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Abstract

Multi-hop knowledge graph (KG) reasoning
has been widely studied in recent years to pro-
vide interpretable predictions on missing links
with evidential paths. Most previous works
use reinforcement learning (RL) based meth-
ods that learn to navigate the path towards
the target entity. However, these methods suf-
fer from slow and poor convergence, and they
may fail to infer a certain path when there is a
missing edge along the path. Here we present
SQUIRE, the first Sequence-to-sequence based
multi-hop reasoning framework, which utilizes
an encoder-decoder Transformer structure to
translate the query to a path. Our framework
brings about two benefits: (1) It can learn and
predict in an end-to-end fashion, which gives
better and faster convergence; (2) Our trans-
former model does not rely on existing edges
to generate the path, and has the flexibility to
complete missing edges along the path, espe-
cially in sparse KGs. Experiments on standard
and sparse KGs show that our approach yields
significant improvement over prior methods,
while converging 4x-7x faster.

1 Introduction

Knowledge graph (KG) provides structural knowl-
edge about entities and relations in real world in
the form of triples. Each edge in the graph, con-
necting two entities with a relation, represents a
triple fact (h, r, t). Knowledge graph supports a va-
riety of downstream tasks, such as question answer-
ing (Hao et al., 2017), information retrieval (Xiong
et al., 2017a) and hierarchical reasoning (Bai et al.,
2021). However, practical KGs often suffer from in-
completeness, thus proposing the task of KG com-
pletion, such as predicting the tail entity t given
(h, r). A popular approach for such a challenge is
knowledge graph embedding (KGE) (Bordes et al.,
2013; Dettmers et al., 2018), which infers a missing
edge in a complete black-box manner.
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Figure 1: An example of multi-hop reasoning in an in-
complete knowledge graph. The missing links (dashed
arrows) can be inferred from existing links (solid ar-
rows). However, such an evidential path may not be
inferred when there is a missing edge (gray dashed ar-
row) along the path.

To strengthen the interpretability of KG comple-
tion, (Das et al., 2018) proposes multi-hop knowl-
edge graph reasoning. Given a triple query (h, r),
the task aims not only to predict the tail entity t, but
to give the evidential path from h to t that indicates
the inference process, e.g., we can infer (Albert,
native language, ?) from the relational path
“born in” and “language”, as shown in Fig. 1.

Most previous works use walk-based
method (Das et al., 2018; Lin et al., 2018;
Lv et al., 2019; Lei et al., 2020) to tackle such
problem, where an agent is trained under the
reinforcement learning (RL) framework to learn
to “walk” from the head entity to the tail entity.
One major drawback of these RL-based methods is
that they suffer from slow and poor convergence,
since the reward can be temporally delayed during
the training process of RL (Woergoetter and Porr,
2008). In Fig. 2, we show the training time of
KGE model (TransE by Bordes et al. (2013), blue
curve) and RL-based multi-hop reasoning model
(MultiHopKG by Lin et al. (2018), brown curve)
under different graph sizes. Though multi-hop
reasoning is a harder task than KG completion,
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Figure 2: Training time (in hour) for KGE model, RL-
based multi-hop reasoning model and our multi-hop
reasoning model under varying graph sizes (measured
by the number of edges).

for RL-based model, the trade-off on time is
still unbearable as the size of the graph grows.
Moreover, as Lv et al. (2020) points out, previous
approaches suffer from the missing path problem,
i.e., the model fails to infer an evidential path
between pair of entities due to missing edges along
the path, especially in sparse KGs. As shown in
Fig. 1, there is no evidential path between Albert
and Hans due to the missing of relation “spouse”.

Amazingly, we show that both drawbacks can be
alleviated by a new Sequence to sequence frame-
work for multi-hop reasoning (SQUIRE). By pos-
ing multi-hop reasoning as a sequence-to-sequence
problem, we use a Transformer encoder-decoder
model (Vaswani et al., 2017) to “translate” a query
sequence to a path sequence.

For model learning, each triple induces a su-
pervised training sample consisting of a source
sequence, i.e., query (h, r), and a target path se-
quence sampled from all paths between h and t.
Hence, SQUIRE framework learns and predicts in
a complete end-to-end fashion, yielding faster and
more stable convergence than RL-based methods
(green curve in training time comparison Fig. 2).
Furthermore, our approach naturally overcomes the
missing path problem, since the Transformer does
not explicitly rely on existing edges in the graph to
generate the path sequence. That is, our proposed
method has the flexibility to “walk and complete”:
automatically infers missing edges along the path.

Meanwhile, multi-hop reasoning poses particu-
lar challenges to our framework. (a) Noisy sam-
ple: Unlike in language modeling where we have
a groundtruth target sequence, in our case, there
is no such supervision on the target path. A naive

way to obtain the target path is randomly sampling
from all paths between h and t, but this might in-
troduce noise into model learning since the random
path may be spurious. To address this, we propose
rule-enhanced learning. We search groundtruth
paths by logical rules mined from the KG, which
are less noisy and more reliable compared to ran-
domly sampled paths. (b) History gap: During
training, we provide the groundtruth sequence as
the path history for our model to predict the next to-
ken. Yet, during inference the history is generated
by the model from scratch, resulting in a deviation
from its training distribution. In language model-
ing, this is also known as exposure bias (Ranzato
et al., 2016), a common challenge faced in auto-
regressive models. To narrow such a gap, we pro-
pose iterative training that iteratively aggregates
new paths to the training set based on the model’s
previous predictions, adapting the model to the dis-
tribution of history tokens it induces.

We evaluate the performance of SQUIRE on
link prediction over six benchmark KGs. SQUIRE
achieves state-of-the-art results across all datasets.
Moreover, on two sparse KGs, our model out-
performs DacKGR (Lv et al., 2020), which is
specifically designed to handle the sparse setting.
SQUIRE takes 4x-7x less time to converge on
larger KG datasets while obtaining better perfor-
mance. To the best of our knowledge, SQUIRE is
the first sequence-to-sequence framework for multi-
hop reasoning, and may provide a new paradigm
for future studies.

2 Related Work

2.1 Knowledge Graph Embedding

Knowledge graph embedding (KGE) methods
map entities to vectors in low-dimensional em-
bedding space, and model relations as transfor-
mations between entity embeddings. Prominent
examples include TransE (Bordes et al., 2013),
ConvE (Dettmers et al., 2018), RotatE (Sun et al.,
2018) and TuckER (Balažević et al., 2019). Each
of these models is equipped with a scoring function
that maps any triple to a scalar score, which mea-
sures the likelihood of the triple. The embeddings
of entities and relations are learnt by optimizing
the scoring function such that the likelihood score
is high for true triples while low for false triples.
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Figure 3: SQUIRE model overview: We use Transformer encoder to compute a contextualized representation from
query tokens and history path tokens (the mask makes sure only previous tokens in the path can be attended to), and
decode the next token through MLP and Softmax layer. The generated sequence corresponds to a path in KG.

2.2 Multi-hop Reasoning

Multi-hop reasoning aims not only on finding the
target entity to the query (h, r, ?), but also the rea-
soning path from h to t to support the prediction.

DeepPath (Xiong et al., 2017b) is the first ap-
proach to adopt an RL framework for multi-hop
reasoning. Following this work, MINERVA (Das
et al., 2018) introduces the REINFORCE algorithm
to this task. Considering the incomplete KG envi-
ronment that might give low-quality rewards, Mul-
tiHopKG (Lin et al., 2018) proposes reward shap-
ing from a pretrained KGE model. DacKGR (Lv
et al., 2020) further applies dynamic anticipation
and completion in sparse KGs.

In addition to the above RL-based approaches,
several symbolic rule-based models are proposed
to improve interpretability for KG completion, in-
cluding NTP (Rocktäschel and Riedel, 2017), Neu-
ralLP (Yang et al., 2017) and AnyBURL (Meilicke
et al., 2019). Most of these methods offer evidence
from automatically learnt logical rules, which are,
to some degree, weaker in interpretability than RL-
based methods that give the evidential path.

2.3 Reinforcement Learning via Transformer

Interestingly, recent works (Chen et al., 2021; Jan-
ner et al., 2021) have shown the feasibility to
treat RL as a sequence modeling problem. They
use Transformer to model the trajectory including
states, actions and rewards, and their architectures
achieve promising results on offline RL tasks. On
our multi-hop reasoning task, these findings sug-
gest the potential of substituting the previous RL
pipeline with Transformer.

3 Methodology

3.1 Preliminaries

Knowledge graph. We denote the set of entities
and relations in knowledge graph as E andR. Each
directed edge in the graph can be formalized as a
triple (h, r, t), where h, t ∈ E and r ∈ R. Let T
denote the set of all such triple facts.
Multi-hop reasoning. Given triple query (h, r, ?),
multi-hop reasoning aims to find an evidential path
h, r1, t1, . . . , rn, t towards the target entity t, where
ti is the intermediate entity along the path con-
nected by relational edges ri and ri+1. n suggests
that it is an n-hop path, that is, the length of the
path is n.

3.2 SQUIRE Framework

Our end-to-end SQUIRE approach frames multi-
hop reasoning as a sequence-to-sequence task. The
query is treated as the source sequence and the
path as the target sequence. As shown in Fig. 3,
we utilize a Transformer encoder to map query
and previous path sequence to a contextualized
representation, and further use such representation
to autoregressively decode the output path, token
by token.

The intuition behind our framework is simple:
multi-hop reasoning task setting resembles the
question-answering task in NLP: different entities
and relations can be interpreted as different words
whose contextualized embeddings can be learnt
from edges in the graph. Furthermore, relational
rules like r → r1 ∧ r2 (e.g., “native language
→ born in ∧ language” in Fig. 1) can be learnt
from training samples where r in the query is de-
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composed into r1, r2 in the path.
To illustrate the training and inference process

of SQUIRE, let q, τ denote the query and the path:

q := (h, r), τ := (r1, t1, . . . , rn, t,<eos>) (1)

and τk denotes the k-th token in the output path.
We decompose the probability

p (τ | q) =
|τ |∏

k=1

p (τk | q, τ<k) (2)

where |τ | is the number of tokens in the path.
The model learns a token embedding matrix

E ∈ RV×d under embedding dimension of d. The
vocabulary size V = |E| + |R| + |S|, since the
token vocabulary includes the set of entities E , the
set of relationsR and the set of special tokens S.1

We use Enc(·) to denote the encoder in our model
(marked in Fig. 3). When decoding τk, the mask,
shown in Fig. 3, only allows the encoder to attend
to the query tokens h, r and previous tokens τ<k

in the output path, preventing the revelation of fu-
ture information. Then our model computes the
probability distribution on the k-th token as

p (·|q, τ<k) = Softmax(MLP(Enc(h, r, τ<k)) ·E)
(3)

where the MLP(·) is a multi-layer perceptron that
learns a mapping Rd → Rd.

During training, for each triple fact (h, r, t) ∈ T ,
we sample a path from all paths with maximum
length N = 3 2 between h and t and treat it as the
target path τ . If such a path cannot be found, we
simply take τ := (r, t,<eos>) to force the model
to memorize the edge. After obtaining the set U of
all query-path pairs, we optimize the parameters to
maximize

∑
(q,τ)∈U p (τ | q). We use cross-entropy

loss and further add label-smoothing to avoid over-
fitting, resulting in the following loss function for
each sample (q, τ) ∈ U :

L = − 1

|τ |

|τ |∑

k=1

V∑

i=1

αi log p (i | q, τ<k) (4)

where αi = ϵ for the target token i = τk and αi =
1−ϵ
V−1 for other tokens. ϵ is the label-smoothing hy-
perparameter ranging from 0 to 1. Furthermore, to

1Special tokens include start (<bos>), end (<eos>) and
mask (<mask>).

2We choose such N since almost all pairs of entities are
within 3 hops in the KG datasets, and to keep fair comparison
with baselines that all set maximum path length to 3.

avoid overdependence of future predictions on path
history, we mask out (by substituting with <mask>
token) every entity token in τ with probability p,
and exclude the loss on masked tokens.

For multi-hop KG reasoning task, given query
(h, r, ?), we use beam search to generate reasoning
path τ∗ of maximum length N from q = (h, r):

τ∗ = argmax
τ

1

|τ |

|τ |∑

k=1

log p (τk | q, τ<k) (5)

Our sequence-to-sequence framework brings
two challenges. (a) Noisy sample: Notice that dur-
ing training, we sample path from h to t as the
target path, for there is no golden standard for a
“groundtruth” reasoning path. This might result in
low-quality paths and introduce noise into model
learning. (b) History gap: There is a gap between
the history path tokens during training and infer-
ence, where the former is drawn from groundtruth
data distribution while the latter is induced by the
model. Specifically, for a sample (q, τ), the model
is trained to maximize p (τk | q, τ<k) on the k-th
token. However, during inference, the probabil-
ity distribution on the k-th token, p

(
· | q, τ ′<k

)
, is

modeled based on τ ′<k that is generated by the
model. The distribution of τ ′<k may deviate from
groundtruth distribution of τ<k during training, and
the gap may even be larger with a longer history
sequence, eventually leading to a false target entity
during inference. To address these challenges, we
propose rule-enhanced learning and iterative train-
ing, as described in detail in the following sections.

3.3 Rule-enhanced Learning

To address the noisy sample challenge, we pro-
pose rule-enhanced learning that uses mined rules
to guide path searching and obtain high quality
path-query pairs. Inspired by the recent advances
in rule-based multi-hop reasoning methods (Yang
et al., 2017; Sadeghian et al., 2019), we utilize
AnyBURL (Meilicke et al., 2019), which is the
Sota method for rule mining on KG, to efficiently
mine logical rules. Each rule decomposes a sin-
gle relation into the composition of multiple rela-
tions (including inverse relations).3 A confidence
score is given along with each rule, and we choose
the rules with confidence scores larger than some
threshold and treat them as “golden rules”. Then

3These rules are a subset of rules in (Meilicke et al., 2019),
referred to as C rules in their paper.
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Algorithm 1 Iterative Training
1: T ← set of all triples in the graph
2: Initialize query-path training set U by random sampling

or rule-enhanced searching
3: Initialize model M
4: Train M for n epochs
5: for k = 2 to N do
6: for each triple (h, r, t) in T do
7: q ← (h, r)
8: τ1 ← first (k − 1) hops of M(q)
9: τ2 ← subsequent path of τ1 towards t, at most

(N − k + 1) hops
10: if τ2 ̸= null then
11: τ ← τ1 + τ2
12: else ▷ No valid subsequent path
13: τ ← search for an entire path from h to t

14: Add (q, τ) to U
15: Train M for n/k epochs
16: Return trained model M

we use these rules to find the evidential path be-
tween h and t. For example, if one rule for rela-
tion r is r(X,Y ) → r1(X,A1) ∧ r2(A1, A2) ∧
· · · ∧ rn(An−1, Y ), we traverse the path from h to
t along the relational edges r1, r2, . . . , rn. If none
of the rules lead to a valid path in the graph, we
obtain the path by random sampling.

However, utilizing rule-based method to gener-
ate valid query-path pairs introduces the noisy rule
problem. This is because some relational rules do
not hold for all entities, and may lead to unreason-
able paths from h to t for certain entities. We show
that an iterative training strategy, elaborated in the
next section, can alleviate the noisy rule problem.

3.4 Iterative Training

Our history gap challenge is also a commonly faced
problem in autoregressive models (known as expo-
sure bias in language modeling), where the core
idea behind the solutions (Venkatraman et al., 2015;
Zhang et al., 2019) is to train the model to predict
under the same condition during inference. With
similar intuition in mind, we propose a novel train-
ing strategy that iteratively aggregates new training
data based on the model’s prediction to help the
model adapt to its induced distribution of history
tokens. Our data aggregation idea is enlightened
by the DAgger algorithm (Ross et al., 2011), which
is designed to boost RL performance in sequential
prediction problems.

Our algorithm proceeds as follows. At the first
iteration, we generate query-path training set U as
illustrated before and train the model for several
epochs. At k-th iteration (k > 1), for each triple in
the graph, we partially leverage the current model

Dataset #Ent #Rel #Fact #Degree

mean median

FB15K237 14,505 237 272,115 18.71 13
NELL995 62,706 198 117,937 1.88 1
FB15K237-20% 13,166 237 54,423 4.13 3
NELL23K 22,925 200 25,445 1.11 1
KACC-M 99,615 209 642,650 6.45 4
FB100K 100,030 471 1,013,470 10.13 7

Table 1: Dataset statistics.

to find the path and add a new training sample to U .
Specifically, our algorithm uses the current model
to predict the first (k−1)-hops, and search the path
following these tokens with maximum length N .
If the subsequent path cannot be found, it may be
due to the model’s failure on predicting the first
(k − 1)-hops, then we search the entire path again
to strengthen the model’s learning on this sample.
After data aggregation at k-th iteration, the size of
the training set becomes k times the initial size, and
we continue to train the model on the new training
set for the same number of steps before the next
iteration. The total number of iterations would be
N , which is the maximum hops of the path. A
detailed algorithm is shown in Alg. 1.

Note that during k-th iteration, τ2 is randomly
sampled after τ1, one may worry that this brings
noise into training data. However, since the model
has learnt “soft” rules in the past iterations, making
τ1 much more reasonable than random sampling,
then the search space left for τ2 is more concen-
trated around the groundtruth path.

Additionally, the iterative training strategy can
mitigate the noisy rule problem introduced by rule-
enhanced learning. The paths obtained by such
noisy rules may be replaced during the data ag-
gregation step, meanwhile, paths that entail our
model’s previous predictions may serve as more
solid training samples.

4 Experiments

4.1 Experimental Setup

Datasets. We experiment on six KG bench-
marks that capture common knowledge. Two stan-
dard datasets include FB15K237 (Toutanova and
Chen, 2015) which is extracted from Freebase,
and NELL9954 (Xiong et al., 2017b) that is con-
structed from NELL. Two sparse datasets include

4We apply a new training/valid/test split on the whole
NELL995 graph (without inverse relations), since there is an
inconsistency in evaluation in previous studies.

1653



FB15K237 NELL995 FB15K237-20% NELL23K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Embedding-based methods
TransE (Bordes et al., 2013) .425 .320 .475 .635 .371 .209 .473 .654 .263 .178 .288 .434 .179 .076 .208 .379
ConvE (Dettmers et al., 2018) .438 .342 .483 .627 .542 .449 .594 .709 .264 .187 .284 .422 .279 .193 .301 .467
RotatE (Sun et al., 2018) .426 .321 .474 .635 .513 .411 .570 .708 .265 .185 .286 .430 .217 .141 .232 .368
TuckER (Balažević et al., 2019) .451 .357 .495 .635 .511 .422 .556 .682 .246 .178 .261 .384 .207 .143 .224 .338
ConE (Bai et al., 2021) .446 .345 .490 .645 .543 .448 .602 .715 .274 .193 .298 .437 .234 .158 .249 .400

Rule-based methods
AnyBURL (Meilicke et al., 2019) - .300 .405 .544 - .389 .521 .628 - .159 .240 .359 - .140 .203 .292

RL-based methods
MINERVA (Das et al., 2018) .275 .199 .306 .433 .391 .293 .449 .575 .123 .070 .133 .236 .151 .101 .159 .247
MultiHopKG (Lin et al., 2018) .407 .327 .443 .564 .467 .388 .512 .609 .231 .167 .250 .361 .178 .124 .188 .297
RuleGuider (Lei et al., 2020) .387 .297 .428 .563 .417 .344 .476 .582 .094 .042 .094 .21 .112 .030 .140 .273
DacKGR (Lv et al., 2020) .347 .274 .382 .493 .421 .347 .464 .554 .246 .180 .270 .386 .197 .133 .211 .337

Sequence-based methods
SQUIRE .421 .329 .465 .606 .498 .409 .550 .668 .249 .180 .272 .401 .233 .157 .256 .389
SQUIRE + Self-consistency .433 .341 .476 .617 .519 .434 .570 .682 .253 .180 .276 .406 .244 .165 .269 .412

Table 2: Link prediction results on four benchmark datasets. The best score of multi-hop reasoning models is in
bold. The best score among embedding-based models and the best score among RL-based models are underlined.

FB15K237-20% (Lv et al., 2020) which is con-
structed by randomly retaining 20% triples in the
training set of FB15K237, and NELL23K (Lv
et al., 2020), constructed by randomly sampling
a small proportion of edges in a subgraph of NELL.
For efficiency studies, we also consider two larger
KGs, KACC-M (Zhou et al., 2021) that is con-
structed based on Wikidata, and FB100K that we
extract from Freebase. Detailed statistics of the
four datasets are listed in Table 1.5

Baselines. For embedding-based models, we
compare with TransE (Bordes et al., 2013),
ConvE (Dettmers et al., 2018), RotatE (Sun
et al., 2018), TuckER (Balažević et al., 2019) and
ConE (Bai et al., 2021). For multi-hop reasoning
models, we take MINERVA (Das et al., 2018), Mul-
tiHopKG (Lin et al., 2018), RuleGuider (Lei et al.,
2020) and DacKGR (Lv et al., 2020) as baseline
models. 6 For rule-based reasoning models, we
compare with AnyBURL7 (Meilicke et al., 2019).
Evaluation Protocol. We follow the evaluation
protocol in most multi-hop reasoning works (Das
et al., 2018; Lin et al., 2018). For every triple
(h, r, t) in the test set, we convert it to a triple query
(h, r, ?) and obtain a ranking list of the tail entity
from the model. We compute the metrics, includ-
ing Mean Reciprocal Rank (MRR) and Hits at N
(H@N) under filtered setting (Bordes et al., 2013).

5NELL995 is, in fact, sparse (according to the statistic
in Table 1), but we consider it a standard KG benchmark as
previous multi-hop reasoning studies do.

6More recent baselines RLH (Wan et al., 2021),
RARL (Hou et al., 2021) have not released their code and
we fail to reproduce their results.

7During inference, we only include C rules mined by
AnyBURL, as our model only utilize these rules during rule-
enhanced learning.

Implementation Details. We use Adam (Kingma
and Ba, 2015) as the optimizer to train our model.
We search hyperparameters including batch size,
embedding dimension, learning rate, label smooth-
ing factor, mask probability and warmup steps (see
training details and best hyperparameters in Ap-
pendix A).8 During path sampling and generation,
we also involve inverse edges (inverse relations
are also added to the set R of all relations), thus
each training triple induces two edges of opposite
directions. During evaluation, we perform beam
search to obtain a list of multi-hop paths, along
with log-likelihood as their scores. To prevent the
model from giving higher scores to shorter paths,
we further divide the log-likelihood score by the
length of the path, and obtain a final score for each
path (as shown in Eq. 5). Finally, we sort the target
entities according to the maximum score among all
paths that lead to them. In addition, we consider
adding self-consistency (Wang et al., 2022) into
decoding the target entity. The score for each entity
is the summation of the probability of all generated
paths that lead to it, and we sort the target entities
according to their total probability.

4.2 Results

Table 2 reports the link prediction results on the first
four datasets. We observe that KGE models attain
better results across four datasets, while the gaps
on MRR metric between the best KGE results and
the best multi-hop results are all smaller than 5%.
Hence, it is worth sacrificing a little performance
for interpretability on triple query answering.

8The code of our paper is available at https://github.com/
bys0318/SQUIRE.
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FB15K237 NELL995

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SQUIRE .421 .329 .465 .606 .498 .409 .550 .668
-iter .411 .321 .452 .594 .488 .402 .536 .654
-iter -rule .386 .294 .430 .572 .482 .394 .532 .653

Table 3: Ablation study on our proposed iterative train-
ing strategy and rule-enhanced learning. “-iter” refers to
the model without iterative training, “-iter -rule” refers
to one that further removes rule-enhanced learning.

Among previous RL-based methods, Multi-
HopKG performs superior to others on standard
datasets (left two). DacKGR provides the most pre-
cise inference on sparse datasets (right two), since
it is specially designed to handle sparse setting, yet
it does not perform well in the standard KGs. We
observe that our model outperforms all previous
multi-hop reasoning methods across four datasets
by a large margin on most metrics, regardless of the
sparsity of the graph and SQUIRE does not require
additional design as DacKGR does. Also, adding
self-consistency during decoding can further boost
SQUIRE’s performance for 1%∼2% on all metrics.
Note that we do not add self-consistency in the
following studies.

The performance gain of SQUIRE on sparse KG
is due to the flexibility of our framework, allowing
the model to dynamically complete the graph while
generating the path (a more detailed analysis is in
Sec. 4.6). We further study how the Transformer
model in SQUIRE infers the evidential path by at-
tention visualization. The visualization result sug-
gests that the Transformer model has memorized
the graph during training, and in generation phase
it predicts the next token based on the current po-
sition and adjacent nodes or edges (see results and
detailed analysis in Appendix D). Thus we don’t
need to provide any external information about the
graph to our model during inference.

4.3 Ablation Studies

We present the ablation studies on our proposed
iterative training strategy and rule-enhanced learn-
ing in Table 3. We can see that both techniques are
beneficial to the overall performance of SQUIRE.
As the numbers suggest, the two strategies play
a more important role on FB15K237 than on
NELL995. The reason why SQUIRE benefits more
on FB15K237 lies in the density of the two graphs:
FB15K237 is denser and thus the two strategies can
help distinguish the real evidential path among a
larger set of random paths between h and t, with the

Dataset FB15K237 NELL995 KACC-M FB100K

MINERVA 18.4 11.6 32.4 55.3
MultiHopKG 19.5 12.0 33.3 57.8
SQUIRE 3.2 (6x) 3.5 (4x) 7.5 (4x) 8.5 (7x)

Table 4: Training time (in hour) of RL-based MINERVA,
MultiHopKG and our model on four datasets including
two standard KGs and two larger KGs. All models are
trained on one RTX 3090 GPU.

KACC-M FB100K

MRR H@1 H@10 MRR H@1 H@10

MultiHopKG .576 .492 .713 .652 .601 .744
SQUIRE .578 .515 .702 .655 .595 .766

Table 5: Link prediction results on two larger KGs.

help of mined rules or trained model. Also observe
that SQUIRE with rule-enhanced learning signifi-
cantly outperforms AnyBURL, indicating that our
model is learning from the paths, rather than fitting
the mined rules by AnyBURL.

To obtain a deeper understanding of how the
two strategies help during the training process of
SQUIRE, we compare the convergence rate of the
original model with the two ablated models. The
convergence analysis indicates (see detailed analy-
sis in Appendix B): (a) New aggregated data during
training helps the overall performance of the model;
(b) Rule-guided searching improves the quality of
training paths, resulting in a more stable conver-
gence.

4.4 Efficiency Studies on Larger KG

To provide empirical evidence for the efficiency
of our framework, we report the training time of
SQUIRE and RL-based baselines on two standard
KGs and two larger KGs (Table 4). The link predic-
tion results on two larger KGs are shown in Table 5,
where we select MultiHopKG as the baseline since
it performs consistently well on standard KGs.

We can see that our sequence-to-sequence frame-
work for multi-hop reasoning brings 4x-7x speed-
up across the four datasets. Typically, MultiHopKG
model takes more than a day to train on the two
larger KGs, while our method converges within
several hours while obtaining comparable perfor-
mance. Note that SQUIRE’s performance on two
larger datasets (KACC-M and FB100K) is con-
ducted without iterative training, as we find out
that iterative training on larger datasets may be
time costing. As shown in Table 5, even without
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w/o
missing

Query: (Lycoming County, currency, ?)

Path: Lycoming County contains←−−−− State of Pennsylvania
currency−−−−→ US Dollar

Query: (Gale Sayers, won trophy, ?)

Path: Gale Sayers
play for−−−−→ Bears coach team←−−−−−− Urlacher

won trophy−−−−−−→ Super Bowl

w/
missing

Query: (Vladimir Guerrero, athlete home stadium, ?)

Path: Vladimir Guerrero
play for−−−−→ Anaheim Angels team home stadium−−−−−−−−−−→ Edison Field

Query: (Haifeng Xu, work for, ?)

Path: Haifeng Xu
lead organization−−−−−−−−−→ Chinese National Shooting Team

Table 6: Case study of SQUIRE on link prediction. We show each triple query along with our model’s predicted
evidential path, the correct tail entities are underlined. “w/o missing” indicates the predicted paths contain only
edges in the graph, while “w/ missing” suggests the predicted paths contain valid edges missing from the graph due
to incompleteness (missing edges in bold).

Model MINERVA MultiHopKG SQUIRE

Interpretability score 12.5 15.6 20.8
Reasonable rate (%) 2.1 2.1 7.3

Table 7: Interpretability evaluation results based on
manual annotation. The interpretability score is the
average score multiplied by 100, and the reasonable rate
measures the ratio of reasonable generated paths (paths
that are scored 1).

iterative training, SQUIRE achieves comparable
performance. SQUIRE’s performance can be fur-
ther boosted on larger KGs with iterative training
but with a trade-off for efficiency.

4.5 Interpretability Evaluation

To show SQUIRE can generate interpretable paths
given triple queries, we provide case studies on link
prediction in Table 6. We give four examples of
triple query along with the Hits@1 inferred eviden-
tial path, including paths containing only existing
edges (w/o missing) and paths containing missing
edges (w/ missing). From the listed cases, we see
that SQUIRE can provide reasonable paths, and it
can dynamically complete the path during genera-
tion, thus yielding superior performance on sparse
datasets.

Moreover, we manually annotate the inter-
pretability score for paths generated by our
model and baseline models (MINERVA and Multi-
HopKG). For each triple query, we select the top
generated reasoning path that leads to the correct
tail entity and score it based on whether it is con-
vincing to a human. Following Lv et al. (2021), we
give 1, 0.5 and 0 scores for paths that are reason-
able, partially reasonable and unreasonable respec-
tively (see detailed annotation rules and examples

in Appendix C). We report the evaluation result on
FB15K237 in Table 7. We observe that SQUIRE
achieves higher scores on both metrics 9. This sug-
gests that our model can generate more reasonable
paths and thus lead towards explainable multi-hop
reasoning.

4.6 No-constraint Inference in Sparse Setting

Earlier in the paper, we suggest our performance
gain on sparse graphs comes from no-constraint
generation, where there is no constraint on the
path sequence generated by the model. It gives
the model the flexibility to dynamically complete
the path during generation. Here we show empiri-
cal evidence to support such a statement.

We study the effect of constraint on our model’s
performance on link prediction. Under the con-
straint of a set of edges, we treat a path as a valid
path if it only contains edges in the constraint, and
evaluate on all valid paths that the model gener-
ates. In Fig.4, we report Hits@1 of models trained
on FB15K237 and its subgraph FB15K237-20%10,
under constraints of edges in FB15K237 and edges
in FB15K237-20%.

We see that for the model trained on FB15K237,
out of 34.2% paths that it correctly predicted (with-
out constraint), 85% of them contain only edges
from the trained graph (0.342→ 0.291). This in-
dicates that in a more complete graph, most of the
generated paths exist in the graph. Meanwhile,
for the model trained on FB15K237-20%, only
41% of all Hits@1 paths contain only edges from

9The low reasonable rate (< 10% for all models) is par-
tially due to the non-existence of such reasonable path in the
incomplete KG dataset, as we observed during annotation.

10The comparison is fair, since FB15K237 and FB15K237-
20% share the same valid/test set.
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Figure 4: Models trained on FB15K237 and FB15K237-
20% are evaluated on the same valid set. Different bars
correspond to Hits@1 under different constraints during
generation.

the trained graph (0.183→ 0.075), while 75% of
them contain only edges from FB15K237 (0.183
→ 0.138), a more complete set of edges. In other
words, at least 34% of all Hits@1 paths are inferred
by dynamically completing missing edges along
the path. The results suggest that our model can in-
deed, “walk and complete”, which has been shown
to be effective in sparse setting.

5 Conclusion

This paper introduces SQUIRE, a sequence-to-
sequence framework for efficient and effective
multi-hop knowledge graph reasoning. SQUIRE
treats the triple query and the evidential path as
sequences and utilizes Transformer to learn and
infer in an end-to-end fashion. We propose rule-
enhanced learning and iterative training to further
boost performance. Experiments show that our ap-
proach significantly outperforms previous methods,
on both standard KGs and sparse KGs. Compared
with RL-based methods, SQUIRE has faster con-
vergence, and can be efficiently trained on larger
KGs. Moreover, we show that reasoning paths in-
ferred by SQUIRE are more convincing than those
generated by RL-based baselines.

Limitations

Although our model generates more reasonable
paths, as Table 7 suggests, the interpretability score
and reasonable rate are still low for practical con-
cerns. We recognize this problem as a lack of high-
quality KG datasets for multi-hop reasoning. Since,
as we observed, there is no reasonable path in the
graph for more than 70% of the triple queries in
FB15K237, due to the missing of relevant nodes

and edges in the graph. In future work, it is worth-
while to construct KG datasets that provide more
available reasonable paths to facilitate studies on
interpretable multi-hop KG reasoning.
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A Training Details

Dataset lr ϵ p α epoch beam size

FB15K237 0.0005 0.25 0.15 1/3 30 256
NELL995 0.001 0.25 0.15 1/10 30 512

FB15K237-20% 0.0001 0.25 0.25 1/3 30 256
NELL23K 0.0005 0.25 0.15 1/3 100 512
KACC-M 0.001 0.75 0.15 1/10 20 256
FB100K 0.001 0.55 0.15 1/3 40 256

Table 8: Best hyperparameters on each dataset.

The Transformer Encoder used in our model contains 6 Transformer encoder layers. All layers have
embedding size d of 256, feedforward dimension of 512, 4 attention heads, and dropout of 0.1. We report
the best hyperparameters of SQUIRE on each dataset in Table 8. These hyperparameters include learning
rate lr, label smoothing factor ϵ, token mask probability p, ratio of warmup step α11, number of epochs
and beam size during beam searching.

On all datasets, we set maximum hops of path N = 3, in other words, we only consider evidential path
that contains 3 or fewer hops (since longer paths may not be as meaningful, especially in dense KGs). To
diversify the training set, we sample 6 query-path pairs from each triple. This means that for rule-enhanced
learning, we obtain 6 different paths from 6 logical rules, where rules with higher confidence scores come
first. On larger datasets (KACC-M and FB100K), we turn off iterative training strategy since its time cost
is large.

B Convergence Analysis

0 15000 30000 45000 60000
# steps

0.33

0.36

0.39
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Our
-iter
-iter -rule

Figure 5: Ablation results on convergence rate, on FB15K237 dataset. The curves show the valid set MRR w.r.t the
number of optimization steps. The blue curve represents our original SQUIRE model, while the orange and green
curves represent two ablated models.

We compare the convergence rate of the original model with the two ablated models trained on
FB15K237 dataset. The convergence result is shown in Fig. 5, the curves show the trend in test MRR w.r.t.
the number of optimization steps (all other hyperparameters are kept the same for the three models). We
observe that under iterative training, our model gains a boost on MRR at the start of each iteration, i.e.,
after data aggregation with the current model, as suggested by the trend of the blue curve at the start of Iter
2 and Iter 3 in the figure. This indicates that the newly aggregated data during training helps the model’s

11Warmup for learning rate schedule is vital for training Transformer model (Vaswani et al., 2017), where the learning rate
increase from 0 to its peak during warmup steps and slowly decrease to 0 afterward. α is the ratio of the number of warmup
steps over the total optimization steps.
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Query-path pairs score

Query: (Grammy Award for Best Long Form Music Video, award ceremony, ?)
1.0

Path: Grammy Award for Best Long Form Music Video
category of−−−−−−→ Grammy Award

instance of event−−−−−−−−−→ 51st Grammy Awards

Query: (Concordia University, located in, ?)
0.5

Path: Concordia University contains←−−−−Montreal contains−−−−→ McGill University contains←−−−− Quebec

Query: (Arthur Wellesley, gender, ?)
0

Path: Arthur Wellesley
official position−−−−−−−−→ Prime minister

official position←−−−−−−−− Pierre Trudeau
gender−−−→ Male

Table 9: Several annotation examples for query-path pairs with scores of 1.0, 0.5 and 0. The score is given based on
to what degree the path can convince a human that the final entity along the path is the answer to the query.

r1
born_in

t1
Germany

r2
language

t2
German

eos
<END>

r1
born_in

t1
Germany

r2
language

t2
German

h
Einstein

r
native_language

Attention visualization of Layer 2

r1 t1 r2 t2 eos

r1 t1 r2 t2h r

Attention visualization of Layer 6
born_in Germany language German <END>

born_in Germany language GermanEinstein native_language

1

0

Figure 6: Attention visualization of Transformer encoder layer 2 and 6 in our trained model. Colored lines show the
attention from tokens in the predicted path (top line) to the input query and their previous tokens (bottom line), recall
that on each position, the Transformer encoder can only attend to query tokens and its previous tokens. Thicker line
indicates a higher degree of attention. More straightforwardly, the attention value varies from 0 to 1, with color
changing from green to red.

overall performance. Furthermore, we can see that the convergence curve is more fluctuating without
rule-enhanced learning (green curve). This instability comes from the noise in random sampling, where
many paths in the training set may have been meaningless and misleading. On the other hand, rule-guided
searching improves the quality of the paths in training set thus resulting in a more stable convergence.

C Interpretability Annotation

To evaluate whether the model’s generated multi-hop paths are convincing to a human, we randomly
choose 100 triple queries from test set and obtain the top path generated for each query (h, r) that reaches
the target entity t. Then we score these paths into three grades: reasonable paths are given 1.0, partially
reasonable paths are given 0.5 and unreasonable paths are given 012. Here is how we determine the score
of each path:

1. Reasonable paths are those that can sufficiently deduce the relationship r between h and t.

2. Partially reasonable paths are those that cannot sufficiently deduce the relationship, but they are in
highly positive correlation with the triple fact.

3. Unreasonable paths are those that are irrelevant to the triple fact.

We give several annotation examples in Table 9. The full annotation table can be found here.

D Attention Analysis

Having seen the promising performance of SQUIRE, we want to find out more about how our sequence-
to-sequence model infers the evidential path. To this end, we visualize the attention matrix in each
Transformer encoder layer for the query (Einstein, native_language, ?) along with its evidential
path. The attention visualization of layer 2 and layer 6 are shown in Fig. 6. For each token in the predicted

12Note that if none of the generated paths reach the correct target entity, we also give 0 score for that query.
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path, we observe massive attention paid to its predecessor token, i.e., the previous step along the path. For
example, r1 on h, t1 on r1, r2 on t1 and so on. This explains how SQUIRE generates a valid path without
any supervision about the graph: the model has memorized the edges during training, and in generation
phase it predicts the next step based on the current position and adjacent edges or nodes.

Moreover, comparing the two visualizations, we find that the latter layer aggregates more global
information during self-attention computation. Particularly, in layer 6, there is a moderate level of
attention from r1, r2 to query relation r. This suggests that SQUIRE may distinguish the real evidential
path from other spurious paths by attending to the query.
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