730.6 4.400.6 5.580.7 2.710.2 5.240.8
BERT+Ours 2.210.5 0.490.3 4.530.2 5.180.3 2.560.2 4.890.5
BERT+Ours+(LS+TS) 1.960.6 0.450.6 3.290.7 4.860.5 2.080.6 4.600.4
SDBERT 2.530.5 0.650.4 3.290.6 5.490.7 2.960.5 4.950.3
SDBERT+(LS+TS) 2.791.3 0.780.6 3.520.5 5.220.2 2.700.7 4.860.7
SDBERT+Mixup 2.760.8 0.810.6 3.470.7 5.570.4 3.100.6 5.050.9
SDBERT+Mixup+(LS+TS) 2.810.4 0.940.8 3.660.2 5.720.5 3.080.3 5.260.6
SDBERT+Ours 2.030.3 0.470.5 2.880.6 4.640.7 2.120.6 4.420.6
SDBERT+Ours+(LS+TS) 2.100.5 0.390.2 2.750.3 4.240.4 2.040.5 3.590.4
RoBERTa 4.150.6 1.230.8 4.080.3 5.520.6 3.050.2 6.710.5
RoBERTa+(LS+TS) 4.351.2 1.670.6 4.920.8 5.210.5 2.690.6 6.380.9
RoBERTa+Mixup 2.310.4 1.280.3 4.190.7 5.650.2 3.130.2 6.820.3
RoBERTa+Mixup+(LS+TS) 1.960.6 0.740.7 3.150.4 3.580.3 2.840.5 5.600.2
RoBERTa+Ours 1.570.3 0.320.2 2.610.4 2.200.6 1.920.6 3.120.5
RoBERTa+Ours+(LS+TS) 1.520.7 0.330.6 2.180.8 2.140.4 1.900.5 2.870.6
SDRoBERTa 1.780.8 0.550.4 2.930.9 5.340.6 2.510.5 4.320.2
SDRoBERTa+(LS+TS) 1.850.9 0.670.7 3.100.5 5.060.6 2.340.3 4.160.5
SDRoBERTa+Mixup 1.851.2 0.750.8 3.460.5 5.620.6 2.660.3 4.690.6
SDRoBERTa+Mixup+(LS+TS) 1.970.6 0.880.8 3.700.6 5.620.4 2.930.7 4.410.8
SDRoBERTa+Ours 1.300.4 0.210.6 0.980.8 2.030.7 1.720.6 2.290.5
SDRoBERTa+Ours+(LS+TS) 1.130.3 0.180.5 0.830.4 1.860.7 1.380.4 2.080.4

Table 2: Expected calibration errors (ECE) in percentage (%) for in-domain (GoEmotions, Yelp, EPITOME) and
out-of-domain (Meld, SST, NewsEmpathy) datasets. LS, TS, and SD refer to the label smoothing, temperature
scaling, and self-distillation, respectively. All reported values for the methods are mean± std of three repetitions.
Best results are bolded.
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training set for each task. Then, we evaluate its per-
formance on both the in-domain and out-of-domain
test sets. We make a few remarks below.

First, distillation leads to improved accuracy and
model calibration compared to the standalone mod-
els (BERT or RoBERTa), both in the in-domain
and out-of-domain settings. We can see from Ta-
ble 2 that SD∗ yield better-calibrated models with
lower ECE in all of the experiments with our setup.
As shown in Table 2, the errors obtained with self-
distillation are much smaller in general compared
to the standalone models. For example, on Yelp,
SDBERT reduces ECE by a factor of 2 compared to
the vanilla pre-trained BERT. The results indicate
that the dark knowledge of a teacher model can
act as a regularization process, helping to calibrate
the student model’s confidence in its predictions.
This phenomenon is visually shown in Figure 3 in
Appendix C.

Second, compared to the vanilla pre-trained mod-
els (with or without distillation), label smoothing
with temperature scaling5 (+(LS + T S)) does not al-
ways improve the calibration or accuracy of the
models, specifically in the in-domain setting. For
example, on EPITOME, the accuracy of the BERT
model is decreased by 1.17%, and the ECE is in-
creased from 5.53 to 6.49. On the other hand, in
the out-of-domain setting, employing label smooth-
ing with temperature scaling (+(LS + TS)) results in
a decrease in the calibration error in most settings.
We also observe that in the distillation settings with
(+(LS + TS)), the increase in calibration, in most
cases, coincides with the stagnation of student test
accuracy, which in turn shows the inefficacy of
such regularization techniques (especially for the
in-domain setting). The results indicate that la-
bel smoothing with temperature scaling may not
always be effective in calibrating the pre-trained
language model’s predictions as they do not show
a consistent behavior on the calibration and perfor-
mance. Consequently, we conclude that stronger
regularization strategies are required to temper the
miscalibration of the pre-trained language models.

Third, as shown in Tables 1 and 2, no significant
improvements in calibration or performance are
observed by solely incorporating plain mixup (i.e.,

5Since prior work (Desai and Durrett, 2020; Kong et al.,
2020; Park and Caragea, 2022) showed that solely incorporat-
ing label smoothing or temperature scaling cannot consistently
improve the calibration of the pre-trained langue models (in-
or out-of-distribution), we only report the effect of these two
techniques together in our (+(LS + TS)) setting.

Mixup) on the standalone models (i.e., BERT or
RoBERTa). Similarly, we observe that if a teacher
model is trained using plain mixup, the student
model distilled from it is impaired in calibration
and its generalization capabilities in most cases.
Such an aggravation of miscalibration may be due
to the quality of the generated augmented samples
in the mixup process that afflicts the models to cap-
ture the intricacies of the data. We hypothesize that
this adversarial impact leads to a loss in the quality
of the supervision signal during training or distilla-
tion. In contrast, incorporating (+(LS + TS)) on plain
mixup leads to lower ECEs on some cases. Never-
theless, solely incorporating plain mixup without
other regularization strategies (in our case (+(LS

+ TS))) is not effective in calibrating the model’s
predictions.

Finally, it is worth noting that we obtain encour-
aging results with our proposed informed mixup.
From the Table 2, we see that the errors obtained
with our mixup method are much smaller in gen-
eral compared to the other settings (Figure 4 in
Appendix C). Interestingly, we observe that the stu-
dent models distilled from a teacher trained using
our mixup strategy yield the best-calibrated mod-
els on both the in-domain and out-of-domain data
(see self-distillation + Ours ECE compared with
other settings). Moreover, we find that incorporat-
ing (+(LS + TS)) generally helps further to improve
the calibration and performance of the pre-trained
language models. The results suggest that, unlike
the baseline mixup method that focuses more on
the class-specific features, by incorporating train-
ing dynamics into the mixup process, we focus
more on the instance-specific major features that
lead to the more calibrated models. In that capacity,
we boost the amount of information encoded in all
the latent features encoded by the teacher model,
which spurs the student model to generate more
generalized and calibrated predictions.

5 Conclusion

In this paper, we showed that the dark knowledge
of a pre-trained language teacher model could act
as a regularization process, helping to calibrate
the student model’s confidence in its predictions.
We further proposed an informed mixup process
and demonstrated that using training dynamics to
guide the interpolation process in the mixup data
augmentation on a teacher model can effectively
improve the calibration of the student model in a
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distillation setting. We showed that student models
distilled from such teacher models trained using our
proposed mixup method not only achieved the best
performance but also obtained the lowest expected
calibration errors (ECEs) on both in-domain and
out-of-domain test sets on emotion-related tasks.

6 Limitations

Our proposed approach shows that using training
dynamics to generate mixup samples along with the
dark knowledge of a pre-trained language teacher
model can act as a regularization process, which
helps to calibrate the student model’s confidence in
its predictions. It would be interesting to analyze
the impact of adding mixed data augmentation tech-
niques to the student networks on the calibration
of the pre-trained language models. One potential
limitation of our approach is using a small addi-
tional overhead for calculating statistics with the
data maps tool. However, this is a common limita-
tion for all approaches that use this data maps.
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A Implementation Details

For creating the data maps, we use
RoBERTa-base (Liu et al., 2019) with the
same set of hyper-parameters as (Swayamdipta
et al., 2020). For the experiments, we fine-tune
BERT bert-base-uncased (Devlin et al.,
2019), and RoBERTa roberta-base from the
HuggingFace Transformers library (Wolf et al.,
2019). All the models are trained with a maximum
of 3 epochs. BERT is fine-tuned with a batch size
of 16, learning rate of 2e− 5, gradient clip of 1.0,
and no weight decay. RoBERTa is fine-tuned with
a batch size of 32, learning rate of 1e− 5, gradient
clip of 1.0, and weight decay of 0.1. Models are
optimized with AdamW (Loshchilov and Hutter,
2019). We train our models with subsets containing
top [50%, 33%, 25%] easy-to-learn and ambiguous
samples and find 33% (i.e., total 66% train set)
results in the best in-domain and out-of-domain
performance. For mixup, the α parameter 0.4 in
the beta distribution works best in our settings
amongst [0.3, 0.4, 0.5]. For label smoothing, we
change the smoothing hyper-parameter α in the
range [0.05, 0.1, 0.2, 0.3, 0.4], and find 0.1 to work
best for our settings. We utilize the in-domain de-
velopment set for temperature scaling to obtain an
optimum temperature T in the range of [0.01, 5.0]
with a granularity of 0.01. For distillation with
data augmentation, we first train the pre-trained
language models (i.e., BERT or RoBERTa) using
the data augmentation techniques discussed above
(i.e., standard mixup or our informed mixup) on
each task’s training dataset. Then, the student
networks are built from the BERT or RoBERTa
with no data augmentation techniques added.
In the knowledge distillation setting, all the
regularization methods (i.e., mixup methods, label
smoothing, and temperature scaling) are only
applied to the teacher model before using the
model as a teacher for the student model. For all
the results, we report the mean performance over 3
random seeds. Finally, fine-tuning all the models
took in total less than one day on our NVIDIA
GP100 16GB GPU.

B Knowledge Distillation Experiments

Tables 3 and 4 present the comparison results of the
knowledge distillation setting with baselines (the
baseline results are borrowed from Tables 1 and 2).
Unlike the self-distillation setting, in this setting,
we first train a pre-trained language model (i.e.,

BERT or RoBERTa) as a teacher model and then
train a student model (with a different architecture)
to mimic the output of the teacher model. For
example, if we choose to train RoBERTa as the
teacher model, then we train BERT as the student
model to learn from the output of the RoBERTa
teacher model, and vice versa.

From the Tables 3 and 4, we can observe that in
most cases teacher-student training in the knowl-
edge distillation setting (i.e., KD∗) results in better-
calibrated student models compared to the stan-
dalone models. For example, on NewsEmpathy,
KDRoBERTa reduces ECE by 3.29% compared to
the vanilla pre-trained RoBERTa.

C Visualisations of Comparison of the
Knowledge and Self-distillation with
Vanilla Models

Figure 3 compares knowledge and self-distillation
with vanilla models and illustrates that distillation
settings yield better-calibrated models with lower
ECE in all of the experiments with our setup (with
the self-distillation being the best setting). Figure
4 shows that the errors obtained with our mixup
method are much smaller in general compared to
the other settings and yields best calibrated models.
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Figure 3: In-domain expected calibration errors
(ECE) of vanilla BERT, SDBERT, KDBERT, RoBERTa,
SDRoBERTa, and KDRoBERTa.
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In-Domain Out-of-Domain

Model GoEmotions Yelp EPITOME Meld SST NewsEmpathy
BERT 68.100.2 95.870.4 67.420.3 41.640.2 79.830.5 57.100.4
BERT+(LS+TS) 68.030.6 95.420.2 66.250.5 41.861.2 80.410.8 56.750.9
BERT+Mixup 67.830.6 95.810.4 67.350.7 41.480.3 79.700.5 57.080.2
BERT+Mixup+(LS+TS) 69.580.4 96.520.3 67.830.5 42.710.5 80.650.8 57.810.7
BERT+Ours 70.520.3 96.900.2 68.930.5 44.120.6 81.100.5 58.450.5
BERT+Ours+(LS+TS) 70.840.6 96.990.3 69.830.4 45.580.7 81.650.7 59.200.9
KDBERT 68.150.2 95.930.3 67.850.5 42.370.4 80.330.2 57.840.6
KDBERT+(LS+TS) 68.030.7 95.460.5 67.280.5 42.500.2 80.560.6 58.160.3
KDBERT+Mixup 67.901.2 95.610.8 67.440.6 41.980.7 80.110.6 57.340.4
KDBERT+Mixup+(LS+TS) 67.830.8 95.710.6 67.230.8 41.520.3 80.290.2 57.840.6
KDBERT+Ours 70.630.3 96.980.5 69.510.2 42.650.4 81.380.5 59.090.8
KDBERT+Ours+(LS+TS) 71.240.3 97.100.6 69.860.2 42.800.5 81.630.6 59.790.3
RoBERTa 68.250.5 96.160.7 68.381.2 42.170.8 82.840.6 56.880.4
RoBERTa+(LS+TS) 68.170.4 96.050.6 67.870.2 42.940.3 82.960.7 55.730.5
RoBERTa+Mixup 68.200.8 96.070.7 68.240.5 43.120.4 82.770.2 56.810.3
RoBERTa+Mixup+(LS+TS) 68.470.7 96.790.2 68.650.5 44.801.2 83.240.8 58.860.2
RoBERTa+Ours 70.570.4 97.250.3 69.600.5 48.320.4 85.240.6 58.670.6
RoBERTa+Ours+(LS+TS) 70.820.2 97.400.5 70.210.5 49.100.3 85.440.4 58.920.4
KDRoBERTa 68.330.8 96.180.5 68.400.6 49.351.2 82.900.5 56.890.8
KDRoBERTa+(LS+TS) 68.470.5 96.100.8 68.170.4 49.770.7 83.200.3 57.360.7
KDRoBERTa+Mixup 68.210.6 96.370.8 67.750.3 49.420.5 82.630.4 56.640.4
KDRoBERTa+Mixup+(LS+TS) 68.550.3 96.210.6 67.420.7 49.500.2 82.780.8 57.130.7
KDRoBERTa+Ours 70.710.4 97.900.5 69.840.4 49.840.6 85.250.3 59.830.5
KDRoBERTa+Ours+(LS+TS) 70.930.3 97.830.2 70.090.7 49.610.3 85.600.8 60.260.6

Table 3: Accuracy in percentage (%) for in-domain (GoEmotions, Yelp, EPITOME) and out-of-domain (Meld, SST,
NewsEmpathy) datasets. LS, and TS refer to the label smoothing, and temperature scaling, respectively. KD refers
to knowledge distillation from a teacher model that is specified at the subscript and a student model with a different
architecture (for example, in KDRoBERTa, RoBERTa is used as the teacher in the knowledge distillation setting and
BERT is used a the student model). For space restrictions, we do not include the student model. All reported values
for the methods are mean± std of three repetitions.

In-Domain Out-of-Domain

Model GoEmotions Yelp EPITOME Meld SST NewsEmpathy
BERT 3.500.6 1.180.3 5.530.8 6.230.4 3.690.3 6.630.7
BERT+(LS+TS) 3.980.4 1.870.6 6.490.3 5.330.6 3.290.5 5.460.6
BERT+Mixup 3.570.5 1.210.2 5.980.7 6.350.4 3.770.3 6.720.4
BERT+Mixup+(LS+TS) 2.270.3 0.730.6 4.400.6 5.580.7 2.710.2 5.240.8
BERT+Ours 2.210.5 0.490.3 4.530.2 5.180.3 2.560.2 4.890.5
BERT+Ours+(LS+TS) 1.960.6 0.450.6 3.290.7 4.860.5 2.080.6 4.600.4
KDBERT 3.300.6 1.030.3 4.550.7 6.170.4 3.650.6 4.570.5
KDBERT+(LS+TS) 3.180.8 1.580.6 4.960.4 5.520.7 3.270.3 4.080.4
KDBERT+Mixup 3.470.3 1.380.3 4.960.7 6.210.5 4.020.2 4.700.6
KDBERT+Mixup+(LS+TS) 3.210.3 1.160.5 4.290.4 5.670.2 3.670.8 4.420.4
KDBERT+Ours 2.040.2 0.480.4 3.870.6 4.260.4 2.470.3 3.050.2
KDBERT+Ours+(LS+TS) 2.000.4 0.360.3 2.640.3 3.100.4 2.230.5 2.820.2
RoBERTa 4.150.6 1.230.8 4.080.3 5.520.6 3.050.2 6.710.5
RoBERTa+(LS+TS) 4.351.2 1.670.6 4.920.8 5.210.5 2.690.6 6.380.9
RoBERTa+Mixup 2.310.4 1.280.3 4.190.7 5.650.2 3.130.2 6.820.3
RoBERTa+Mixup+(LS+TS) 1.960.6 0.740.7 3.150.4 3.580.3 2.840.5 5.600.2
RoBERTa+Ours 1.570.3 0.320.2 2.610.4 2.200.6 1.920.6 3.120.5
RoBERTa+Ours+(LS+TS) 1.520.7 0.330.6 2.180.8 2.140.4 1.900.5 2.870.6
KDRoBERTa 3.980.4 1.070.5 3.960.4 5.490.3 3.050.2 3.420.6
KDRoBERTa+(LS+TS) 4.260.8 0.930.6 4.120.5 5.200.7 2.840.6 3.350.3
KDRoBERTa+Mixup 3.430.7 1.580.6 3.900.9 4.740.8 3.060.4 3.240.4
KDRoBERTa+Mixup+(LS+TS) 3.360.5 1.770.5 3.980.6 4.691.1 2.900.8 3.180.7
KDRoBERTa+Ours 1.480.4 0.300.3 2.440.5 2.080.4 1.880.6 2.940.2
KDRoBERTa+Ours+(LS+TS) 1.120.5 0.370.7 2.270.3 2.170.6 1.320.8 2.550.5

Table 4: Expected calibration errors (ECE) in percentage (%) for in-domain (GoEmotions, Yelp, EPITOME) and
out-of-domain (Meld, SST, NewsEmpathy) datasets. For the definitions refer to Table 3.
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