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Abstract

Non-autoregressive translation (NAT) model
achieves a much faster inference speed than
the autoregressive translation (AT) model be-
cause it can simultaneously predict all tokens
during inference. However, its translation qual-
ity suffers from degradation compared to AT.
And existing NAT methods only focus on im-
proving the NAT model’s performance but do
not fully utilize it. In this paper, we propose
a simple but effective method called “Candi-
date Soups,” which can obtain high-quality
translations while maintaining the inference
speed of NAT models. Unlike previous ap-
proaches that pick the individual result and dis-
card the remainders, Candidate Soups (CDS)
can fully use the valuable information in the
different candidate translations through model
uncertainty. Extensive experiments on two
benchmarks (WMT’14 EN–DE and WMT’16
EN–RO) demonstrate the effectiveness and gen-
erality of our proposed method, which can sig-
nificantly improve the translation quality of var-
ious base models. More notably, our best vari-
ant outperforms the AT model on three transla-
tion tasks with 7.6× speedup.1

1 Introduction

Autoregressive translation (AT) models based on
Transformer (Vaswani et al., 2017; So et al., 2019;
Sun et al., 2022; Zhu et al., 2021a), where each gen-
eration step depends on the previously generated to-
kens, achieve state-of-the-art (SOTA) performance
on most datasets for machine translation tasks. AT
model can better model the process of translation
generation but leads to a massive limitation of its
inference speed.

Therefore, the non-autoregressive translation
(NAT) (Gu et al., 2018) model is proposed, which is
15.6 times faster than AT model. NAT assumes that
the generated tokens are conditionally independent

1Our code is released at https://github.com/
boom-R123/Candidate_Soups.

Figure 1: Efficiency (Speedup) and Translation quality
(BLEU) of NAT models in the WMT’14 EN-DE trans-
lation dataset. A cross “×” represents our Candidate
Soups (CDS) variants. Its base model is shown in the
shape “•”, and its correspondence is represented by an
arrow. CDS (mE-nD) refers to the AT model for re-
scoring that has m encoder layers and n decoder layers.

given the source sentence, so the translation can be
generated in parallel, significantly improving its in-
ference speed compared to AT. However, due to the
strong independence assumption, the ability of the
NAT model modeling sequence generation is weak-
ened. So NAT model usually has multimodality
problem (Gu et al., 2018) in the inference process,
resulting in its performance worse than AT models.

Several methods have been proposed to alleviate
the multimodality problem and improve the perfor-
mance of the NAT model, such as the iteration-
based NAT model (Ghazvininejad et al., 2019;
Gu et al., 2019; Kasai et al., 2020) and the semi-
autoregressive translation model (Wang et al., 2018;
Ran et al., 2020).

Most of the previous methods are modified from
the model’s perspective, either modifying the struc-
ture of the model (Shu et al., 2020; Huang et al.,
2021; Zhu et al., 2021b) or modifying the training
method of the model (Du et al., 2021; Qian et al.,
2021). Different from the previous methods, in this
paper, we propose a simple but effective method:
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Src Die Beschaffung des erforderlichen Personalausweises kostet oft über hundert Dollar.
Candidate 1 It often costs over a hundred dollars to obtain the require identity card .
Candidate 2 It often cost over a hundred dollars to obtain the required identity card .
NPD It often cost over a hundred dollars to obtain the required identity card .
CDS It often costs over a hundred dollars to obtain the required identity card .

Figure 2: Comparison between NPD and Candidate Soups (CDS). Red fonts represent mistranslated tokens.
Compared with NPD, Candidate Soups does not preserve the erroneous parts in the candidate results.

Candidate Soups, which can significantly improve
the translation quality without any modification to
the model. Moreover, Candidate Soups is a general
approach that can be used by any NAT model that
can generate multiple candidate results, such as
Vanilla NAT (Gu et al., 2018), GLAT (Qian et al.,
2021), etc.

The conventional recipe for maximizing trans-
lation quality through candidate results is noisy
parallel decoding (NPD) (Gu et al., 2018), which
regards each candidate translation as an indepen-
dent individual and ultimately only selects one of
them as the final result and discards others. There-
fore NPD can not utilize the valuable information
in all the candidate translations. For example, there
are a total of two candidate translations. The first
candidate translation has the wrongly translated
word in the second half, and the second candidate
translation has the wrongly translated word in the
first half. Using the NPD algorithm, in this case,
can not get the correct translations (Figure 2).

However, Candidate Soups will effectively use
the valuable information of all the candidate trans-
lations to fuse the different candidate results and ob-
tain a higher-quality translation (Figure 2). Specifi-
cally, Candidate Soups first finds the common sub-
sequence among all candidate results. Based on
the uncertainty of the model, we consider the com-
mon subsequence to be the most confident part
of the model’s predictions, so we make it part of
the final translation and use it to align the candi-
date results. For the remaining parts, we select the
part with the highest average log-probability among
all candidate results to add to the final translation.
Candidate Soups can be regarded as an implicit
model ensemble method, which generates multiple
different results by introducing uncertainty in the
inference process, and further enhances the transla-
tion quality by making full use of the information
of multiple results.

We conduct extensive experiments in two
datasets commonly used in machine translation,

WMT’14 EN–DE and WMT’16 EN–RO. The re-
sults demonstrate that our proposed method can
significantly improve the base models’ translation
quality on different tasks while maintaining the fast
inference speed of the NAT model. Remarkably,
our best variant achieves better performance than
the AT teacher model on three translation tasks with
7.6× speedup. Figure 1 demonstrates the quality-
speed trade-off compared with AT and recent NAT
models. And relevant background knowledge is
introduced in Appendix A.

2 Related Work

Since the NAT model was proposed, it has attracted
the attention of many researchers due to its superior
inference speed. However, its translation quality
suffers from degradation compared to AT model.
Therefore various methods have been proposed to
bridge the performance gap between NAT and AT
model.

Some researchers constrain the distribution of
NAT model outputs by introducing various latent
variables (Gu et al., 2018; Shu et al., 2020; Ran
et al., 2021). Through latent variables, the diversity
of the NAT model output space can be significantly
reduced so that the model can better handle the de-
pendencies between output words and alleviate the
multimodality problem. Such methods can usually
maintain the efficient inference speed of the NAT
model, but the improvement in translation quality
is relatively small.

Some other researchers have proposed iterative
decoding methods (Ghazvininejad et al., 2019; Gu
et al., 2019; Kasai et al., 2020), which continuously
optimize the model’s output by introducing more
information in the iterative process. For example,
Ghazvininejad et al. (2019) mask the partial to-
ken of the previous output result and then use it
as the input of the decoder for the next round of
iteration. Although such models can achieve high
performance, multiple iterations can also signifi-
cantly affect the inference speed of the NAT model.
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(a) Initial Lattice

(b) Simplified Lattice

(c) Final Lattice

Figure 3: Definition and simplification of translation
search problem. Assume there are three candidate trans-
lations. Nodes with different colors represent different
tokens. (a) Initial search space. (b) Simplified search
space using the common subsequence. (c) Further sim-
plified search space after node fusion.

Recently, Qian et al. (2021) borrowed ideas from
curriculum learning and proposed a novel way to
train NAT models, which let the model starts from
learning the generation of sequence fragments and
gradually moving to whole sequences. Huang et al.
(2021) proposes to predict the result at each de-
coder layer and input it to the next layer together
with the output of the current decoder layer to mod-
ify the result of the subsequent prediction.

The above methods are all improvements from
the model perspective, and their purpose is to allow
the model to generate higher quality translations.
Unlike previous work, Candidate Soups wants to
explore how to make the most of an existing model,
and it can be applied to all NAT models that can
generate multiple candidate results.

3 Candidate Soups

This section describes the details of the proposed
method in the paper. We first show the problem def-
inition and the general idea of Candidate Soups in
Section 3.1, then introduce implementation details
of the Candidate Soups in Section 3.2, followed by
the example in Section 3.3.

3.1 Problem Definition

By introducing uncertainty into the NAT model,
we can get a list of candidate results R =

Algorithm 1: Candidate Soups
Input: A list of candidate results
R = [R0, . . . , Rk] and the corresponding
log-probability score sequence list
S = [S0, . . . , Sk]

Result = []
R, S = Remove_duplicates(R, S)
Initialize I = [i0 = 0, . . . , ik=0]
Get candidate results length list L = [l0, . . . , lk]
while I < L do

if all item in R[I] is equal then
Result.append(R0[i0])
I = I + 1

else
H = R[I]
I∗ = I + 1
// H is used to record tokens

going from I to I∗

while I∗ < L do
Add R[I∗] to H
if Exist Î meet all item in H[Î] is

equal then
I∗ = Î
break

I∗ = I∗ + 1
T = [Sj[ij-1:i∗j+1].mean() for j from 0 to

k]
t = T.argmax()
Result.append(Rt[it:i∗t ])
I = I∗

return Result

[R0, . . . , Rk], and each candidate result may have
correctly and incorrectly translated parts that do not
completely overlap. Thus, our goal is to find the
optimal combination in R , which has the highest
average log-probability re-scored by an AT model.
Because the word order in the original translations
must be kept, we first use R to build a Lattice
(Figure 3a). Each node represents a token, and
each edge represents the change of average log-
probability caused by adding the next token. So
each path from the beginning node [BOS] to the
end node [EOS] represents a possible translation.
Therefore, our goal is to find the best path which
has the highest average log-probability in this Lat-
tice.

However, because the initial Lattice contains too
many paths, we cannot calculate the values of all
edges. Furthermore, due to the dislocation caused
by the different lengths of the candidate results,
most of the paths in the initial Lattice have word
order errors, such as edges between the same to-
kens (Figure 3a). So we simplified and aligned the
original Lattice. Specifically, after introducing the
length uncertainty, we consider tokens that appear
in all candidate results with the same word order as
certain components (Gal and Ghahramani, 2016).
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Src Die republikanischen Behörden beeilten sich , diese Praxis auf andere Staaten auszudehnen .

t=0
Candidate 1 The Republican authorities were quick extend to other States .
Candidate 2 The Republican authorities were quick to extend this practice States .
Candidate 3 The Republican and the authority extend this practice to other States .

t=1
Candidate 1 The Republican authorities were quick extend to other States .
Candidate 2 The Republican authorities were quick to extend this practice States .
Candidate 3 The Republican and the authority extend this practice to other States .

t=2
Candidate 1 The Republican authorities were quick extend to other States .
Candidate 2 The Republican authorities were quick to extend this practice States .
Candidate 3 The Republican and the authority extend this practice to other States .

t=3
Candidate 1 The Republican authorities were quick extend to other States .
Candidate 2 The Republican authorities were quick to extend this practice States .
Candidate 3 The Republican and the authority extend this practice to other States .

t=4
Candidate 1 The Republican authorities were quick extend to other States .
Candidate 2 The Republican authorities were quick to extend this practice States .
Candidate 3 The Republican and the authority extend this practice to other States .

t=5
Candidate 1 The Republican authorities were quick extend to other States .
Candidate 2 The Republican authorities were quick to extend this practice States .
Candidate 3 The Republican and the authority extend this practice to other States .

Final Result The Republican authorities were quick to extend this practice to other States .

Figure 4: An example from the WMT’14 DE-EN validation set illustrates how Candidate Soups generates high-
quality final translations from candidate results. The highlighted tokens represent the tokens added to the final
translation, and the red tokens represent the discarded tokens.

Thus, we find the common subsequence of all can-
didate results and directly use it as part of the final
translation (Figure 3b). This way, the alignment
of candidate translations can be achieved, and the
original complex Lattice can be simplified into the
connection of multiple simple Lattices.

For the remaining simple Lattice, the cost of cal-
culating each edge value is still unbearable. There-
fore, we fuse the nodes belonging to the same can-
didate result in each Lattice into a single node (Fig-
ure 3c) and ignore the influence of previous Lattice
results on subsequent Lattice. In this way, we can
quickly calculate each edge value by using the AT
model to re-score each candidate translation. Then
we only need to calculate the best path in each sim-
ple Lattice and obtain the final translation through
a simple greedy algorithm.

3.2 Implementation
Algorithm 1 lists the process of Candidate Soups.
We generate the final translation while looking for
the common subsequence.

First, for the input candidate results set R and
the corresponding log-probability score set S, we
will remove the adjacent repeated tokens and their
corresponding scores for each sentence. Then we
initialize a pointer set I that each pointer points to
position 0 for each candidate translations and use

these pointers to traverse simultaneously. If all the
current pointers point to the same token, the token
is added to the final translation, and all pointers are
moved one step to the right. Otherwise, Candidate
Soups will look for the next sequence of pointers
I∗ that satisfies the above conditions and move all
pointers there. At the same time, the segment with
the highest average log-probability score among all
segments generated by the pointer traverse from I
to I∗ is added to the final translation.

Experimental results show that Candidate Soups
can significantly improve final translation quality,
requiring only 3 to 7 candidate translations. More-
over, the time required by Candidate Soups is al-
most negligible compared to the inference time of
the NAT model.

3.3 Example
Figure 4 shows how Candidate Soups fuses the
valuable information in each candidate translation
to generate high-quality translations during the
traversal process.

First, the NAT model predicts three candidate
translations for the input sentence by introducing
different lengths (t = 0). Afterward, through the
traversal of the pointers, Candidate Soups found
that the first two tokens (“The Republican”) in
the candidate results were the same, so they were
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added to the final translation (t = 1). When there
is a disagreement between candidate results, Can-
didate Soups will find the next token (“extend”)
that all candidate translations predict in common
and get three different segments (“authorities were
quick,” “authorities were quick to,” and “and the
authority”). Then Candidate Soups will select the
candidate segment with the highest average log-
probability scores (“authorities were quick to”) and
add it to the final translation (t = 2). Similarly, in
the subsequent traversal process, if the tokens are
predicted jointly by all candidate results, Candi-
date Soups will add them to the final translation (t
= 3, t = 5). Otherwise, Candidate Soups will select
the tokens segment with the highest log-probability
score to join the final translation (t = 4). Ultimately,
we get higher-quality translations by combining all
valuable information in the candidate results.

From this example, we can find that only se-
lecting an independent candidate result as the fi-
nal translation is not effective enough for the NAT
model. Because different lengths introduce uncer-
tainty into the NAT model, there is diversity among
candidate translations, but the previous methods do
not take advantage of this. Proudly, through the cer-
tainty and confidence of the NAT model’s output,
Candidate Soups makes full use of the candidate
results, takes the essence and removes the dross,
and further improves the final translation quality
without affecting the inference speed.

4 Experiments

In this section, we first introduce the settings of our
experiments in Section 4.1, then report the main
results in Section 4.2. Ablation experiments and
analysis are presented in Section 4.3.

4.1 Experimental Setup

Dataset and Evaluation We evaluate our method
on the two most recognized machine translation
benchmarks: WMT’14 English–German (4.0M
sentence pairs)2 and WMT’16 English–Romanian
(610K pairs)3. We use BLEU (Papineni et al.,
2002) to evaluate the translation quality. And the
beam size is set to 5 for AT model during infer-
ence. Moreover, for a fair comparison, we ob-
tain the Huang et al. (2021) open-source corpus
whose tokenization and vocabulary are the same
as previous work: Zhou et al. (2020) for WMT’14

2https://www.statmt.org/wmt14.
3https://www.statmt.org/wmt16.

EN–DE which contains 39.8k subwords, and Lee
et al. (2018) for WMT’16 EN–RO which contains
34.6k subwords. Both the implementation and eval-
uation of our method are performed using the open
source fairseq4 (Ott et al., 2019).

Knowledge Distillation Using AT model’s out-
put to train the NAT model can significantly im-
prove the performance of the NAT model. Fol-
lowing previous work (Gu et al., 2018; Lee et al.,
2018; Ghazvininejad et al., 2019), we also em-
ploy sequence-level knowledge distillation for all
datasets. All the distillation data we use is open
sourced by Huang et al. (2021).

Hyperparameters Our model architecture is
Transformer-base (Vaswani et al., 2017): a 6-layer
encoder and a 6-layer decoder, 8 attention heads
per layer, 512 attention modules dimensions, 2048
feedforward modules hidden dimensions. We adopt
the Adam optimizer (Kingma and Ba, 2015) with
β = (0.9, 0.98). To train the models, we use
a batch size of 64K tokens, with a maximum
300K updates. For regularization, we use dropout
(WMT’14 EN-DE: 0.1, WMT’16 EN-RO: 0.3),
0.01 weight decay and 0.1 label smoothing.

Base Models Our Candidate Soups is a general
algorithm that can be applied to various NAT mod-
els. Therefore, to evaluate whether our proposed
method can perform well on different NAT models,
we selected the following four base models:

(1) Vanilla NAT (Gu et al., 2018), which predicts
length instead of fertility sequence.

(2) CMLM (Ghazvininejad et al., 2019), whose
training strategy follows a masked language
model approach similar to BERT (Devlin
et al., 2019). And it can perform iterative
decoding during inference. We trained one
CMLM model for each translation task and re-
spectively iterated decoding once and iterated
decoding five times as two baselines.

(3) GLAT (Qian et al., 2021), which trains NAT
model step-by-step in a curriculum learning
manner.

(4) GLAT & DSLP (Huang et al., 2021), whose
decoder layers can get the prediction result of
the previous layer.

The prediction patterns and performance of these
base models are quite different, so through them,

4https://github.com/pytorch/fairseq.
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Row# Model WMT’14 WMT’16 SpeedupEN–DE DE–EN EN–RO RO–EN

1 Transformer (teacher) 27.48 31.21 33.70 34.05 1×
2 Vanilla NAT 21.14 24.65 29.14 28.93 15.6×
3 w/ NPD 23.44 27.25 31.70 30.93 7.9×
4 w/ Candidate Soups 25.29 28.50 32.75 32.22 7.8×
5 CMLM1 19.44 23.16 27.61 28.33 15.6×
6 w/ NPD 21.72 26.00 30.54 31.34 7.9×
7 w/ Candidate Soups 23.51 27.67 32.13 32.70 7.8×
8 CMLM5 26.37 30.05 32.30 30.73 5.3×
9 w/ NPD 26.94 30.68 33.07 33.68 4.4×

10 w/ Candidate Soups 27.80 31.21 33.42 34.06 4.4×
11 GLAT 24.95 28.80 31.29 31.93 15.6×
12 w/ NPD 26.19 30.64 32.46 33.38 7.9×
13 w/ Candidate Soups 27.59 30.95 33.22 33.73 7.8×
14 GLAT & DSLP 25.41 29.28 32.32 32.37 14.8×
15 w/ NPD 26.68 30.69 33.32 33.67 7.7×
16 w/ Candidate Soups 27.72 30.98 33.71 34.11 7.6×

Average Improvement 2.92 2.67 2.51 2.91 –

Table 1: Applying Candidate Soups to four different base NAT models, which shows the generality of our algorithm.
Translation quality is evaluated in BLEU. Speedup is relative to the AT teacher. All results are achieved by us, except
Transformer (teacher), which is obtained from Huang et al. (2021). CMLMk refers to k iterations of progressive
generation. Here, we consider k = 1 and k = 5. Both NPD and Candidate Soups use the AT model to re-score, and
the number of candidate results is 5.

we can verify whether Candidate Soups can be
applied to various NAT models. In the future,
we will test Candidate Soups on more NAT mod-
els, such as CTC (Libovickỳ and Helcl, 2018) and
CTC+VAE (Gu and Kong, 2021).

4.2 Main Results

Generality of Candidate Soups Table 1 shows
the performance improvement of our method for
four base models on four translation tasks. Here,
our number of candidate results is set to 55. And
we use the Transformer-Base as the architecture
of the AT model for re-scoring6. The results show
that for each NAT model and translation task, using
Candidate Soups can achieve an average of 2.51-
2.92 BLEU higher than the base model. Even com-
pared with the NPD, Candidate Soups improves
BLEU by an average of 0.76-1.39 BLEU, which
is a considerable improvement in machine transla-
tion task. Impressively, using the Candidate Soups
on a strong baseline (GLAT & DSLP) can achieve
superior performance than the AT teacher. Fur-
thermore, when AT models are used for re-scoring,
they can perform parallel decoding as fast as train-
ing (Gu et al., 2018). So the inference latency is

5If not specified below, the default number of candidate
results is 5, and both NPD and Candidate Soups will be re-
scored by AT teacher.

6If not specified below, the default architecture of AT
model for re-scoring is Transformer-Base.

only roughly doubled, which is still much faster
than the AT model.

In conclusion, the above experimental results
show that Candidate Soups is a general approach
that can significantly improve translation quality
while maintaining fast inference speed.

Comparing with the State of the Art To
evaluate the best performance Candidate Soups
can achieve, we compare our best variant
(GLAT+DSLP+Candidate Soups) with previous
state-of-the-art NAT models, including Iterative
NAT and Fully NAT. As shown in Table 2, com-
pared with the Iterative NAT, we produce a very
competitive translation quality with approximately
2×-4× faster inference speed. Compared with
Fully NAT, our best variant is better than all ex-
isting models in two translation tasks (EN→DE,
RO→EN) and is close to the current state-of-the-art
performance in the remaining two translation tasks.
More encouragingly, our approach even performed
better than AT teacher on three translation tasks
and achieved very comparable performance on the
remaining one translation tasks, which extensively
validated the effectiveness of Candidate Soups.

In addition, we also try to use two smaller AT
models for re-scoring to accelerate the inference
speed further. These two models have the same
hyperparameters as Transformer-base, except for
the number of layers of decoder and encoder. AT
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Models Iter. Speedup WMT’14 WMT’16
EN-DE DE-EN EN-RO RO-EN

AT Transformer base (teacher) N 1.0× 27.48 31.21 33.70 34.05

Iterative NAT

InsT (Stern et al., 2019) ≈log N 4.8× 27.41 - - -
CMLM (Ghazvininejad et al., 2019)∗ 10 1.7× 27.03 30.53 33.08 33.31
LevT (Gu et al., 2019) Adv. 4.0× 27.27 - - 33.26
JM-NAT (Guo et al., 2020)∗ 10 5.7× 27.69 32.24 33.52 33.72
DisCO (Kasai et al., 2020)∗ Adv. 3.5× 27.34 31.31 33.22 33.25
SMART (Ghazvininejad et al., 2020b)∗ 10 1.7× 27.65 31.27 - -
Imputer (Saharia et al., 2020)∗ 8 3.9× 28.20 31.80 34.40 34.10
Multi-Task NAT (Hao et al., 2021)∗ 10 1.7× 27.98 31.27 33.80 33.60
RewriteNAT (Geng et al., 2021)∗ Adv. - 27.83 31.52 33.63 34.09

Fully NAT

Vanilla NAT (Gu et al., 2018) 1 15.6× 17.69 21.47 27.29 29.06
DCRF (Sun et al., 2019) 1 10.4× 23.44 27.22 - -
Flowseq (Ma et al., 2019) 1 1.1 × 23.72 28.39 29.73 30.72
ReorderNAT (Ran et al., 2020) 1 16.1× 22.79 27.28 29.30 29.50
AXE (Ghazvininejad et al., 2020a)∗ 1 15.3× 23.53 27.90 30.75 31.54
ENGINE (Tu et al., 2020) 1 15.3× 22.15 - - 33.16
Imputer (Saharia et al., 2020)∗ 1 18.6× 25.80 28.40 32.30 31.70
AlignNART (Song et al., 2021) 1 13.4× 26.40 30.40 32.50 33.10
OAXE (Du et al., 2021) 1 15.3× 26.10 30.20 32.40 33.30
CTC+VAE (Gu and Kong, 2021) 1 16.5× 27.49 31.10 33.79 33.87
GLAT+NPD (Qian et al., 2021) 1 7.9× 26.55 31.02 32.87 33.51
GLAT+DSLP (Huang et al., 2021) 1 14.9× 25.69 29.90 32.36 33.06

Ours
GLAT+DSLP+Candidate Soups (AT 6E-6D) 1 7.6× 27.72 30.98 33.71 34.11
GLAT+DSLP+Candidate Soups (AT 4E-2D) 1 10.1× 27.51 30.79 33.58 34.03
GLAT+DSLP+Candidate Soups (AT 3E-1D) 1 11.5× 27.46 30.69 33.65 34.01

Table 2: Performance comparison between our variant and previous state-of-the-art NAT models. All results reported
are quoted from respective papers. Iter. is the number of decoding iterations, Adv. denotes adaptive, ∗ denotes
models trained with distillation data from Transformer-big. The Speedup is measured on WMT’14 En-DE test set
with batch size 1. AT mE-nD refers to the AT model for re-scoring that has m encoder layers and n decoder layers.

4E-2D contains 4 encoder layers and 2 decoder
layers, and AT 3E-1D contains 3 encoder layers
and 1 decoder layer. Moreover, they were trained
using the same distillation data as the NAT model.
Surprisingly, even when the small AT models were
used for re-scoring, our method maintained a simi-
lar performance to the previous model (AT 6E-6D),
and its inference speed was 10.1×-11.5× that of
the AT model. This result further proves that Candi-
date Soups can well balance the trade-off between
translation quality and inference speed.

4.3 Ablation Study and Analysis

Influence of the Candidate Number In order
to analyze the effect of the candidate translation
number on the Candidate Soups, we conduct exper-
iments with different candidate numbers. Figure
5 shows the relationship between translation qual-
ity and the number of candidate results. Specifi-
cally, with the increased candidate numbers, the
quality of the translation generally maintains a
growth trend. Especially when the candidate results
number is less than 4, the Candidate Soups perfor-
mance is significantly improved when the number
increases. However, when the number increases to
a certain threshold, the quality of the translation be-

Figure 5: Translation quality under different number of
candidate results on WMT’14 EN-DE.

gins to fluctuate, even showing a slight downward
trend. We guess this is because when the number
is larger than the threshold, the quality of the can-
didate translations may gradually decrease due to
the gap between the predicted length and the actual
length becoming larger. Furthermore, there may be
duplication between the candidate results. There-
fore, using 3-7 candidate translations is enough
for Candidate Soups to significantly improve the
quality of the final translation.
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Figure 6: Performance of NAT model that with or with-
out AT teacher re-scoring on WMT’14 EN-DE.

Influence of the Autoregressive Teacher To an-
alyze the effect of whether using the AT model to
re-score on our proposed method, we conducted
experiments on the WMT’14 EN-DE dataset. Fig-
ure 6 demonstrates that Candidate Soups has a
different dependence on AT model in different
NAT models. For a model with weaker perfor-
mance, such as Vanilla NAT, when AT model is
not used for re-scoring, Candidate Soups’ perfor-
mance degrades significantly. However, for GLAT
and GLAT+DSLP, which can produce high-quality
translations, Candidate Soups can still increase
approximately 1.89-1.63 BLEU even without re-
scoring with the AT model. Notably, using Can-
didate Soups in this case hardly increases the in-
ference time of the NAT model. Moreover, after
using AT model for re-scoring, the effect of Can-
didate Soups can be further improved, which in-
creases 2.64 and 2.31 BLEU on the GLAT and
GLAT+DSLP, respectively. In addition, the results
in Table 2 show that we can further improve the
inference speed on the premise of guaranteeing
translation quality by using a smaller AT model for
re-scoring.

Influence of the Source Input Length To ana-
lyze the influence of source sentence length on Can-
didate Soups’ performance, we divide the source
sentence after BPE into different intervals by length
and calculate the BLEU score of each interval. The
histogram of results is presented in Figure 7. It
can be seen that the performance of Vanilla NAT
degrades significantly as the length of the source
sentence increases. Although NPD can improve
the overall translation quality, the translation qual-

Figure 7: Performance under different source input
length on WMT’14 EN-DE.

ity of long source sentences is still inferior. How-
ever, Candidate Soups can dramatically improve
Vanilla NAT’s performance and enables long sen-
tences to achieve much higher BLEU than short.
Impressively, the BLEU score of the source sen-
tence length ranging from 40 to 60 increases by
5.01, and the BLEU score of the source sentences
longer than 60 increases by 7.51.

We believe this is because the NAT model tends
to generate more uncertain and diverse candidate
results for longer source sentences. This feature
enables Candidate Soups to obtain more useful
information in the candidate results to generate
higher-quality translations. These experimental
results further verify the potential of the Candidate
Soups in translating complex long sentences. More
experimental results and analyses are presented in
the Appendix B.

5 Conclusion

In this paper, we propose “Candidate Soups,”
which can discover and fuse valuable informa-
tion from multiple candidate translations based on
model uncertainty. This approach is general and
can be applied to various NAT models. Extensive
experimental results prove that the translation qual-
ity of the NAT model can be significantly improved
by using Candidate Soups, especially for long sen-
tences that are difficult to translate. And the trade-
off between translation quality and inference speed
is well controlled and balanced by Candidate Soups.
Furthermore, our best variant can achieve better re-
sults on three translation tasks than the AT teacher
while maintaining NAT’s high-speed inference.
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Limitations

Although our proposed method can significantly
improve the performance of non-autoregressive
translation (NAT) models, it relies on trained au-
toregressive translation (AT) models to a certain
extent. Not using the AT model for re-scoring can
lead to poorer quality of translations generated by
Candidate Soups, especially when using it for the
poorer performing NAT model. Although using a
small AT model is sufficient for Candidate Soups to
achieve decent performance, it still results in a drop
in inference speed and more GPU resources being
used for translation. In addition, the performance
of the AT model may limit the upper bound of the
Candidate Soups’ capability. Therefore, we will
explore new methods that can be effective without
AT re-score in the future.
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autoregressive translation models in commercial
companies and humanitarian translation services in
the future and promote cultural exchanges between
different languages and different races.

Acknowledgements

This work was supported by NSFC grants (No.
62136002), National Key RD Program of China
(2021YFC3340700) and Shanghai Trusted Industry
Internet Software Collaborative Innovation Center.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-
agnostic cross entropy for non-autoregressive ma-
chine translation. arXiv preprint arXiv:2106.05093.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. ArXiv, abs/1506.02142.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. 2021.
Learning to rewrite for non-autoregressive neural ma-
chine translation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3297–3308.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020a. Aligned cross
entropy for non-autoregressive machine translation.
In International Conference on Machine Learning,
pages 3515–3523. PMLR.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
arXiv preprint arXiv:1904.09324.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020b. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133, Online. Association for Computational Lin-
guistics.

Jiatao Gu, Changhan Wang, and Jake Zhao.
2019. Levenshtein transformer. arXiv preprint
arXiv:1905.11006.

Junliang Guo, Linli Xu, and Enhong Chen. 2020.
Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 376–385.

Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng
Tu, Michael Lyu, and Xing Wang. 2021. Multi-task
learning with shared encoder for non-autoregressive
machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3989–3996.

Chenyang Huang, Hao Zhou, Osmar R Zaïane, Lili
Mou, and Lei Li. 2021. Non-autoregressive transla-
tion with layer-wise prediction and deep supervision.
arXiv preprint arXiv:2110.07515.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In In-
ternational Conference on Machine Learning, pages
5144–5155. PMLR.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

4819

https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11


Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In EMNLP.
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A Background

A.1 Autoregressive Translation
The autoregressive translation (AT) model achieves
sort-of-the-art performance on multiple machine
translation tasks (Song et al., 2019; Sun et al.,
2020). Given a source sentence X =
(x1, x2, . . . , xn) and the target sentence Y =
(y1, y2, . . . , ym), the AT model decomposes the
target distribution of translations according to the
chain rule:

pAT(Y | X; θ) =

m∏

t=1

p (yt | y<t, X; θ) (1)

where y<t denotes generated previous tokens be-
fore the tth position. During the training process,
the AT model is trained via the teacher-forcing
strategy that uses ground truth target tokens as pre-
viously decoded tokens so that the output of the
decoder can be computed in parallel.

However, during inference, the AT model still
needs to generate translations one by one from
left to right until the token that represents the end
[EOS] is generated. Although AT model has good
performance, its autoregressive decoding method
dramatically reduces the decoding speed and be-
comes the main bottleneck of its efficiency.

A.2 Non-Autoregressive Translation
To improve the inference speed, the non-
autoregressive translation (NAT) model is pro-
posed (Gu et al., 2018), which removes the order
dependency between target tokens and can generate
target words simultaneously:

pNAT(Y | X; θ) =

m∏

t=1

p (yt | X; θ) (2)

where m denotes the length of the target sentence.
Generally, NAT models need to have the ability
to predict the length because the entire sequence
needs to be generated in parallel. A common prac-
tice is to treat it as a classification task, using the
information from the encoder’s output to make pre-
dictions.

However, this superior decoding speed is
achieved at the cost of significantly sacrificing
translation quality. Because NAT is only condi-
tioned on source-side information, but AT can ob-
tain the strong target-side context information pro-
vided by the previously generated target tokens,
there is always a gap in the performance of NAT
compared with AT.
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A.3 Noisy Parallel Decoding
Noisy parallel decoding (NPD) (Gu et al., 2018)
is a stochastic search method that can draw sam-
ples from the length space and compute the best
translation for each length as a candidate result.
Then NPD selects the translation with the highest
average log-probability as the final result:

YNPD=argmax
Y m

1

m

m∑

t=1

log pNAT (ymt | X; θ) (3)

where Y m is the translation predicted by the
NAT model based on the length m. NPD also can
use the AT model to identify the best translation:

YNPD = argmax
Y m

1

m

m∑

t=1

log pAT (ymt | ym<t, X; θ)

Notably, when an AT model is used for re-
scoring, it can be decoded in parallel as it does
at training time. Moreover, since all search sam-
ples can be computed independently, even with
AT model for re-scoring, the latency of the NPD
process is only doubled compared to computing a
single translation.

B Additional Analysis Experiment

B.1 Influence of the Knowledge Distillation
Compared with the original data, the distillation
data generated by the AT model has less noise
and is more deterministic, which can effectively
alleviate the multimodality problem of the NAT
model. Therefore, almost all the existing NAT
model adopts the method of Knowledge Distilla-
tion (KD) for training. However, generating distil-
lation data tends to consume significant computing
resources and time, and using distillation data to
train NAT models may limit the translation capa-
bilities of NAT models.

In order to analyze whether our proposed method
can still be effective in the scenarios where knowl-
edge distillation is not used, we conducted exper-
iments on the WMT’14 EN-DE dataset. Figure
8 shows the performance of Candidate Soups on
the NAT model that does not use knowledge dis-
tillation. For Vanilla NAT and GLAT, the perfor-
mance trained with raw data is significantly re-
duced compared to that trained with knowledge
distillation. However, after using Candidate Soups,
the BLEU of Vanilla NAT and GLAT respectively

Figure 8: Performance of NAT model without Knowl-
edge Distillation (KD) on WMT’14 EN-DE.

increased by 4.54 and 4.88, which was only 5.68
and 1.28 lower than the performance with knowl-
edge distillation. We believe that this significant
performance improvement may be since NAT mod-
els without knowledge distillation may produce
more diverse candidate translations, thus enabling
Candidate Soups to fully play its role and obtain
higher-quality translations from different candidate
translations. The experimental results show that
the Candidate Soups can significantly improve the
performance of the NAT model without knowledge
distillation, which proves the potential of the Can-
didate Soups in this scenario.

B.2 Influence of introducing uncertainty
methods

In addition to introducing uncertainty through
length, we propose two other methods for generat-
ing different candidate translations:

• Use the prediction results of different decoder
layers. DSLP (Huang et al., 2021) is a general
method that can be applied to various NAT
models, and it needs to predict the translations
in each decoder layer. Therefore, Candidate
Soups can be combined with DSLP, and any
NAT model using DSLP can use Candidate
Soups to fuse the results of different layers. In
this experiment, we use the results generated
by the last 5 layers of the decoder.

• Generate different translations by maintaining
dropout during inference (Gal and Ghahra-
mani, 2016). Even with the same input, the
model can produce different outputs since
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Model
WMT’14

EN-DE DE-EN

GLAT+DSLP 25.41 29.28
w/ Candidate Soups(Length) 27.72 30.98
w/ Candidate Soups(Layer) 26.77 29.96
w/ Candidate Soups(Dropout) 26.66 30.01

Table 3: Performance of Candidate Soups using differ-
ent methods of introducing uncertainty. Length means
introducing uncertainty with different lengths. Layer
means using the prediction results of different decoder
layers. Dropout means maintaining dropout during in-
ference. The number of candidate translations is 5.

dropout activates different neurons each time.
In this experiment, the dropout probability at
inference is set to 0.02.

Table 3 shows the performance of Candidate
Soup under three different ways of introducing
uncertainty. The experimental results show that,
compared with the other two methods, when un-
certainty is introduced by length, Candidate Soups
improves the translation quality more significantly.
We speculate that this is because the length uncer-
tainty can ensure that the generated translations are
more diverse under the premise of high quality.

However, for layer uncertainty, the quality of
the translations produced by the first layer will
be significantly lower than that of the last layer.
These low-quality candidate translations are of lit-
tle help to Candidate Soups and even affect the
performance of Candidate Soups. For dropout
uncertainty, the candidate translations generated
will be affected by the dropout probability. On
the one hand, if the dropout probability is set too
high, it may reduce the overall quality of the candi-
date translations. On the other hand, the generated
candidate translations will be less diverse if the
dropout probability is low. So we further need
to spend time searching for the optimal dropout
probability setting for different NAT models and
tasks. However, these two methods can still achieve
about 1 BLEU improvement on the strong baseline
(GLAT+DSLP), and their generalization ability is
stronger than the length-based method. In addi-
tion, Candidate Soups can also be used as a new
model ensemble method to enhance the final trans-
lation quality by using the output from multiple
NAT models. We will discuss this in future work.
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