Zicheng Liu


2025

pdf bib
Taming LLMs with Gradient Grouping
Siyuan Li | Juanxi Tian | Zedong Wang | Xin Jin | Zicheng Liu | Wentao Zhang | Dan Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with parameter-efficient fine-tuning (PEFT) techniques. This work introduces Scaling with Gradient Grouping (SGG), an optimizer wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling. SGG first groups gradient statistics in each layer into clusters and then applies cluster-specific scaling to calibrate learning rates for each parameter, thus imposing collective group-wise constraints while maintaining precise per-parameter adaptation. Experiments on diverse (M)LLM benchmarks show that SGG integrates seamlessly with existing optimizers, and offers consistent gains and faster convergence over baselines, with various model sizes. Its stability across varying batch sizes and learning rates establishes SGG as a robust choice for LLM optimization.

pdf bib
Self-Taught Agentic Long Context Understanding
Yufan Zhuang | Xiaodong Yu | Jialian Wu | Ximeng Sun | Ze Wang | Jiang Liu | Yusheng Su | Jingbo Shang | Zicheng Liu | Emad Barsoum
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Answering complex, long-context questions remains a major challenge for large language models (LLMs) as it requires effective question clarifications and context retrieval. We propose Agentic Long-Context Understanding (AgenticLU), a framework designed to enhance an LLM’s understanding of such queries by integrating targeted self-clarification with contextual grounding within an agentic workflow. At the core of AgenticLU is Chain-of-Clarifications (CoC), where models refine their understanding through self-generated clarification questions and corresponding contextual groundings. By scaling inference as a tree search where each node represents a CoC step, we achieve 97.8% answer recall on NarrativeQA with a search depth of up to three and a branching factor of eight. To amortize the high cost of this search process to training, we leverage the preference pairs for each step obtained by the CoC workflow and perform two-stage model finetuning: (1) supervised finetuning to learn effective decomposition strategies, and (2) direct preference optimization to enhance reasoning quality. This enables AgenticLU models to generate clarifications and retrieve relevant context effectively and efficiently in a single inference pass. Extensive experiments across seven long-context tasks demonstrate that AgenticLU significantly outperforms state-of-the-art prompting methods and specialized long-context LLMs, achieving robust multi-hop reasoning while sustaining consistent performance as context length grows.

pdf bib
TaDA: Training-free recipe for Decoding with Adaptive KV Cache Compression and Mean-centering
Vinay Joshi | Pratik Prabhanjan Brahma | Zicheng Liu | Emad Barsoum
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

The key-value (KV) cache in transformer models is a critical component for efficient decoding or inference, yet its memory demands scale poorly with sequence length, posing a major challenge for scalable deployment of large language models. Among several approaches to KV cache compression, quantization of key and value activations has been widely explored. Most KV cache quantization methods still need to manage sparse and noncontiguous outliers separately. To address this, we introduce TaDA, a training-free recipe for KV cache compression with quantization precision that adapts to error sensitivity across layers and a mean centering to eliminate separate outlier handling. Our approach yields substantial accuracy improvements for multiple models supporting various context lengths. Moreover, our approach does not need to separately manage outlier elements—a persistent hurdle in most traditional quantization methods. Experiments on standard benchmarks demonstrate that our technique reduces KV cache memory footprint to 27% of the original 16-bit baseline while achieving comparable accuracy. Our method paves the way for scalable and high-performance reasoning in language models by potentially enabling inference for longer context length models, reasoning models, and longer chain of thoughts.

2023

pdf bib
NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation
Shengming Yin | Chenfei Wu | Huan Yang | Jianfeng Wang | Xiaodong Wang | Minheng Ni | Zhengyuan Yang | Linjie Li | Shuguang Liu | Fan Yang | Jianlong Fu | Ming Gong | Lijuan Wang | Zicheng Liu | Houqiang Li | Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we propose NUWA-XL, a novel Diffusion over Diffusion architecture for eXtremely Long video generation. Most current work generates long videos segment by segment sequentially, which normally leads to the gap between training on short videos and inferring long videos, and the sequential generation is inefficient. Instead, our approach adopts a “coarse-to-fine” process, in which the video can be generated in parallel at the same granularity. A global diffusion model is applied to generate the keyframes across the entire time range, and then local diffusion models recursively fill in the content between nearby frames. This simple yet effective strategy allows us to directly train on long videos (3376 frames) to reduce the training-inference gap and makes it possible to generate all segments in parallel. To evaluate our model, we build FlintstonesHD dataset, a new benchmark for long video generation. Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s (by 94.26%) at the same hardware setting when generating 1024 frames. The homepage link is [NUWA-XL](https://msra-nuwa.azurewebsites.net)