Zichen Ding


2025

pdf bib
OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
Qiushi Sun | Kanzhi Cheng | Zichen Ding | Chuanyang Jin | Yian Wang | Fangzhi Xu | Zhenyu Wu | Chengyou Jia | Liheng Chen | Zhoumianze Liu | Ben Kao | Guohao Li | Junxian He | Yu Qiao | Zhiyong Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, the development of such agents faces a critical bottleneck: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Further, these approaches exhibit significant gaps between the generated data and online environments, alongside limited data diversity. To address this issue, we introduce OS-Genesis, a novel GUI data synthesis pipeline that overcomes the challenges above. Unlike prior methods that rely on preset tasks, OS-Genesis reverse engineers the GUI trajectory construction process. Agents first perceive environments and perform step-level interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis’s cost-effectiveness and its superior data quality and diversity compared to existing synthesis methods.

pdf bib
Let’s Be Self-generated via Step by Step: A Curriculum Learning Approach to Automated Reasoning with Large Language Models
Kangyang Luo | Zichen Ding | Zhenmin Weng | Lingfeng Qiao | Meng Zhao | Xiang Li | Di Yin | Jinlong Shu
Findings of the Association for Computational Linguistics: ACL 2025

While Chain of Thought (CoT) prompting approaches have significantly consolidated the reasoning capabilities of large language models (LLMs), they still face limitations that require extensive human effort or have performance needs to be improved. Existing endeavors have focused on bridging these gaps; however, these approaches either hinge on external data and cannot completely eliminate manual effort, or they fall short in effectively directing LLMs to generate high-quality exemplary prompts. To address the said pitfalls, we propose a novel prompt approach for automatic reasoning named LBS3, inspired by curriculum learning which better reflects human learning habits. Specifically, LBS3 initially steers LLMs to recall easy-to-hard proxy queries that are pertinent to the target query. Following this, it invokes a progressive strategy that utilizes exemplary prompts stemmed from easy-proxy queries to direct LLMs in solving hard-proxy queries, enabling the high-quality of the proxy solutions. Finally, our extensive experiments in various reasoning-intensive tasks with varying open- and closed-source LLMs show that LBS3 achieves strongly competitive performance compared to the SOTA baselines.

2024

pdf bib
Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
Jianxiang Yu | Zichen Ding | Jiaqi Tan | Kangyang Luo | Zhenmin Weng | Chenghua Gong | Long Zeng | RenJing Cui | Chengcheng Han | Qiushi Sun | Zhiyong Wu | Yunshi Lan | Xiang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.