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Abstract

Calibration is a popular framework to evalu-
ate whether a classifier knows when it does not
know—i.e., its predictive probabilities are a
good indication of how likely a prediction is to
be correct. Correctness is commonly estimated
against the human majority class. Recently,
calibration to human majority has been mea-
sured on tasks where humans inherently dis-
agree about which class applies. We show that
measuring calibration to human majority given
inherent disagreements is theoretically prob-
lematic, demonstrate this empirically on the
ChaosNLI dataset, and derive several instance-
level measures of calibration that capture key
statistical properties of human judgements—
class frequency, ranking and entropy.1

1 Introduction

Neural text classifiers are becoming more powerful
but increasingly difficult to interpret (Rogers et al.,
2020). In response, the demand for transparency
and trust in their predictions is growing (Yin et al.,
2019; Bansal et al., 2019; Bianchi and Hovy, 2021).
One step towards understanding when to trust pre-
dictions is to evaluate whether models know when
they do not know—i.e., whether predictive proba-
bilities are a good indication of how likely a predic-
tion is to be correct—known as calibration. This is
crucial in user-facing and high-stake applications.

Calibration, and particularly the Expected Cali-
bration Error (ECE; Naeini et al., 2015; Guo et al.,
2017), is widely studied in Machine Learning and
Computer Vision (Mena et al., 2021), and is gaining
increased attention in Natural Language Process-
ing (NLP; Desai and Durrett, 2020; Kong et al.,
2020; Jiang et al., 2021; Dan and Roth, 2021).

An important implicit assumption in the widely
used definition of perfect calibration proposed by
Guo et al. (2017) is that predictions are either right

1Code available at https://github.com/jsbaan/
calibration-on-disagreement-data.

or wrong—in other words, that the true class dis-
tribution, i.e., human judgement distribution, is
deterministic (one-hot). However, for many prob-
lems, while categories exist, their boundaries are
fluid: there exists inherent disagreement about
labels. This means that gold labels are at best
an idealization—as irreconcilable disagreement is
abundant (Plank et al., 2014; Aroyo and Welty,
2015; Jamison and Gurevych, 2015; Palomaki et al.,
2018; Pavlick and Kwiatkowski, 2019). Evidence
for this can be found in various tasks, including
those which involve linguistic and subjective judge-
ments (Akhtar et al., 2020; Basile et al., 2021).
Surprisingly, however, while limitations of calibra-
tion are studied (§2), this fundamental assumption
is ignored.

In this work, we show that popular calibration
metrics—such as ECE—are not applicable to data
with inherent human disagreement (§3). We pro-
pose an alternative, instance-level notion of cal-
ibration based on human uncertainty, and opera-
tionalize it with several measures that capture key
statistics of the human judgement distribution other
than matching the majority vote (§4). Finally, we
verify our theoretical claims with a case study on
the ChaosNLI dataset, and investigate temperature
scaling—a popular post-hoc calibration method—
through the lens of human uncertainty (§5).

2 Background

Data We have data D = {(xn, yn)}Nn=1 where
xn is an instance (i.e., text or texts) and yn ∈ [C]
is a category. For any instance X = x,2 we as-
sume that human annotators draw their labels in-
dependently from the same Categorical distribu-
tion with class probabilities πππ(x) ∈∆C−1. That

2We use capital letters for random variables (e.g., X) and
lowercase letters for their assignments (e.g., X = x), [C] is
short for {1, . . . , C}, [a = b] is the Iverson bracket (i.e., it
evaluates to 1 if the predicate a = b is True, 0 otherwise),
and ∆C−1 ⊂ RC is the simplex (i.e., set of C-dimensional
vectors whose coordinates are positive and sum to 1).
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is, the probability Pr(Y = c|X = x) that a human
should label x an instance of c ∈ [C] is πc(x).
For observed x, an estimate of πππ(x) can be ob-
tained via maximum likelihood estimation (MLE).
This estimate π̄ππ(x) is the vector whose coordinate

π̄c(x) =
∑N

n=1[xn=x][yn=c]∑N
n=1[xn=x]

is the relative frequency

with which x is labeled as c ∈ [C]. Oftentimes,
πππ(x) is assumed to be one-hot (i.e., the task is un-
ambiguous), in such cases, a single human judge-
ment per instance is sufficient for an exact estimate.

Classification A probabilistic classifier approxi-
mates πππ(x) with a trained parametric function (e.g.,
BERT; Devlin et al., 2019) that maps an input x
to a vector f(x) of class probabilities. After train-
ing, and given an instance x, we typically map the
model’s output f(x) to a single decision ŷ ∈ [C].
More often than not, this is the mode of the model
distribution: ŷ = argmaxc fc(x). The correctness
of ŷ is assessed against the observed human ‘gold
standard’ decision y⋆ = argmaxc π̄c(x).

Calibration A classifier is multi-class calibrated
(Vaicenavicius et al., 2019; Kull et al., 2019) if,
for all instances mapped to the same vector q, the
relative frequency with which c is correct (assessed
against the gold standard) is qc for every c:

Pr(Y ⋆ = c | f(X)=q) = qc ∀c ∈ [C] (1)

Consider a problem with three classes. A model is
multi-class calibrated if, for all instances mapped to
the same vector, e.g., (0.90, 0.07, 0.03)⊤, predict-
ing the first class would result in a correct decision
for 90% of these instances, the second class for 7%,
and the third class for 3%. Estimation of the left-
hand side (LHS) of Eq(1) by counting is difficult
as it requires observing multiple instances mapped
to the same probability vector.

A weaker notion of calibration (popular in NLP;
Desai and Durrett, 2020; Jiang et al., 2021) is con-
fidence calibration (Guo et al., 2017):3

Pr
(
Y ⋆ = Ŷ | max(f(X)) = p

)
= p (2)

A model is confidence calibrated if, for all instances
mapped to a maximum probability value p (e.g.,
0.9), the most probable class under the model is
correct for 90% of these instances.

3The maximum class probability assigned to a ran-
dom text X is itself a random variable, we denote it by
max(f(X)) := maxc∈[C] fc(X). As for any other random
variable, max(f(X)) = p identifies the set of texts for which
the maximum probability predicted by the model is exactly p.

Expected Calibration Error is most often used
to measure (confidence) calibration in practice.
Naeini et al. (2015) originally proposed ECE for
binary classification and Guo et al. (2017) later
adapted it to a multi-class setting:

ECE =

M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (3)

ECE estimates the confidence calibration error—
absolute difference between the LHS and the RHS
of Eq(2)—in expectation by discretizing the proba-
bility of the model decision into a fixed number M
of intervals (or bins). Each prediction vector f(x) is
assigned to a bin Bm based on its highest probabil-
ity maxc fc(x). The ECE is the weighted average
of the difference between the average confidence
and accuracy per bin. To obtain zero calibration
error, if 90 out of 100 instances that received a
highest probability between 0.8 and 1.0 are cor-
rectly classified, the average confidence on those
100 instances must be 0.9.

Several recent studies identify and address prob-
lems with ECE—mostly with its binning scheme
and implicit decision rule (e.g., Kumar et al., 2018;
Nixon et al., 2019; Widmann et al., 2019; Gupta
et al., 2021; Si et al., 2022). Instead, in this work
we identify a fundamental problem in the definition
of perfect calibration when applying it to setups
where there exists no real gold label.

3 Calibration & Disagreement Pathology

It is common practice to handle human disagree-
ment with majority voting or other aggregation
methods (Dawid and Skene, 1979; Artstein and
Poesio, 2008; Paun et al., 2022). Aggregate (gold)
labels are then used to evaluate a classifier’s ac-
curacy. We now illustrate the problem this poses
when measuring calibration.

Desideratum: Any classifier g that, given an in-
stance x, predicts the human judgement distribu-
tion g(x) = πππ(x) should be perfectly calibrated.

Consider the oracle classifier that has access to the
MLE π̄ππ(x) of πππ(x) for any instance x in a valida-
tion set. For each x, the oracle is able to predict
the human labeling uncertainty πππ(x). This esti-
mate is unbiased and becomes more precise the
more judgements we have access to. By definition,
when human majority voting is used, this classi-
fier achieves perfect accuracy—its highest confi-
dence prediction always matches the gold standard.
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However, according to ECE, the oracle classifier is
miscalibrated (this is true for other definitions of
calibration to accuracy, including multi-class and
classwise). Recall that the calibration error is the
absolute difference between accuracy and average
confidence per bin. The accuracy of the oracle clas-
sifier is always 1. On data where humans disagree,
the average confidence will be lower than 1.

This mismatch results in high calibration error
(as demonstrated in §5) and exposes a problem with
using ECE to measure calibration on disagreement
data. An important takeaway is that, even if we can
train a classifier that perfectly models the human
judgement distribution, this classifier would still be
severely miscalibrated. To achieve perfect calibra-
tion, its probabilities must drift towards an unfaith-
ful representation of human confidence. Therefore,
we argue that human majority accuracy is a bad
estimate of correctness to calibrate against.

4 Calibration to Human Uncertainty

To get a faithful probabilistic classifier, we expect
it to predict the uncertainty the human population
exhibits on any given x. Notions of calibration to
accuracy (e.g., multi-class, classwise, confidence)
are defined marginally (i.e., for instances grouped
by a property of model predictions such as their
probability). Instead, we argue for a direct assess-
ment of calibration at the instance level. Given x,
perfect calibration to human uncertainty requires:

Pr(Y = c | X = x) = fc(x) ∀c ∈ [C] (4)

This is our desideratum of §3 re-expressed for a
practical classifier f(·). In words, a model is cal-
ibrated for x if it predicts probability fc(x) equal
to the probability Pr(Y = c | X = x) with which
humans label x as c. With multiple human judge-
ments (whether or not they disagree), the LHS can
be estimated by π̄ππ(x)—the relative frequency of
the observed labels. Assessing the degree to which
Eq(4) holds in expectation across instances gives
us a tool to criticize classifiers in terms of their
overall calibration to human uncertainty in a given
task. This is appealing because we can assess the
trustworthiness both globally (overall calibration)
as well as on individual predictions.

Distance Measures To operationalize our notion
of human calibration, we propose three distance
measures—each capturing a different key statistic.
First, Human Entropy Calibration Error:

EntCE(x) = H(f(x))−H(π̄ππ(x)) (5)

This captures the alignment between disagreement
among humans and a model’s indecisiveness. It is
sensitive to average confusion, but not to class rank-
ing. Second, Human Ranking Calibration Score:

RankCS =
1

N

N∑

n=1

[argsort(f(xn)) =

argsort(π̄ππ(xn))] (6)

RankCS is a global measure that can be viewed as
a stricter alternative to majority vote accuracy. It is
sensitive to class ranking but not to magnitude of
probability, complementing entropy calibration.4

Third, Human Distribution Calibration Error—the
strictest and most informative measure of the three:

DistCE(x) = TVD(f(x), π̄ππ(x)) (7)

We opt for the popular total variation distance
(TVD) between the predictive distribution and the
human judgement distribution.5 One could com-
pare other statistics of interest, and we encourage
the community to do so. For example, a more fine-
grained classwise analysis (see Appendix B).

Advantages First, unlike ECE, human calibra-
tion naturally handles disagreement data—in fact,
it requires multiple annotations to reliably esti-
mate the human judgement distribution. Second,
DistCE and EntCE measure the calibration of in-
dividual predictions, which is a powerful tool to aid
decision making. Crucially, this avoids the need for
a binning scheme, often criticized in ECE (Nixon
et al., 2019; Gupta et al., 2021). Third, DistCE
ensures full multi-class calibration: there is no im-
plicit decision rule and a classifier’s underlying
statistical model is directly evaluated on its ability
to match the entire human judgement distribution.
Fourth, unlike ECE and its variants, DistCE is a
proper scoring rule, which comes with a range of
desirable properties (Gneiting and Raftery, 2007).

Related Work Several recent studies on soft eval-
uation evaluate or optimize for a quantity similar
to our DistCE. However, we are the first to pro-
pose a general notion of calibration in disagreement

4We leave aside specifying a method for handling cases
where two or more classes obtain an equal number of votes,
which makes multiple rankings correct.

5TVD(q,p) = 1/2∥q− p∥1 is convenient for various
reasons: it is a metric (hence, symmetric) and defined for all
discrete distributions (including sparse distributions); being
expressed directly in (absolute difference in) probability, it is
dimensionless (or unitless) and bounded between 0 and 1; it
quantifies the maximum discrepancy in probability across the
event space. For a more technical discussion, see Appendix E.
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(a) DistCE: Vanilla (b) DistCE: Temp Scaling (c) ECE: Vanilla (d) ECE: Temp Scaling

Figure 1: Left: Distribution over instance-level calibration errors (DistCE). While temperature scaling (TS)
causes fewer severely miscalibrated instances—illustrated by the right tail of the distribution retracting from (a)
to (b)—there are also fewer instances that are perfectly calibrated, see drop of first bar in (b). Right: Reliability
Diagrams indicate that TS improves ECE enormously, because the bars in (d) move towards the diagonal.

settings. Nie et al. (2020) introduce ChaosNLI
(see §5) and report the Kullback–Leibler (KL) and
Jensen–Shannon (JS) divergences from estimates
of the human judgement distributions. Follow-up
work explores decreasing this divergence. For ex-
ample, by fine-tuning on them directly (Meissner
et al., 2021; Zhang et al., 2021); using Bayesian-
inspired methods (Zhou et al., 2022); methods pop-
ularized to bring down ECE, such as temperature
scaling or label smoothing (Zhang et al., 2021;
Wang et al., 2022); or framing the task as regression
(Chen et al., 2020).

We show that the human majority class is not a
meaningful statistic to calibrate against in disagree-
ment settings. In §5, we empirically demonstrate
that human calibration is more faithful, and a use-
ful tool to gain insights into calibration errors.

5 Case Study

5.1 Experimental Setup

Dataset We use the ChaosNLI dataset (Nie et al.,
2020) as case study. It contains English natural
language inference instances selected from the de-
velopment sets of SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018) and AbductiveNLI
(Bhagavatula et al., 2020) for having a borderline
annotator agreement, i.e., at most 3 out of 5 human
votes for the same class. ChaosNLI collects an
additional 100 independent annotations for each of
the roughly 1,500 instances per dataset, resulting
in T = 100 human votes distributed over C = 3
classes per premise-hypothesis pair for a total of
N = 4, 645 instances. The dataset was collected
very carefully and with strict annotation guidelines.
This ensures that disagreement cannot easily be dis-
carded as noise (Pavlick and Kwiatkowski, 2019;
Nie et al., 2020). The task description and exam-
ples can be found in Appendix A.

Method We fine-tune RoBERTa (Liu et al., 2019)
on SNLI following the standard procedure de-
scribed by Desai and Durrett (2020). We evalu-
ate on the ChaosNLI-SNLI split. To investigate
the value of human calibration, we inspect Wang
et al. (2022)’s claim that ECE is a good alternative
to measuring divergence to the human judgement
distribution—and that temperature scaling (TS;
Guo et al., 2017) is a suitable calibration method
to do so. We discuss temperature scaling and how
we choose a temperature in Appendix C.

5.2 Results

Table 1 shows accuracy, ECE,6 RankCS, and sum-
mary statistics of the instance-level EntCE and
DistCE metrics for RoBERTa, temperature scaled
RoBERTa-TS and the oracle classifier.

Oracle is miscalibrated Indeed, the oracle clas-
sifier is severely miscalibrated according to ECE—
even more so than RoBERTa (0.25 vs 0.14), demon-
strating the problem we highlight in §3. Instead,
on all our human calibration metrics, the oracle is
perfectly calibrated.

Inspecting Error Distributions Applying TS
to RoBERTa results in a sharp decrease in ECE
(from 0.14 to 0.03). The reliability diagrams7 in
Figures 1c and 1d confirm this, suggesting that TS
successfully calibrates probability values.

However, TS only causes a very small change
in mean DistCE (from 0.26 to 0.22). Though the
practical significance of this shift might not be im-
mediately obvious (that is also true for other met-
rics, such as ECE), human calibration allows us to
inspect how errors are distributed across instances.

6We observe a similar trend for classwise-ECE, a popular
improvement to standard ECE, in Appendix D.

7A reliability diagram (DeGroot and Fienberg, 1983;
Naeini et al., 2015) visualizes ECE by plotting accuracy
against confidence (intervals). As bars approach the diagonal,
ECE converges to 0.
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RoBERTa RoBERTa-TS Oracle

Acc ↑ 0.74 ±0.01 0.74±0.01 1.00
ECE ↓ 0.14 ±0.01 0.03±0.01 0.25

RankCS ↑ 0.62 ±0.01 0.62±0.01 1.00
E[|EntCE|] ↓ 0.30 ±0.02 0.21±0.02 0.00
E[DistCE] ↓ 0.26 ±0.00 0.22±0.00 0.00

Table 1: Accuracy & ECE versus our RankCS and sum-
mary (mean) of instance-level |EntCE| & DistCE on
ChaosNLI-SNLI. Results shown over 3 random seeds.

Figure 2: DistCE error distributions for two “as-good-
as-it-realistically-gets”-classifiers and two RoBERTas
(vanilla and TS). There are big differences between but
not within groups.

This is an important tool to gain more insight into
the effects of a method such as TS on calibration.

The global DistCE error distributions in Fig-
ure 1a and 1b reveal that perfectly-calibrated in-
stances are sacrificed to reduce poorly-calibrated
instances. This corroborates our intuition that TS
artificially compresses the predicted probability
range, which, arguably is not desirable. For more
extensive and fine-grained analyses, including out-
of-distribution evaluation on the ChaosNLI-MNLI
set, see Appendix B.

How Good is Good? A naturally arising ques-
tion is how good the shape of a DistCE error
distribution is. To answer this, we need a target:
what does the error distribution of a “as-good-as-
it-realistically-gets”-classifier look like?

To approximate such a classifier, for each
premise-hypothesis pair, we sub-sample 20 votes
and use them to construct a higher-variance MLE of
the underlying human judgement distribution πππ(x).
We construct two such classifiers (H1 and H2) and
plot their DistCE distribution alongside RoBERTa
and RoBERTa-TS in Figure 2. We evaluate the
classifiers against the 100 available annotations.

As expected, we barely observe any difference
between the two sub-sampled human classifiers.

However, there is a massive difference between
the RoBERTa-based and human-based classifiers—
with RoBERTas stretching to much higher instance
level calibration errors (x-axis) than humans—
thereby providing a sense of scale. To quantify
these differences, we compute KL-divergences be-
tween DistCE error distributions. We opt for KL-
divergence because it is asymmetric; weighting
differences in bins that are not probable under the
human model less than those that are. We also
report TVD.

Table 2 shows that KL divergences from
RoBERTa or RoBERTa-TS to an ideal clas-
sifier’s error distribution are 150-170x bigger
(0.611 and 0.688) compared to the control group
(one ideal classifier to another; 0.004). Even
though RoBERTa-TS shows slightly reduced KL-
divergence compared to the vanilla model, it is
nowhere near an ideal classifier, and it is unclear
whether the observed reduction in KL translates to
a meaningful or practical difference, i.e., something
a practitioner would care about.

DistCE error distribution KL(H1, ·) TVD(H1, ·)
H2 0.004 0.022
RoBERTa 0.688 0.500
RoBERTa-TS 0.611 0.454

Table 2: Quantifying divergence between DistCE error
distributions for human sub-populations (H1 and H2)
and neural classifiers (RoBERTa and RoBERTa-TS).

6 Conclusion

We demonstrate a fundamental problem with mea-
suring calibration to the human majority vote in
settings with inherent disagreement in human la-
bels. We propose an alternative, instance-level
notion based on the full human judgement distri-
bution and operationalize this notion with three
metrics. We study temperature scaling RoBERTa
on the ChaosNLI dataset using these metrics and
conclude that they—and crucially, the ability to in-
spect them in distribution—provide a more robust
and faithful lens to analyze classifier calibration in
disagreement settings.

Human uncertainty can be used to evaluate many
other calibration techniques—we only performed a
preliminary analysis for temperature scaling—and
we encourage the community to look into those, in
addition to exploring other datasets with inherent
disagreements.
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Limitations

A reliable estimate of the human judgement dis-
tribution is an important requirement for human
calibration. For the ChaosNLI dataset, the relia-
bility is endorsed by the large number of annota-
tions per instance and strict quality control (Nie
et al., 2020). Most datasets do not provide this. We
believe, however, that the advantages of collect-
ing additional annotation outweigh its cost, since,
without it, datasets are likely to under-represent
human disagreement. We therefore advocate fu-
ture datasets to include multiple annotations per in-
stance (at least for a small test set), as recently also
advocated by, e.g., Prabhakaran et al. (2021), and a
better understanding of how many annotations are
required for good estimates of human uncertainty.
An important challenge is to distinguish inherent
disagreement from noise, for example due to spam-
mers, which negatively affects data quality (Raykar
and Yu, 2012; Aroyo et al., 2019; Klie et al., 2022).

Another limitation is that uncertainty estimates
from one population cannot be said to be univer-
sally correct. The notion that, given an instance,
one unique human distribution governs all anno-
tators is a simplification. Even a single collection
of votes from one experiment might contain sub-
populations, in which case the marginal distribution
is not representative of individual components.
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Appendix

A ChaosNLI

Table 3 and Table 4 show examples with very low
or very high agreement. The task description pro-
vided by Nie et al. (2020) is in Figure 3.8

Figure 3: The task description for natural language
inference by Nie et al. (2020) used to collect ChaosNLI-
SNLI and ChaosNLI-MNLI.

B Additional Analyses

This section provides additional analyses and fig-
ures. Each figure shows a comparison between
model predictions and human predictions using the
measures we propose in §4. We use three different
views to compare statistics of human judgements
to statistics of model predictions.9

The first view shows two marginal or dataset-
level histograms: one of a human statistic and one
of a model statistic, e.g., entropy. This view is
useful to compare the global distribution over an
instance-level statistic between human judgements
and model predictions (Figure 4 and 5).

The second view shows one histogram of the
conditional instance-level error between a model
and human statistic, e.g., entropy (Figure 8 and 9).
This is interesting for diagnosing a classifier’s un-
der or over confidence. Instances centered around
zero have zero error, instances in the positive range
exhibit over-confidence, and instances in the nega-
tive range under-confidence.

The third view is similar to the previous, (it is
also conditional, e.g., it compares an instance-level
statistic between humans and a model) but shows

8ChaosNLI can be downloaded at https://www.dropbox.
com/s/h4j7dqszmpt2679/chaosNLI_v1.0.zip.

9Note that these views do not apply to the DistCE (row
3 column 1) and reliability diagrams (row 4), which will not
change across views.

the absolute errors (Figure 6 and 7). This is useful
to spot general miscalibration, regardless of the di-
rection (i.e., under-confidence vs over-confidence).

In each figure, the top row shows a histogram of
the predicted probability for class 0 (entailment),
1 (neutral) and 2 (contradiction). The second row
shows predicted probability for the kth highest pre-
dicted probability, i.e., the first, second and third
guess from either the model or human distribution
(note that the corresponding classes are not neces-
sarily the same for the model and humans—this
row is informative to compare the magnitude of
the probability for the same rank). The third row
shows the histogram of DistCE (TVD) from §5
(left) and the histogram for EntCE (right). The
fourth row shows conventional reliability diagrams
that visualize ECE, and the number of instances per
bin (note that this is not normally shown—though
we find it very insightful).

B.1 Beyond DistCE

Figure 4 shows a vanilla RoBERTa on ChaosNLI-
SNLI. We can see that all histograms are very dif-
ferent between humans and model. It is clear that
the model predictions are drawn from a different
distribution than the human predictions. This sig-
nals bad calibration. Figure 5 shows a temperature
scaled RoBERTa. According to all plots, the pre-
dictions still appear drawn from a different distribu-
tion, even though the ECE drops significantly. TS
seems to transform the distributions, but they are
not clearly closer to the human distribution. The
entropy figure seems to indicate that TS overshoots
to the other end of the spectrum (i.e., from over-
confidence to under-confidence). The TS model
is unable to match the extreme left and right end
of the human certainty spectrum for class 0, 1 and
2, which corroborates our intuition that the proba-
bility range is compressed. Another observation is
that the human distribution rarely put much mass
on the third guess (i.e., the predicted class with
the lowest probability). However, after TS models
actually do so—which is undesirable.

We next compare the histogram of (non abso-
lute) instance-level errors in Figure 8 and 9. TS
brings entropy error median and mean from -.26 to
.12. The TS model therefore overshoots also on the
instance-level (recall this plot is the instance-level
error, unlike the previous marginal figure we dis-
cussed) and becomes more much more uncertain
than humans are. TS causes less class 0 predictions
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Premise Hypothesis Label Distribution

A man running a marathon talks
to his friend

There is a man running. Entailment: 100, Neutral: 0,
Contradiction: 0

A young girl plays with a neon-
colored Slinky in a crowd of
people on a street lined with
flags.

The girl is five years old. Entailment: 0, Neutral: 100,
Contradiction: 0

A well built black man stands
in the subway, listening to head-
phones.

A man with headphones on is
standing in a subway.

Entailment: 100, Neutral: 0,
Contradiction: 0

Table 3: High agreement examples from the ChaosNLI dataset.

Premise Hypothesis Label Distribution

The important thing is to realize
that it’s way past time to move
it.

It cannot be moved, now or
ever.

Entailment: 34, Neutral: 32,
Contradiction: 34

An elderly woman crafts a de-
sign on a loom.

The woman is sewing. Entailment: 35, Neutral: 31,
Contradiction: 34

Number 13 kicks a soccer ball
towards the goal during chil-
dren’s soccer game.

A player passing the ball in a
soccer game.

Entailment: 36, Neutral: 33,
Contradiction: 31

Table 4: Low agreement examples from the ChaosNLI dataset.
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to have 0 error (which is bad). It also narrows the
spread slightly for class 1 and increases errors for
class 3.

We next compare the histogram of absolute er-
rors in Figure 6 and 7. We see that TS reduces error
tail of class 0, but also reduces instances with 0 er-
ror (similar trend as discussed in §B about DistCE).
Similarly for class 2 and 3, and entropy: it seem-
ingly reduces the mean and median by cutting off
the tail. Finally, the human rank calibration error
(RCE) shown in the title of each figure, shoes that
models are not good at matching the human rank
at all—as expected, much worse than matching the
majority vote.

In general, it appears that the median and
mean error on most metrics go down with TS,
mainly by removing instances from the tail (those
are extremely miscalibrated examples). How-
ever, they seem to sacrifice predictions that were
well/perfectly aligned with human judgement prob-
abilities. This illustrated by the mode of the error
distributions moving towards the right (meaning
more predictions with a higher error). Arguably,
this is not desirable—and our metrics provide tools
to expose such behaviors.

B.2 Out of Distribution Evaluation

The OOD setting is interesting to evaluate uncer-
tainty estimates, because it is especially important
to have reliable uncertainty estimates for examples
that are especially difficult (e.g., because the classi-
fier has not seen them during training, and might
not reflect the learned distribution). In such cases,
it is desirable that a classifier is more uncertain on
such examples. In fact, OOD detection is often
used to evaluate uncertainty estimates, next to or
instead of calibration. Models are often found to
be more badly miscalibrated for OOD datasets (De-
sai and Durrett, 2020), which is an observation we
confirm.

We observe similar trends as in the in-
distribution analysis. The marginal distributions
from Figure 10 to Figure 11 seem to match the
human marginal slightly better than on the in-
distribution dataset. However, inspecting the error
distributions in Figure 14, 15, 12 and 13, we see
that the distributions are transformed somewhat,
but we do not believe that to be evidence that TS
is a good method to improve calibration. The in-
stances are still obviously drawn from a different
distribution.

C Temperature Scaling

Temperature scaling is a simple method that uses
a single temperature parameter t to scale the out-
put logits of a classifier (Guo et al., 2017). The
standard way to choose a temperature is to perform
a search on a range of possible values for t on a
development set. However, sometimes, the tem-
perature is tuned directly on the test set. This is
commonly referred to as the oracle temperature.
Indeed, we use this method to obtain our tempera-
ture, because we consider it an (unrealistic) upper
bound on what TS can do. For OOD evaluation,
we use the temperature tuned on the ID evaluation.
In our experiments in §5, we found a temperature
of 2.0 to result in the lowest ECE.

D Classwise-ECE

Classwise-ECE (Nixon et al., 2019) is based on
the notion of classwise-calibration (Vaicenavicius
et al., 2019; Kull et al., 2019). The main difference
with ECE—based on the notion of confidence cali-
bration (§2)—is that it removes the dependency
on a decision rule on top of the classifier, and
computes the calibration separately for each class.
Classwise-ECE, then, is the average calibration
error over classes:

1

K

K∑

k=1

M∑

m=1

|Bmk|
N

|acc(m, k)− conf(m, k))|

(8)

Table D shows a similar trend for classwise-ECE
as for ECE: the oracle classifier is severely miscali-
brated. This confirms our claims that the general
notion of calibration is not suited for data on which
humans inherently disagree about a class—and is
not restricted to Guo et al. (2017) notion of confi-
dence calibration.

RoBERTa RoBERTa-TS Oracle

Classwise-ECE 10 5 16

Table 5: Classwise-ECE on ChaosNLI-SNLI in %.

E Total Variation Distance

The total variation distance TVD(q,p) between
two Categorical distributions with parameters
q,p ∈ ∆C−1 is defined as:

max
A∈P([C])

|Q(A)− P(A)| (9a)
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which can also be expressed as

=
1

2

C∑

c=1

|qc − pc|
︸ ︷︷ ︸

=∥q−p∥1

. (9b)

where [C] is the sample space, P([C]) is the event
space (for generality, we use the powerset of [C],
the set of all subsets of outcomes in the sample
space), A ∈ P([C]) is any event in the event
space, Q and P are the probability measures pre-
scribed by each of the Categorical distributions (i.e.,
Q(A) =

∑
c∈A qa and P(A) =

∑
c∈A pa). For a

complete technical results with definitions, proofs,
and various properties see Devroye and Lugosi
(2001, Chapter 5).

Properties. TVD is defined for any two probabil-
ity vectors, whether dense or sparse. It is a metric
(hence symmetric and minimised only for identical
distributions) and bounded:

TVD(q,p) = TVD(p,q) (10a)

TVD(q,p) = 0 iff q = p (10b)

TVD(q,p) ∈ [0, 1] . (10c)

Interpretations. The identity in Eq(9b), which
expresses TVD in terms of the L1 norm, gives us
a rather practical (linear-time) algorithm to com-
pute it by summing half the absolute difference in
probability for the outcomes in the sample space
[C] of the random variable. This means that TVD
is expressed in units of absolute difference in prob-
ability. That definition, Eq(9a), also helps interpre-
tation, it shows that TVD quantifies the maximum
discrepancy in probability between the two mea-
sures over their entire event spaces.
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Figure 4: RoBERTa-0 on the ChaosNLI-SNLI dev+test set. Several figures comparing human uncertainty to model
uncertainty using TVD, confidence, entropy, and reliability diagrams. This figure shows the distribution over
instance-based absolute errors between probabilities for each class (top row) or the model vs human kth guess (i.e.,
the highest model probability versus the highest human probability on each instance). See Appendix B for more
information.
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Figure 5: RoBERTa-0 with oracle temperature scaling on the ChaosNLI-SNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams.
This figure shows the human and model distribution over the probability, entropy or TVD range. Top row shows
distribution over probability magnitudes for class 0, 1 and 2, while the second row shows the distribution for first,
second and third guess for the model vs human kth guess (i.e., the highest model probability versus the highest
human probability on each instance). See Appendix B for more information.
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Figure 6: RoBERTa-0 on the ChaosNLI-SNLI dev+test set. Several figures comparing human uncertainty to model
uncertainty using TVD, confidence, entropy, and reliability diagrams. This figure shows the distribution over
instance-based absolute errors between probabilities for each class (top row) or the model vs human kth guess (i.e.,
the highest model probability versus the highest human probability on each instance). See Appendix B for more
information.

1906



Figure 7: RoBERTa-0 with oracle temperature scaling on the ChaosNLI-SNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.
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Figure 8: RoBERTa-0 on the ChaosNLI-SNLI dev+test set. Several figures comparing human uncertainty to model
uncertainty using TVD, confidence, entropy, and reliability diagrams. This figure shows the distribution over
instance-based absolute errors between probabilities for each class (top row) or the model vs human kth guess (i.e.,
the highest model probability versus the highest human probability on each instance). See Appendix B for more
information.
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Figure 9: RoBERTa-0 with oracle temperature scaling on the ChaosNLI-SNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.
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Figure 10: RoBERTa-0 with (ID) temperature scaling on the OOD ChaosNLI-MNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.

1910



Figure 11: RoBERTa-0 with (ID) temperature scaling on the OOD ChaosNLI-MNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams.
This figure shows the human and model distribution over the probability, entropy or TVD range. Top row shows
distribution over probability magnitudes for class 0, 1 and 2, while the second row shows the distribution for first,
second and third guess for the model vs human kth guess (i.e., the highest model probability versus the highest
human probability on each instance). See Appendix B for more information.
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Figure 12: RoBERTa-0 with (ID) temperature scaling on the OOD ChaosNLI-MNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.
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Figure 13: RoBERTa-0 with oracle temperature scaling on the ChaosNLI-SNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.
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Figure 14: RoBERTa-0 with (ID) temperature scaling on the OOD ChaosNLI-MNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.
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Figure 15: RoBERTa-0 with (ID) temperature scaling on the OOD ChaosNLI-MNLI dev+test set. Several figures
comparing human uncertainty to model uncertainty using TVD, confidence, entropy, and reliability diagrams. This
figure shows the distribution over instance-based absolute errors between probabilities for each class (top row) or
the model vs human kth guess (i.e., the highest model probability versus the highest human probability on each
instance). See Appendix B for more information.
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