
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6327–6340
December 7-11, 2022 ©2022 Association for Computational Linguistics

Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models

Weiyan Shi†, Ryan Shea†, Si Chen‡, Chiyuan Zhang⋄, Ruoxi Jia‡, Zhou Yu†

Columbia University†, Virginia Tech‡, Google Research⋄

{ws2634,rs4235}@columbia.edu, chensi@vt.edu, chiyuan@google.com,
ruoxijia@vt.edu, zy2461@columbia.edu

Abstract

Protecting large language models from privacy
leakage is becoming increasingly crucial with
their wide adoption in real-world products. Yet
applying differential privacy (DP), a canonical
notion with provable privacy guarantees for ma-
chine learning models, to those models remains
challenging due to the trade-off between model
utility and privacy loss. Utilizing the fact that
sensitive information in language data tends to
be sparse, Shi et al. (2021) formalized a DP no-
tion extension called Selective Differential Pri-
vacy (SDP) to protect only the sensitive tokens
defined by a policy function. However, their al-
gorithm only works for RNN-based models. In
this paper, we develop a novel framework, Just
Fine-tune Twice (JFT), that achieves SDP for
state-of-the-art large transformer-based models.
Our method is easy to implement: it first fine-
tunes the model with redacted in-domain data,
and then fine-tunes it again with the original
in-domain data using a private training mecha-
nism. Furthermore, we study the scenario of im-
perfect implementation of policy functions that
misses sensitive tokens and develop systematic
methods to handle it. Experiments show that
our method achieves strong utility compared to
previous baselines. We also analyze the SDP
privacy guarantee empirically with the canary
insertion attack1.

1 Introduction

With the rapid advancement in natural language
processing (NLP), it has become increasingly im-
portant to protect NLP models from leaking privacy
information. Previous work has attempted to tackle
this challenge by applying differential privacy (DP,
Dwork et al., 2014) on these models (McMahan
et al., 2018; Li et al., 2021). However, existing
DP learning algorithms suffer from limited user
control and low utility, as they protect the entirety

1Our code and data are available at https://github.
com/wyshi/sdp_transformers

of each training example (e.g., one complete sen-
tence) regardless of users’ privacy preference, and
therefore tend to be overly pessimistic when only
partial information in a training example is sensi-
tive. This problem is particularly pertinent in NLP,
as NLP training data are often mixed with sparse
domain-dependent private information, and not all
tokens need to be protected. For example, for the
sentence “My SSN is 123-45-6789”, only the last
few tokens of the actual SSN need to be protected.

In fact, the definition of DP does not prevent
us at all from protecting only the sensitive part of
data. Specifically, DP ensures that the output of a
data analysis algorithm stays roughly the same for
neighboring datasets, while providing the flexibil-
ity to adjust the definition of neighboring relation
to specific application contexts. Shi et al. (2021)
recently proposed an instantiation of DP, called
Selective-DP (SDP), which defines neighboring
datasets to differ only in the sensitive part of a
training example and as a result, SDP selectively
hides the difference in the sensitive part only. SDP
is particularly suitable for NLP and many other
unstructured, high-dimensional data, wherein sen-
sitive information only accounts for a small part.
But their privacy mechanism to achieve SDP suf-
fers from three problems: 1) it requires substantial
knowledge about the model to separate the private
and public variables, and it is unclear how their al-
gorithm tailored to recurrent neural networks could
be extended to modern Transformer-based NLP
models; 2) it has only been evaluated with explicit
private entities but not with contextual sensitive
information; 3) it doesn’t provide protection for
undetected sensitive tokens; These constraints limit
the applicability of SDP in real-world scenarios.

Large language models (LLMs) (Vaswani et al.,
2017) have achieved tremendous success in NLP.
They are pretrained on a massive amount of pub-
lic textual data, and thus excel at capturing gen-
eral language structures. A common practice in

6327

https://github.com/wyshi/sdp_transformers
https://github.com/wyshi/sdp_transformers

NLP is to fine-tune these LLMs on downstream
tasks. Such a fine-tuning process also works well
in the private training context. Previously, Yu et al.
(2021a) showed that privately fine-tuning an ad-
ditional small set of parameters on top of off-the-
shelf LLMs with private data achieves comparable
performance to non-private baselines. Inspired by
their findings, in this paper, we propose a two-phase
fine-tuning privacy mechanism, Just fine-tune twice
(JFT), to achieve SDP for LLMs. Instead of di-
rectly using off-the-shelf models to fine-tune once,
we have two fine-tuning steps: 1) we first redact
the in-domain data of the downstream tasks, and
fine-tune the model with these in-domain redacted
data (redacted-fine-tune), and 2) then privately fine-
tune the model on the original private data (private-
fine-tune). This additional redacted-fine-tune step
allows the model to directly learn information from
the in-domain data and thus leads to a better model
initialization for the second private-fine-tune step.
Moreover, in the redacted-fine-tune step, we show
that even with limited public data (where manual
screening is possible), JFT achieves better utility
than fine-tune-once baselines. Additionally, we can
apply lightly-noised optimizers and privacy ampli-
fication to protect undetected sensitive tokens.

Our contributions are as follows. First, we pro-
pose an effective and generalizable privacy mech-
anism to achieve SDP for large language models
for various NLP tasks. Second, we design secret
detectors of different privacy levels (explicit and
contextual sensitive data) and study their implica-
tions on the models. Third, our method can utilize
even a small amount of public data to achieve bet-
ter utility, and mitigate the missed sensitive token
problem with lightly-noised optimizer and privacy
amplification. Finally, we show that, opposite to
the common belief that privacy is at odds with util-
ity, private learning doesn’t have to conflict with
the utility because private information in the data
could be irrelevant to the learning task.

2 Preliminary

A differentially private algorithm hides the differ-
ence between two neighboring datasets.

Definition 1 (Differential Privacy). Given a do-
main D, any two neighboring datasets D,D′ ⊆ D
a randomized algorithm M : D → R is (ϵw, δw)-
differential private if for all neighboring datasets
D and D′ and all T ⊆ R,

Pr[M(D) ∈ T] ≤ eϵw Pr[M(D′) ∈ T] + δw.

The neighboring relation captures what is pro-
tected. Traditional DP literature has considered
neighboring datasets as those differing in one train-
ing example; thus, the corresponding DP protects
each training example as a whole. We denote by ϵw
and δw the privacy parameters achieved under this
traditional neighboring relation definition. Given
the sparsity of sensitive information in language
data, this instantiation of neighboring relations is
apparently over-pessimistic. Shi et al. (2021) pro-
posed Selective-DP (SDP), which instantiates the
neighboring datasets to be those that differ in the
sensitive attributes of a training sample; as a result,
SDP selectively hides the difference in the sensitive
part only. In the context of NLP, a training example
could be a sentence or a paragraph depending on
the task and the attributes are individual tokens.

In this paper, we will focus on designing learning
algorithms to achieve SDP. Formally, SDP relies
on a policy function F that specifies the sensitive
information in a training example to be protected
in an application-dependent fashion.

Definition 2 (Policy Function). A policy function
F : τ → {0, 1}|r| decides which attributes of an
example r ∈ τ are public (F (r)i = 1) or private
(F (r)i = 0). |r| is the number of attributes in r.

Detecting private information manually in a
large corpus based on the policy function is of-
ten costly. In that case, one may resort to building
automatic secret detectors to identify the sensitive
attributes. A simple example of a secret detector
is a regular expression to capture phone numbers.
However, secret detectors could miss some private
attributes and produce false negatives, which intu-
itively would weaken the privacy guarantees. Ex-
isting work (Doudalis et al., 2017; Shi et al., 2021;
Zhao et al., 2022) that selectively protects data ei-
ther assumes a perfect detector or uses an overly
conservative detector with a low false negative but
at the cost of a high false positive. In this paper, we
provide alternative ways to address this issue with
a better privacy-utility tradeoff (Section 3).

With F , SDP defines F -Neighbors.

Definition 3. (F -Neighbors). Consider a policy
function F and two datasets D and D′. D′ is a
F -neighbor of D (denoted by D′ ∈ NF (D)) if and
only if ∃r ∈ D s.t., F (r) has at least one private
attribute, ∃r′ ∈ D′ s.t., F (r) and F (r′) differ by at
least one private attribute, and D′ = D\{r}∪{r′}.

Given the definition, the dataset with “My ID
is 123” and the dataset with “My ID is 456” are

6328

Figure 1: The two-phase JFT mechanism. As pre-processing, we apply the secret detector to redact the private
data D and obtain the redacted data D′. Next, depending on the detector’s performance, we use different ways to
fine-tune the language model on the redacted D′ and obtain a redacted model. Then we fine-tune the model again
on the private data D with a private optimizer (e.g., DPSGD) to achieve an SDP-protected model.

F -Neighbors (because except for the actual ID
number, the other tokens are the same), while
the datasets with “Hi there” and the dataset with

“Hello there” are not F -neighbors because the only
token they differ in is not sensitive. An SDP algo-
rithm guarantees that F -neighbors cannot be dis-
tinguished by attackers if they observed the output.

Definition 4. (Selective Differential Privacy). Un-
der a policy function F , a randomized algorithm
M : D → R satisfies (F, ϵs, δs)-selective differen-
tial privacy if for ∀D,D′ ∈ NF (D), and ∀T ⊆ R,
Pr[M(D) ∈ T] ≤ eϵs Pr[M(D′) ∈ T] + δs.

In this paper, we differentiate between SDP and
DP for two reasons. Firstly, we want to highlight
that the privacy parameters associated with SDP
(ϵs and δs) and DP (ϵw and δw) are incomparable.
For instance, one cannot claim which of (1, 0.001)-
SDP and (2, 0.001)-DP provides stronger privacy
guarantees because they are under different privacy
notions. To meaningfully present the value of these
privacy parameters, we need to specify under which
definition these parameters are calculated; to mean-
ingfully compare the value of these parameters, we
need to make sure that the parameters are calcu-
lated under the same privacy definition. Secondly,
we would like to remain the same terminology as
our main reference, Shi et al. (2021), which also
uses the terms SDP and DP to refer to the privacy
guarantees under the two different neighboring re-
lations. In the rest of the paper, we use different
notations to distinguish the privacy parameters as-
sociated with SDP (ϵs and δs) and DP (ϵw and δw).

3 JFT: Just Fine-tune Twice

Now we describe JFT, a two-phase privacy mech-
anism to achieve SDP for large language models
(Figure 1). In the first redacted-fine-tune phase,
we redact the private data D with a secret detec-
tor to obtain the redacted version D′, and learn a
redacted model from D′ in a privacy-preserving
way. In the second private-fine-tune phase, we
further fine-tune the redacted model (from phase
one) on the private data D with a private optimizer
to achieve SDP guarantees.

3.1 Phase 1: Redacted-fine-tune
JFT is built upon the observation that the public
portion of the in-domain data does not require pro-
tection and can be utilized in various ways to help
the model learn in-domain information. In this
phase, we apply the secret detector to redact the
private data D and obtain redacted in-domain data
D′. Dependent on the detector performance, we
propose the three following methods to use D′ to
fine-tune off-the-shelf language models.
Direct Usage. If the secret detector masks all
the sensitive information in D (which is possible
when D is small enough to support thorough in-
spection or when a detector is very conservative
and removes most of the essential information, see
examples in Table 1), we can use the redacted D′

directly to fine-tune the model with a public and
unnoised optimizer like SGD.
Selective Manual Screening. If the secret detec-
tor is imperfect, we can select an affordable subset

6329

from D′ and then manually sanitize all the missed
secrets. Then we fine-tune the model with this
small sanitized subset with a public optimizer. Ex-
periments show that even with a small amount of
sanitized in-domain data, the resulting model still
outperforms the traditional DP learning algorithms
that pessimistically protect every single token.

Lightly-Noised Fine-tuning. When the detector
is imperfect, besides manually screening out the
missed secrets, we could also employ a private opti-
mizer to train on D′ that contains missed sensitive
tokens. Because missed tokens only account for
a small portion of D′, intuitively, a much smaller
noise is needed to ensure the privacy of the missed
tokens than the noise magnitude required to ensure
the privacy of the entire D′. We propose to leverage
privacy amplification by subsampling (PAS) (Balle
et al., 2018) to calculate the privacy parameters
associated with the private optimizer. The intuition
of PAS is that if we perform a DP mechanism on
random subsamples of the data, and one data point
is not included in the subsamples, nothing about
it could be leaked. In this way, we could amplify
the privacy guarantee. In our scenario, we need to
protect the missed sensitive tokens. If we know the
secret detector’s missing rate m (i.e., m=number of
missed sensitive tokens/total tokens, the probability
of sampling a missed secret), we can calculate the
privacy budget ϵs by privacy amplification using
the subsampling ratio m.

Note that the application of PAS requires the
number of missed tokens that appear in any batch
to be the same, which does not necessarily hold.
Hence, the privacy parameters calculated from pri-
vacy amplification are an empirical estimate of the
actual privacy loss. In practice, the secret detector’s
missing rate is unknown and we need to estimate
it (denoted as m̃). Then we change the original
sampling rate p0 in moment accounting-based pri-
vacy parameter calculation (Abadi et al., 2016) to
p = p0 ∗ m̃ and calculate the noise injected into
each private optimizer iteration according to a pre-
defined privacy budget ϵ under p.

In our experiments, we sample 0.01% training
data for 10 times, and estimate the 95% confidence
interval of the missing rate, [m̃low, m̃high]. For both
m̃low and m̃high, we can calculate an associated ϵlow
and ϵhigh according to Theorem 9 in Balle et al.
(2018), and report both ϵ.

3.2 Phase 2: Private-fine-tune.

In the second phase, we initialize the model with
the redacted model from phase one, and fine-tune it
with the original private D and a private optimizer
(e.g., DPSGD (Abadi et al., 2016) or any other
more advanced private optimizer that achieves DP).

Unlike the privacy mechanism in Shi et al.
(2021), our algorithm does not require knowledge
about the models or the tasks, and therefore can be
easily applied to different models such as GPT2
(Radford et al., 2019) and Roberta (Liu et al., 2019),
and different tasks such as language generation and
natural language understanding. See Section A.2
for more implementation details.

One-phase vs two-phase. Compared to conven-
tional differentially private training, our algorithm
introduces an additional stage that involves redac-
tion and regular unnoised training on redacted data.
In fact, the computational cost of the additional
stage is much lower than the cost originally in-
curred by DP learning, because the additional first
phase does not need costly per-sample gradient
clipping and noising operations. And redaction is a
common first-step people are already doing and fa-
miliar with. Also, there exist abundant off-the-shelf
tools that allow redaction at scale.

3.3 Privacy Analysis

We provide Theorem 1 for privacy analysis. It
ensures that, if the user has a secret detector with
100% recall, JFT-trained models achieve (0,0)-SDP
after phase one and (ϵ, δ)-SDP after phase two. A
secret detector with 100% recall is possible if the
user can afford manual inspection or have enough
domain knowledge. When a detector with 100%
recall is not possible, we use lightly-noised fine-
tuning to empirically protect the missed secrets as
mentioned in Section 3.1.

Theorem 1. Given that 1) in the first phase, the
data used for fine-tuning do not contain sensitive
tokens and a public optimizer is used, and 2) in
the second phase, the private optimizer achieves
(ϵ, δ)-DP, JFT achieves (ϵ, δ)-SDP.

The proofs are deferred to Section A.1. The
theorem shows that under direct usage or selective
screening of D′, JFT achieves SDP with the same
privacy parameter values as the ones pertaining to
the private optimizer used in the second phase.

6330

4 Secret Detectors of Different Levels

Typical private information includes personal-
identifiable information (PII) such as name and
birthday. But as pointed out in Brown et al. (2022),
one key challenge in NLP is that private informa-
tion is often contextual. For example, they pre-
sented a dialogue between Alice and Bob about
Alice’s divorce (Table 1): none of the tokens in

“What are you going to do about the custody of the
kids?”, are PII by themselves, but combined to-
gether, the semantics reveals private information.

To build generalizable secret detectors, we uti-
lize off-the-shelf NER, dependency parser, and
POS tagger in spaCy (Honnibal and Montani, 2017)
to label each token, and redact different sets of
tokens to achieve the different privacy levels be-
low (entity level and contextual level). To qualita-
tively show their protection levels, we apply them
to redact two sentences from the divorce dialogue
in Brown et al. (2022). The results are in Table 1.

Secret De-
tector

What are you going to do
about the custody of the
kids?

Did you hear Alice is
getting divorced?

Low entity What are you going to do about
the custody of the kids?

Did you hear
<PERSON> is getting
divorced??

High en-
tity

What are you going to do about
the custody of the kids?

Did you hear
<PERSON> is getting
divorced??

Low con-
textual

<PRON> are <PRON> go-
ing to do about <OBJ> of the
<OBJ>?

Did <PRON> hear
<PROPN> is getting
divorced??

High con-
textual

<PRON> are <PRON>
<VERB> to <VERB> about
<OBJ> of the <OBJ>?

Did <PRON>
<VERB> <PROPN>
is getting <VERB>??

Table 1: Results of different secret detectors on the two
example sentences from Brown et al. (2022).

Low entity redacts four types of named entities
(person, organization, date, and location), which
are considered PII defined by the US Department of
Labor2. We use NER in spaCy to detect them. If we
apply this detector, “Did you hear Alice is getting
divorced?” becomes “Did you hear <PERSON>
is getting divorced?” An attacker who attacks a
model trained on the latter sentence can at best
learn about the divorce but cannot know who.
High entity redacts all the 18 entities in spaCy in-
cluding the four above and more, like time entity3.

The two secret detectors above rely on named
entities, so they are more explicit than the two de-

2https://www.dol.gov/general/ppii
3For the full list, see https://spacy.io/usage/

linguistic-features#named-entities.

tectors below, which consider the overall sentence
structure and thus are more contextual.
Low contextual protects all the 18 entities plus
proper nouns, pronouns, and sentence subjects and
objects. This detector drastically increases the pri-
vacy level: we cannot get any useful information
from the left example in Table 1.
High contextual further redacts all the verbs, in ad-
dition to the tokens redacted by the low contextual
detector. It increases the privacy level even further
and we cannot learn anything from both examples.
This is to stress-test JFT and see the model utility
when the majority of the tokens are redacted 4.

Human language is diverse, and private infor-
mation can take various forms. So instead of de-
signing sophisticated algorithms, we intentionally
rely on common NLP tools to build easy-to-use
domain-agnostic secret detectors with high recalls
to protect privacy as much as possible. As shown
in Table 1, these detectors tend to over-sanitize
the sentences. But we will show later, even with
over-redaction, JFT still achieve good performance.
Private textual information can be treated more
sophisticatedly, but how to better detect private in-
formation is not the focus of this paper. Our goal
is to show that simply redacting tokens achieves
promising performance and JFT is compatible with
better private information detection algorithms to
further improve the results.

5 Experiments

We conduct experiments on two NLP tasks: 1) nat-
ural language understanding (NLU, on GLUE) and
2) language generation (on Wikitext-2 and ABCD).
Datasets. 1) GLUE (Wang et al., 2018) is a widely-
used multi-task benchmark dataset for NLU. It
contains sensitive information such as name and
date. 2) Wikitext-2 (Merity et al., 2017) contains
Wikipedia articles with private information such as
name and date. 3) ABCD (Chen et al., 2021) is a
human-human customer service dialogue dataset
under real-world scenarios with user private infor-
mation such as name and order IDs.
Models. We use Roberta (Liu et al., 2019) for the
NLU classification task and GPT2 (Radford et al.,
2019) for the language generation task. Due to com-
putational constraints, we use Roberta-base and
GPT2-small for the experiments. We use an effi-

4Note that “divorced” is actually an adjective in the ex-
ample. As mentioned earlier, we can address the detector’s
mistakes with lightly-noised fine-tuning.

6331

https://www.dol.gov/general/ppii
https://spacy.io/usage/linguistic-features#named-entities
https://spacy.io/usage/linguistic-features#named-entities

cient implementation of DPSGD in Li et al. (2021).
Based on previous studies (Li et al., 2021; Yu et al.,
2021a), larger DP models usually achieve better
results and thus we expect that larger SDP models
will achieve even better performances.
Baselines. 1) No-DP: the model is fine-tuned
using regular Adam optimizer (Kingma and Ba,
2014) without extra noise and hence it does not
have any privacy guarantees (i.e., ϵw = ϵs = ∞).
2) DPSGD5: the model is fine-tuned with tradi-
tional DPSGD Abadi et al. (2016) where the gra-
dient is clipped and noised in every gradient de-
scent iteration (we employ the DP-Adam variant
where the optimizer is Adam but its gradient pri-
vatization is the same as DPSGD, and we keep the
term DPSGD as it is more accessible to the com-
munity). While DPSGD was originally proposed
to achieve the DP guarantees that protect a train-
ing example as a whole, it can also achieve SDP
guarantees with the same privacy parameters (i.e.,
ϵs = ϵw and δs = δw). 3) CRT: the model is
trained with the recently proposed Confidentially
Redacted Training (Zhao et al., 2022) that achieves
(ϵc, δc)-Confidentiality. Confidentiality is a new
definition related to SDP but different from SDP,
it ensures the indistinguishability between a secret
and a <MASK> token, so its privacy parameters are
not directly comparable to SDP. Thus, we add the
same amount of noise to CRT and SDP, empirically
compare SDP and CRT with the canary insertion
attack in Figure 2 and 3, and report the utility in
Table 6 in the Appendix. 4) Redacted: We also
present the utility of the redacted models since they
are also privacy-preserving. Note when the secret
detector is perfect, the redacted models have a per-
fect SDP privacy guarantee (i.e., ϵs = 0). However,
it does not allow the model to learn from sensitive
tokens at all. JFT, by contrast, empowers the model
to learn from sensitive data with a flexible, tunable
tradeoff between privacy and utility. Moreover, it
provides ways to offer quantifiable privacy in the
presence of imperfect secret detectors.
Our models. 1) JFT: this is our JFT model di-
rectly using the redacted data in phase one. 2) JFT
+manual screening: this is JFT using a subset of

5The public baseline from Roberta does not use infilling,
for a fair comparison, we chose the DPSGD baseline without
infilling from (Li et al., 2021). But compared to DPSGD
baselines with infilling from (Li et al., 2021), JFT without
infilling with a conservative secret detector is still better or
comparable. Previous studies found that infilling improves the
results, so it is possible that with infilling, JFT can achieve
even better results.

the redacted data where missed secrets are manu-
ally filtered out in phase one. 3) JFT +light noise:
this is JFT where we add light noises according to
the estimated missing rate in phase one.

6 Results

We show three major findings: 1) the impacts of
secret detectors are task-dependent on the result-
ing JFT models, but even for conservative contex-
tual detectors (30%+ tokens are redacted), JFT still
achieves better results than naive DPSGD (Sec-
tion 6.1); 2) despite the small scale, using the man-
ual screened in-domain data still improves the JFT

model utility (Section 6.2); 3) lightly noised opti-
mizer with privacy amplification protects missed
sensitive tokens from attacks (Section 6.3).

There is always a privacy-utility trade-off, so
larger epsilons lead to better utilities but worse
privacy. And when comparing models, we need
to look at the model utility under a similar privacy
budget. An epsilon of 1 to 3 is commonly used in
various privacy literature (Yu et al., 2021a; Li et al.,
2021; Zhao et al., 2022). In our experiments, we
pre-calculated the privacy parameter so that an ϵ of
around 3 is spent when training ends.

6.1 Secret Detectors of Different Levels

Table 2 show the results on GLUE (left) and gen-
eration (right). Pct is the percentage of sensitive
tokens redacted by the detector. ϵs is the SDP pri-
vacy budget, the lower the better. We compare
model utility under a similar privacy budget ϵs.
Natural Language Understanding. Table 2 (left)
shows that under a similar ϵs, all the JFT models
achieve better performance than the DPSGD base-
line, even when over 40% of tokens are redacted.

Besides, for all the tasks, all the redacted mod-
els achieve reasonable utility, even when a large
portion of the tokens are redacted. For exam-
ple, the redacted model (high contextual) is better
than DPSGD on MNLI (83.23 vs 82.10, 44.27%
redacted) and SST-2 (91.17 vs 86.12, 38.13%
redacted). This confirms the motivation of SDP
that when building private NLP models, we should
not naively protect all the tokens regardless of their
properties. Instead, we should consider if the sen-
sitive tokens will impact the task. If not, we can
simply redact them to build private models.

Also, if JFT can improve the redacted model
depends on the task. For SST-2 on sentiment anal-
ysis, the private-fine-tune step does not improve

6332

Direct Usage NLU on GLUE, δs=1/2|Dtrain| Language Generation, δs=1e-6

MNLI QQP QNLI SST-2 WIKITEXT-2 ABCD

Model Detector Pct Acc↑ ϵs Pct Acc↑ ϵs Pct Acc↑ ϵs Pct Acc↑ ϵs Pct PPL↓ ϵs Pct PPL↓ ϵs

No-fine-tune - - 31.82 - - 36.82 - - 50.54 - - 50.92 - - 30.08 - - 13.60 -

No-DP - - 87.60 - - 91.90 - - 92.80 - - 94.80 - - 20.48 - - 4.96 -
DPSGD - - 82.10 2.75 - 85.41 2.75 - 84.62 2.57 - 86.12 2.41 - 27.05 2.58 - 8.31 2.65
DPSGD (+spe) - - - - - - - - - - - - - - 30.32 2.58 - 17.75 2.71

Redacted low ent 6.09% 86.67 - 6.05% 88.74 - 12.19% 89.64 - 1.79% 93.58 - 11.3% 22.50 - 2.7% 6.98 -
JFT low ent 6.09% 85.74 0.92 6.05% 88.19 2.58 12.19% 89.57 2.37 1.79% 92.09 2.06 11.3% 21.86 2.58 2.7% 6.09 2.71

Redacted high ent 8.63% 86.50 - 8.30% 88.36 - 17.18% 88.96 - 3.01% 93.58 - 16.4% 24.32 - 3.1% 7.32 -
JFT high ent 8.63% 85.61 0.99 8.30% 88.05 2.58 17.18% 89.35 2.37 3.01% 92.20 2.12 16.4% 22.55 2.58 3.1% 6.25 2.71

Redacted low ctx 31.19% 85.14 - 32.61% 85.59 - 35.68% 85.30 - 22.19% 92.55 - 34.8% 37.90 - 22.3% 28.28 -
JFT low ctx 31.19% 85.02 1.23 32.61% 87.00 2.41 35.68% 87.99 2.52 22.19% 92.43 2.17 34.8% 25.62 2.58 22.3% 8.80 2.71

Stress-test

Redacted high ctx 44.27% 83.23 - 45.93% 83.48 - 45.59% 82.81 - 38.13% 91.86 - 45.0% 54.29 - 28.6% 65.45 -
JFT high ctx 44.27% 84.11 1.18 45.93% 86.42 2.67 45.59% 87.06 2.41 38.13% 91.17 2.17 45.0% 27.19 1.96 28.6% 12.93 2.71

Table 2: Model utility and privacy guarantee on GLUE dev sets for NLU (left) and WikiText-2 and ABCD for
generation (right). Detector: the secret detector to realize the policy function. low ent: low entity detector. low ctx:
low contextual detector. Pct: the percentage of sensitive tokens. Acc: accuracy. PPL: perplexity. ϵs: SDP privacy
guarantee. DPSGD(+spe): DPSGD with added special tokens. For QNLI and SST-2, δ ≈1e-5; for MNLI and QQP,
δ ≈1e-6 due to the large data size; No-DP and DPSGD results are from Liu et al. (2019) and Li et al. (2021). For
generation tasks, δ=1e-6, we train the baselines and report the results. The models in bold are better than DPSGD.

the redacted model. This is because, the redacted
models achieve a high accuracy (even the worst
accuracy is 91.86, only a 2.94 drop from the SOTA
public model with an accuracy of 94.8), and fine-
tuning them on the private data with noisy gradients
is not enough to close the small gap. But for tasks
with a bigger gap between the redacted and No-DP
models (e.g., MNLI, QQP, and QNLI), JFT can fur-
ther improve the redacted model. Besides, the gap
between the redacted model and the correspond-
ing JFT model becomes bigger as the privacy level
increases: for QNLI (low contextual), the gap is
87.99-85.30=2.69, while for QNLI (high contex-
tual), the gap is 87.06-82.81=4.25. This shows
the model does learn useful information from the
sensitive tokens during the private-fine-tune step.
Language Generation. Table 2 (right) shows the
language generation results. We note that language
generation is different from NLU tasks, because
for NLU, the models used for initialization without
any fine-tuning (“No-fine-tune” in Table 2) start
with a bad accuracy (≤ 50%, just random guess),
and adding special tokens to it would still start with
a random guess, so additional special tokens will
not impact the final results greatly. But for the gen-
eration task, the “No-fine-tune” GPT2 is already a
strong model for initialization with ppl=30.08 on
Wikitext-2 and 13.60 on ABCD, and we found that
adding special tokens would disturb this initializa-
tion and greatly impact the final result. Because
all the JFT models have added special tokens like
“<MASK>” and “SYS:”, for a fair comparison, we
report two DPSGD baselines, one without special

tokens (“DPSGD”) and one with special tokens
(“DPSGD (+spe)”). See Section A.2 for more dis-
cussions on the impact of special tokens.

Compared to “DPSGD (+spe)”, all JFT models
achieve better model utility on both datasets. For
“DPSGD” without special tokens, fine-tuning on
the downstream tasks improves the model from
30.08 to 27.05 (the improvement ∆=3.03); for JFT

(low contextual), it is initialized with the redacted
model with ppl=37.90, and privately fine-tuning it
improves the perplexity to 25.62 (∆=12.28). This
shows that although the initialization seems worse
(30.08 vs 37.90), since the redacted model is fine-
tuned directly on in-domain redacted data, it does
learn useful information from the first redacted-
fine-tune step, and the second private-fine-tune step
can further improve upon the redacted model. For
JFT (high contextual) for the stress test, although
45% tokens are masked and the language structure
is largely impacted, JFT still improves the redacted
model utility from 54.29 to 27.19 (∆=27.10) and
performs on par with DPSGD (27.05 vs 27.19).

6.2 Selective Manual Screening

As mentioned earlier, secret detectors can miss
certain secrets and we can manually filter out the
missed secrets at a small scale and fine-tune with
the small manually sanitized set. Denote the orig-
inal data as D0. We sample 0.1% data from D0,
apply the high entity secret detectors (because it is
less conservative and could miss secrets), and man-
ually sanitize the missed secrets to get D′. We use
D′ = 0.1%D0 during redacted-fine-tune to train

6333

MNLI QQP QNLI SST-2 WikiText-2 ABCD

Model Acc↑ 95%-ϵs Acc↑ 95%-ϵs Acc↑ 95%-ϵs Acc↑ 95%-ϵs PPL↓ 95%-ϵs PPL↓ 95%-ϵs

DPSGD 82.10 2.75 85.41 2.75 84.62 2.57 86.12 2.41 27.05 2.58 8.31 2.65

Missing rate m (95% CI) (0.3%, 1.2%) (0.3%, 1.2%) (0.1%, 0.6%) (0%, 1.8%) (0.4%, 0.7%) (0.1%, 1.2%)
Recall (95% CI) (87.5, 96.7) (85.9, 96.1) (96.4, 99.3) (40.2, 100) (95.6, 97.8) (62.7, 97.4)
JFT+light noise 82.76 (0.08, 0.43) 85.28 (1.40, 1.71) 84.88 (2.29, 2.68) 89.33 (0, 0.43) 25.21 (2.73, 2.92) 5.78 (1.08, 1.60)

Conservative Estimation

Missing rate m 8.6% 8.3% 17.2% 3.0% 16.4% 3.0%
Recall 0 0 0 0 0 0
JFT+light conservative noise 82.00 0.45 84.77 2.91 84.02 2.95 89.22 0.43 26.59 3.03 6.64 1.67

Table 3: Privacy-amplified JFT performance on all the tasks, with the high entity detector. We report the estimated
95% confidence interval (CI) of the missing rate m, recall and the corresponding 95% CI of the ϵs.

Manual Screening D′ (redacted)=0.1%D0, D (private)=100%D0

Task MNLI QQP QNLI SST-2 WikiText-2 ABCD
Acc ↑ Acc ↑ Acc ↑ Acc ↑ PPL ↓ PPL ↓

D′ size 300 300 100 100 10 10

DPSGD 82.10 85.41 84.62 86.12 27.05 8.31

Redacted 52.52 75.25 66.48 88.88 28.06 9.36
JFT+manual screening 82.45 86.24 85.00 90.83 26.72 7.84

Table 4: Manual screening results on the high entity
secret detector. D0: original data. D′: the inspected
redacted data. D: the private data. ϵ ≈ 3. D′ size is the
number of records used in the redacted-fine-tune phase.

the redacted model, and the entire D0 as D during
private-fine-tune to obtain JFT models.

Table 4 shows the results. D′=0.1%D0 contains
100∼300 examples for GLUE and 10 articles and
10 dialogues for Wikitext-2 and ABCD respectively.
On all the tasks, JFT achieves better utilities than
DPSGD. This shows that even fine-tuning with a
small manually-screened in-domain subset can still
help the model learn in-domain information, and
lead to better utility. We also simulate a completely
low-resource setting where we simply have limited
training data (i.e., D′=0.1% D0, D=0.1% D0). See
Section A.4 for the results.

6.3 Lightly Noised Optimizer with Privacy
Amplification

Besides manually inspecting the missed secrets, we
can also use noised optimizers in the first phase to
protect the missed secrets from attacks and then
adopt privacy amplification to estimate the corre-
sponding privacy parameters. We again perform
the experiments on the high entity detector and Ta-
ble 3 shows the results. We convert the missing
rate m (%) to the recall of the secret detector, i.e.,
recall=(1-m/Pct), where Pct is the percentage
of sensitive tokens among all tokens. “JFT+light
noise” shows the model performance with a noised
optimizer and privacy amplification employed in
the first step. Besides, we add more noise than

needed to obtain a conservative model (“JFT+light
conservative noise”): for instance, MNLI data con-
tains 8.63% sensitive tokens, although the secret de-
tector’s missing rate m ranges from (0.3%, 1.2%)
with 95% probability, we assume m to be 8.63%
(i.e., it miss all sensitive tokens and thus recall=0)
to calculate and add the noises that are more than
actually needed.

The results show that “JFT+light noise” achieves
better utility than DPSGD, especially on gener-
ation tasks. The perplexity is (25.21 vs 27.05,
5.78 vs 8.31), and the estimated ϵs ranges from
(2.73, 2.92) and (1.08, 1.60) with 95% probability.
Even for the conservative models, “JFT+light con-
servative noise” is still better than DPSGD (26.59
vs 27.05, and 6.64 vs 8.31).

6.4 Attack Results

We perform the canary insertion attack (Carlini
et al., 2019) to empirically show how much the
models memorize the training data unintentionally.
The attack is to insert a canary of a certain format
into the training data, and calculate its exposure,
which is the rank of the inserted canary amongst all
possible values of the same format. The lower the
exposure is, the safer the model is. In our experi-
ments, we insert the canary “My ID is 341752” into
the training data for 10 times to make the perfor-
mance difference of different models more salient.
By definition, for a six-digit canary, an exposure
close to log2(10

6) ≈ 19.9 means the canary can be
extracted by the attackers. The result is in Figure 2.
Each point on the figure is a model checkpoint.
The X-axis shows the perplexity (utility), and the
y-axis is the exposure (privacy), so Figure 2 shows
different models’ privacy-utility tradeoffs.

One major reason why the model remembers a
canary is that it has seen the canary many times.
For “No-DP”, initially, its exposure is low because
it hasn’t seen the canary many times. But because

6334

Figure 2: Canary exposure for different models.

the model is unprotected, its exposure is unbounded
and increases dramatically after it accesses the data
for more epochs. This suggests that models without
protection do memorize the data unintentionally.

For protected models (DPSGD, redacted, and
JFT), if the canary is captured by the detector (“not
missed” in the figure), then the exposure does not
increase much even if the data are accessed many
times. Under similar exposure, JFT achieves better
utility than DPSGD and the redacted models.

But if the secret detector misses the canary (we
purposely code it to mark the canary as public), the
exposure is increased for both “Redacted (missed)”
and “JFT (missed)”. But if we add light noise in the
first phase (“Redacted+light noise” in red), even if
the canary is missed for 10 times, its exposure is
still low. If we continue to privately fine-tune in
the second phase (“JFT+light noise” in pink), we
can further improve the utility but still achieve a
low exposure value. Both DPSGD and CRT also
achieve a low exposure value if the canary is missed
by the secret detector, but with worse utilities than
“JFT+light noise”. This shows “JFT+light noise”
can protect missed secrets while achieving better
utility. We also performed the canary insertion at-
tack with one canary inserted once, and 10 different
canaries inserted once, shown in Section A.5.

We also tested the membership inference attack
(MIA), but it wasn’t successful (inference accuracy
is around 60% even for public models). Previous
studies also observed unsuccessful MIA (Shi et al.,
2021; Zhao et al., 2022) and our future work in-
cludes developing better MIA for NLP.

7 Related Work

Recent work studied private language models on
various model architectures such as RNNs (McMa-
han et al., 2018; Ramaswamy et al., 2020) and large

language models (Anil et al., 2021; Li et al., 2021;
Yu et al., 2021a). Li et al. (2021) proposed ghost-
clipping to reduce the computational cost in per-
sample gradients of DPSGD, and achieved strong
private LLMs. Yu et al. (2021a) added a small set
of private parameters to off-the-shelf LLMs and
privately tune them on private data and obtained
performant private models. Most previous works
achieve canonical DP. Shi et al. (2021) proposed
Selective-DP for applications with sparse sensitive
information like NLP, and a privacy mechanism
for RNN models. Our work proposes an effective
mechanism for LLMs to achieve SDP and study
the impact of secret detectors at different levels.

Our work is also closely related to utilizing pub-
lic data for private learning (Papernot et al., 2018;
Tramer and Boneh, 2020; Ghazi et al., 2021; Yu
et al., 2021a). One working direction assumes ac-
cess to large unlabeled public data to train DP mod-
els. For example, PATE (Papernot et al., 2016) used
unlabeled public data and knowledge distillation to
build DP models. Hoory et al. (2021) used public
medical data to pre-train domain-specific private
vocabulary and models. Another direction lever-
aged small public data to guide the private updates
in lower-dimension subspaces (Zhou et al., 2020;
Yu et al., 2021b). Our work is distinct from previ-
ous studies: instead of querying public data from
outside, we utilize the public portion of in-domain
data and achieve SDP with better model utility.

8 Conclusions

In this paper, we propose JFT, which can achieve
Selective-DP for large language models. We also
design generalizable secret detectors to provide pro-
tection at different levels and study their impacts
on the resulting SDP models, and address the prob-
lem of missed sensitive tokens via selective manual
screening and private training with reduced noise,
which is justified by privacy amplification. The
results show that the proposed JFT produces SDP
models with strong performance while remaining
robust to the canary insertion attack.

Limitations

Parameter search in DP learning is challenging as
the training process takes a long time and is quite
sensitive to different parameters (Li et al., 2021).
So the findings in the paper are based on the param-
eter tuning performed by the authors (Table 5), and
more parameter tuning could potentially lead to

6335

better results than the results reported in the paper.
In our experiments, we simply fine-tuned the

models on the in-domain redacted data without ad-
justment for the redaction. We could potentially
utilize more sophisticated methods to train better
redacted models to further improve the JFT utility.
Besides, for the selective manual screening experi-
ments, we did not adjust the redacted-fine-tune step
for the low-resource setting where D′ = 0.1%D0.
Future work includes how to train a better redacted
model given limited data.

When the gap between the SOTA public model
and the redacted model is small, the private-fine-
tuning step cannot further improve the results be-
cause of the noisy gradients (e.g., in SST-2), we
plan to develop better algorithms to utilize the
redacted data and apply denoising methods (Welch
et al., 1995) to close the gap further.

One thing to note is that if the secret detector
misses a secret and the secret appears multiple
times in the data, then it is likely that the secret
detector will miss it multiple times. Therefore,
deduplicating the data first is important. We plan
to study data deduplication in NLP in the future.

Ethical Considerations

To prevent real-world harm, all the datasets and
models used in this paper are already public with
either public or synthesized information. So no real
personal information will be leaked.

This work tackles the challenge of privacy pro-
tection and can be utilized in various domains or ap-
plications to build models that preserve privacy. We
will release the code to facilitate privacy-preserving
model building. The canary insertion attack is well-
known (Carlini et al., 2019, 2020) and adjusted
specifically for our setting, so it cannot be directly
utilized to attack real-world models successfully.

Acknowledgements

We would like to thank Da Yu, Xuechen Li, and
Zhiliang Tian for the valuable discussions. We also
thank the anonymous area chair and reviewers for
their insightful suggestions.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-

ference on computer and communications security,
pages 308–318.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar,
and Pasin Manurangsi. 2021. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624.

Borja Balle, Gilles Barthe, and Marco Gaboardi. 2018.
Privacy amplification by subsampling: Tight analyses
via couplings and divergences. Advances in Neural
Information Processing Systems, 31.

Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramèr.
2022. What does it mean for a language model to
preserve privacy? arXiv preprint arXiv:2202.05520.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neural
networks. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 267–284.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, et al. 2020. Extracting training
data from large language models. arXiv preprint
arXiv:2012.07805.

Derek Chen, Howard Chen, Yi Yang, Alex Lin, and
Zhou Yu. 2021. Action-based conversations dataset:
A corpus for building more in-depth task-oriented
dialogue systems. arXiv preprint arXiv:2104.00783.

Stelios Doudalis, Ios Kotsogiannis, Samuel Haney, Ash-
win Machanavajjhala, and Sharad Mehrotra. 2017.
One-sided differential privacy. Proceedings of the
VLDB Endowment.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorith-
mic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-
4):211–407.

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Ma-
nurangsi, and Chiyuan Zhang. 2021. Deep learning
with label differential privacy. Advances in Neural
Information Processing Systems, 34.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia Erell,
Alon Peled-Cohen, Itay Laish, Hootan Nakhost, Uri
Stemmer, Ayelet Benjamini, Avinatan Hassidim, et al.
2021. Learning and evaluating a differentially pri-
vate pre-trained language model. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 1178–1189.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

6336

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2021. Large language models can be
strong differentially private learners. arXiv preprint
arXiv:2110.05679.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning differentially private
recurrent language models. In International Confer-
ence on Learning Representations.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. ICLR.

Nicolas Papernot, Martín Abadi, Ulfar Erlingsson,
Ian Goodfellow, and Kunal Talwar. 2016. Semi-
supervised knowledge transfer for deep learn-
ing from private training data. arXiv preprint
arXiv:1610.05755.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth
Raghunathan, Kunal Talwar, and Úlfar Erlingsson.
2018. Scalable private learning with pate. ICLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews,
Galen Andrew, H Brendan McMahan, and Françoise
Beaufays. 2020. Training production language mod-
els without memorizing user data. arXiv preprint
arXiv:2009.10031.

Weiyan Shi, Aiqi Cui, Evan Li, Ruoxi Jia, and Zhou
Yu. 2021. Selective differential privacy for language
modeling. arXiv preprint arXiv:2108.12944.

Florian Tramer and Dan Boneh. 2020. Differentially
private learning needs better features (or much more
data). arXiv preprint arXiv:2011.11660.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Greg Welch, Gary Bishop, et al. 1995. An introduction
to the kalman filter.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
et al. 2021a. Differentially private fine-tuning of
language models. arXiv preprint arXiv:2110.06500.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-
Yan Liu. 2021b. Large scale private learning via low-
rank reparametrization. In International Conference
on Machine Learning, pages 12208–12218. PMLR.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. 2022.
Provably confidential language modelling. arXiv
preprint arXiv:2205.01863.

Yingxue Zhou, Zhiwei Steven Wu, and Arindam Baner-
jee. 2020. Bypassing the ambient dimension: Pri-
vate sgd with gradient subspace identification. arXiv
preprint arXiv:2007.03813.

6337

A Appendix

A.1 Proofs

Theorem 1 (restated). Given that 1) in the first
phase, the data used for fine-tuning does not con-
tain sensitive tokens and a public optimizer is used,
and 2) in the second phase, the private optimizer
achieves (ϵ, δ)-DP, JFT achieves (ϵ, δ)-SDP.

Proof. Since the first phase does not incur any pri-
vacy loss on the sensitive tokens, the first phase
achieves (0, 0)-SDP.

DP implies SDP. In other words, if an algorithm
achieves (ϵ, δ)-DP, then it also satisfies (ϵ, δ)-SDP.
Hence, the second phase achieves (ϵ, δ)-SDP. By
the composition of SDP, JFT achieves (ϵ, δ)-SDP.

Note that the first phase achieves (0,0)-SDP but
cannot achieve (0,0)-DP. DP aims to protect the
entire token sequence, whether it is considered
sensitive or non-sensitive by the policy function.
Because the first phase does not noise the non-
sensitive tokens at all, it cannot ensure DP.

A.2 Implementation Details

Notes on special tokens. When fine-tuning LLMs,
it is a common practice to add new special tokens
to fit the need of the downstream tasks. For exam-
ple, in dialogue tasks, we often have prompts like
“SYS:” and “USR:” to indicate the speaker in the
data. This step doesn’t affect the public models that
much (20.48 without special tokens vs 20.44 with
special tokens), but as it does change the model
structure (additional embeddings) and the model
initialization, we notice that in our experiments,
DPSGD is sensitive to the addition of special to-
kens (because the model initialization is changed):
after reasonable amounts of parameter tuning (see
Table 5), DPSGD initialized with the original GPT
achieves 27.05 in PPL, while DPSGD with added
special tokens achieves 30.32 in PPL on Wikitext-2.
The gap could potentially be reduced with more pa-
rameter tuning, but we just want to mention that in
practice, it may not be easy to find the best param-
eters. In our experiments, for WikiText-2, we add
<mask> as the special token; for ABCD, as it is a
dialogue task, we add <mask>, “ACT:”, “SYS:”,
and “USR:”. Since all the JFT models have added
special tokens, we report two DPSGD results, one
without special tokens and one with special tokens,
for a fair comparison in terms of model structure.

Also, the secret detectors replace the sensitive
information with artificial special tokens such as

“<SSN>” and “<NAME>”. But these tokens
don’t appear in the validation or test set and thus in-
serting them will skew the training data distribution
and lead to inferior results, especially when the sen-
sitive token portion is high. In our experiments, we
mask the detected sensitive information with the
same “<mask>” token and ignore this special to-
ken in the loss calculation. In this way, for models
with an existing “<mask>” token (like Roberta),
we can utilize the existing embedding; for models
without “<mask>”, the model only needs to learn
one additional special embedding. This improves
the validation perplexity from 64.82 to 37.90 for
the redacted GPT2 model with the low contextual
secret detector.

We could potentially apply the same secret detec-
tor on the validation and test set to mitigate special
token issues. However, this causes two concerns:
1) if the secrete detector redacts 45% of tokens (e.g.
the high contextual one redacts all the verbs, etc),
then the performance on validation/test is not infor-
mative at all, and cannot be compared to the public
baseline; 2) in the past privacy literature (Papernot
et al., 2018; Ghazi et al., 2021), the conventional
problem setup considers validation/test sets as pub-
lic and focuses only on the training privacy. We
inherit the same treatment to be comparable with
prior literature. But in privacy-related NLP prob-
lems, how to treat the validation/test sets remains
an open question as they can contain private infor-
mation.

Our experiments find that adding many special
tokens impacts the results. In the future, we plan to
study how to treat special tokens better in privacy-
preserving LMs.

Parameters Range

ϵ 3
Clipping norm C 0.1
Batch size {256, 512, 1024}
Learning rate {5, 10, 50} ·10−5

Epochs E {10, 100, 200, 600}
Noise scale σ Pre-calculated so that ϵ is

spent when training ends

Table 5: Hyper-parameter tuning range.

Hyper-parameter tuning. Hyper-parameter tun-
ing remains a challenging problem in DP learning
as the training takes a long time, and the model
can be sensitive to the hyper-parameters. Guided

6338

MNLI QQP QNLI SST-2 WIKITEXT-2 ABCD

Model Detector Acc↑ Privacy Acc↑ Privacy Acc↑ Privacy Acc↑ Privacy PPL↓ Privacy PPL↓ Privacy

CRT low ent 81.45 (2.21, δc)-Conf 84.10 (2.47, δc)-Conf 83.36 (2.30, δc)-Conf 87.39 (2.22, δc)-Conf 28.20 (2.19, δc)-Conf 9.09 (2.73, δc)-Conf
JFT low ent 85.74 (0.92, δs)-SDP 88.19 (2.58, δs)-SDP 89.57 (2.37, δs)-SDP 92.09 (2.06, δs)-SDP 21.86 (2.58, δs)-SDP 6.09 (2.71, δs)-SDP

CRT high ent 81.24 (2.63, δc)-Conf 83.64 (2.13, δc)-Conf 82.78 (2.56, δc)-Conf 87.27 (2.22, δc)-Conf 28.47 (1.38, δc)-Conf 9.20 (2.71, δc)-Conf
JFT high ent 85.61 (0.99, δs)-SDP 88.05 (2.58, δs)-SDP 89.35 (2.37, δs)-SDP 92.20 (2.12, δs)-SDP 22.55 (2.58, δs)-SDP 6.25 (2.71, δs)-SDP

CRT low ctx 78.85 (2.46, δc)-Conf 79.17 (2.50, δc)-Conf 81.15 (2.24, δc)-Conf 85.67 (2.22, δc)-Conf 28.87 (0.69, δc)-Conf 12.70 (0.34, δc)-Conf
JFT low ctx 85.02 (1.23, δs)-SDP 87.00 (2.41, δs)-SDP 87.99 (2.52, δs)-SDP 92.43 (2.17, δs)-SDP 25.62 (2.58, δs)-SDP 8.80 (2.71, δs)-SDP

Stress-test

CRT high ctx 74.61 (2.68, δc)-Conf 77.57 (2.64, δc)-Conf 79.41 (2.30, δc)-Conf 86.01 (2.33, δc)-Conf 29.13 (0.47, δc)-Conf 13.11 (0.35, δc)-Conf
JFT high ctx 84.11 (1.18, δs)-SDP 86.42 (2.67, δs)-SDP 87.06 (2.41, δs)-SDP 91.17 (2.17, δs)-SDP 27.19 (1.96, δs)-SDP 12.93 (2.71, δs)-SDP

Table 6: Comparison between JFT and CRT. JFT achieves (ϵs, δs)-Selective-DP, while CRT achieves (ϵc, δc)-
Confidentiality, so the ϵ are not directly comparable. For QNLI and SST-2, δs = δc ≈1e-5; for MNLI and QQP,
δs = δc ≈1e-6. For generation task, δs = δc ≈1e-6. We add the same amount of noise to JFT and CRT (noise
calculated based on ϵ=3), and report the best model validation utility. “CRT” results are based on our implementation
of Zhao et al. (2022).

Batch size Epoch PPL

256 200 27.04
512 200 27.05
1024 200 27.18
1024 600 27.01
1024 10 28.84

Table 7: Model utility with different hyper-parameters.

by Li et al. (2021), we tune the learning rate, the
number of training epochs, and the batch size on
the validation set and report the best results. Please
refer to Table 5 for the parameter range.

In our experiments, we tuned the batch size,
learning rate, and epoch number for the best models
in different settings. In practice, we found increas-
ing the epoch number and batch size helps, but
these two factors can interact with each other, the
gain could be small after the batch size and epoch
number are large enough. Table 7 shows the conver-
gent model utility of DPSGD on WikiText-2 with
different hyper-parameters. In our experiments, we
pick the best set of parameters that balances the
computational cost and the utility.

A.3 Comparison with CRT
Table 6 shows the comparison between JFT and
CRT on the model utility and privacy guarantee.
Note that JFT achieves (ϵs, δs)-SDP, and CRT re-
alizes (ϵc, δc)-Confidentiality, because the underly-
ing privacy notion is different, we cannot directly
compare the ϵ. We pre-calculate the noises given
ϵ = 3, add the same amount of noises to both CRT
and JFT, and report the best valid utility. With the
same amount of noise added, JFT achieves better
model utilities than CRT for all the tasks across
different secret detectors.

A.4 Low-Resource Results

Privacy protection is important in oftentimes low-
resource domains such as health care. We simulate
the low-resource setting where we have both lim-
ited redacted and private data, i.e., (D′=0.1% D0,
D=0.1% D0) and the results are in Table 8.

The redacted model always performs better than
DPSGD, suggesting that for low-resource settings,
we can simply redact the data to train the model
instead of employing differential privacy. Also,
for the QNLI task, JFT shows promising results.
With 0.1% training data (100 records), the redacted
model improve the accuracy from random guess
to 66.5%. JFT can even further improve the accu-
racy to 67.49%. But the baseline DPSGD fails to
improve the model at all (accuracy=50.54%). We
plan to study how to better fine-tune the redacted
model privately with limited data.

Manual Screening D′=0.1%D0, D=0.1%D0

Task MNLI QQP QNLI SST-2 WikiText-2 ABCD
Acc ↑ Acc ↑ Acc ↑ Acc ↑ PPL ↓ PPL ↓

D′ 300 300 100 100 10 10

DPSGD 32.86 63.18 50.54 56.77 30.08 13.66

Redacted 52.52 75.25 66.48 88.88 28.06 9.36
JFT+manual screening 50.61 75.18 67.49 88.53 28.15 9.40

Table 8: Manual screening results when both D and D′

are limited in size. D′ is the redacted data, D is the
private data.

A.5 Canary Insertion Attack

Figure 3 shows the canary insertion attack result
when the canary is inserted only once. We see
that the exposure is low for all the models (<3,
so not extractable) including the public “No-DP”
without any protections. This agrees with Figure 4
in Carlini et al. (2019) that when the canary is
inserted for very limited times, its exposure is low.

6339

Figure 3: Exposure for different models when the canary
is inserted only once. The exposures are all small (<3)
even for public models.

Figure 4 shows the canary insertion attack re-
sults when we insert ten different canaries into the
training data. The exposure is the average expo-
sure of the ten canaries. In this experiment, we
treat the inserted canaries as the only secrets, so
the “Redacted” and “JFT” model utilities are close
to the black “No-DP” model, and we can better
compare with the “No-DP” model. We also artifi-
cially vary the recall of the secret detector to see
the effect. “Recall=0.4” means that the detector
can only detect four of the ten canaries. Because
each canary only appears once in the dataset, the
exposure is low, similar to the ones in Figure 3. But
if the recall is higher (0.6), the exposure will still be
lower. “JFT +light noise” achieves low exposure,
similar to the baseline DPSGD that protects all ca-
naries, but with much higher utility over DPSGD.

These experiments may suggest that for large
NLP models, if the sensitive tokens only appear for
very limited times, they may not be extracted using
the canary insertion attack.

Figure 4: Exposure for different models when we insert
ten different canaries.

6340

