Zihan Niu
2025
iPET: An Interactive Emotional Companion Dialogue System with LLM-Powered Virtual Pet World Simulation
Zheyong Xie
|
Shaosheng Cao
|
Zuozhu Liu
|
Zheyu Ye
|
Zihan Niu
|
Chonggang Lu
|
Tong Xu
|
Enhong Chen
|
Zhe Xu
|
Yao Hu
|
Wei Lu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
The rapid advancement of large language models (LLMs) has unlocked transformative potential for role-playing emotional companion products, enabling systems that support emotional well-being, educational development, and therapeutic applications. However, existing approaches often lack sustained personalization and contextual adaptability, limiting their effectiveness in real-world settings. In this paper, we introduce iPET, an LLM-powered virtual pet agent designed to enhance user engagement through rich, dynamic pet behaviors and interactions tailored to individual preferences. iPET comprises three core components: a dialogue module that instantiates virtual pet agents for emotionally interactive conversations; a memory module that stores and synthesizes records of both agent and user experiences; and a world simulation module that generates diverse, preference-driven pet behaviors guided by high-level reflections. Deployed for over 200 days in a real-world, non-commercial product, iPET has served millions of users – providing emotional support to psychologically distressed individuals and demonstrating its effectiveness in practical applications.
2024
Retrieve-Plan-Generation: An Iterative Planning and Answering Framework for Knowledge-Intensive LLM Generation
Yuanjie Lyu
|
Zihan Niu
|
Zheyong Xie
|
Chao Zhang
|
Tong Xu
|
Yang Wang
|
Enhong Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Despite the significant progress of large language models (LLMs) in various tasks, they often produce factual errors due to their limited internal knowledge. Retrieval-Augmented Generation (RAG), which enhances LLMs with external knowledge sources, offers a promising solution. However, these methods can be misled by irrelevant paragraphs in retrieved documents. Due to the inherent uncertainty in LLM generation, inputting the entire document may introduce off-topic information, causing the model to deviate from the central topic and affecting the relevance of the generated content. To address these issues, we propose the Retrieve-Plan-Generation (RPG) framework. RPG generates plan tokens to guide subsequent generation in the plan stage. In the answer stage, the model selects relevant fine-grained paragraphs based on the plan and uses them for further answer generation. This plan-answer process is repeated iteratively until completion, enhancing generation relevance by focusing on specific topics. To implement this framework efficiently, we utilize a simple but effective multi-task prompt-tuning method, enabling the existing LLMs to handle both planning and answering. We comprehensively compare RPG with baselines across 5 knowledge-intensive generation tasks, demonstrating the effectiveness of our approach.