Zhiheng Xi


2025

pdf bib
ToolHop: A Query-Driven Benchmark for Evaluating Large Language Models in Multi-Hop Tool Use
Junjie Ye | Zhengyin Du | Xuesong Yao | Weijian Lin | Yufei Xu | Zehui Chen | Zaiyuan Wang | Sining Zhu | Zhiheng Xi | Siyu Yuan | Tao Gui | Qi Zhang | Xuanjing Huang | Jiecao Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Effective evaluation of multi-hop tool use is critical for analyzing the understanding, reasoning, and function-calling capabilities of large language models (LLMs). However, progress has been hindered by a lack of reliable evaluation datasets. To address this, we present ToolHop, a dataset comprising 995 user queries and 3,912 associated tools, specifically designed for rigorous evaluation of multi-hop tool use. ToolHop ensures diverse queries, meaningful interdependencies, locally executable tools, detailed feedback, and verifiable answers through a novel query-driven data construction approach that includes tool creation, document refinement, and code generation. We evaluate 14 LLMs across five model families (i.e., LLaMA3.1, Qwen2.5, Gemini1.5, Claude3.5, and GPT), uncovering significant challenges in handling multi-hop tool-use scenarios. The leading model, GPT-4o, achieves an accuracy of 49.04%, underscoring substantial room for improvement. Further analysis reveals variations in tool-use strategies for various families, offering actionable insights to guide the development of more effective approaches. Code and data can be found in https://huggingface.co/datasets/bytedance-research/ToolHop.

pdf bib
CritiQ: Mining Data Quality Criteria from Human Preferences
Honglin Guo | Kai Lv | Qipeng Guo | Tianyi Liang | Zhiheng Xi | Demin Song | Qiuyinzhe Zhang | Yu Sun | Kai Chen | Xipeng Qiu | Tao Gui
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, orcareful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only ~30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier-based methods, verbal criteria are more interpretable and have greater reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.2 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting.

pdf bib
AgentGym: Evaluating and Training Large Language Model-based Agents across Diverse Environments
Zhiheng Xi | Yiwen Ding | Wenxiang Chen | Boyang Hong | Honglin Guo | Junzhe Wang | Xin Guo | Dingwen Yang | Chenyang Liao | Wei He | Songyang Gao | Lu Chen | Rui Zheng | Yicheng Zou | Tao Gui | Qi Zhang | Xipeng Qiu | Xuanjing Huang | Zuxuan Wu | Yu-Gang Jiang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have emerged as a promising foundation to build generally-capable agents (LLM-based agents) that can handle multi-turn decision-making tasks across various environments. However, the community lacks a unified interactive framework that covers diverse environments for comprehensive evaluation of agents, and enables exploration and learning for their self-improvement. To address this, we propose AgentGym, a framework featuring 7 real-world scenarios, 14 environments, and 89 tasks for unified, real-time, and concurrent agent interaction. We construct expanded instruction set, high-quality trajectories, and comprehensive benchmarking suite for developing LLM-based agents. Moreover, AgentGym supports interactive exploration and learning for agents through multi-turn interactions and real-time feedback. Based on AgentGym, we take the initial step to develop LLM-based agents that can handle diverse tasks via methods like self-improvement or reinforcement learning. Experimental results show that the trained agents can achieve results comparable to commercial models. We hope our work can help the community develop more advanced LLM-based agents. We release the code, dataset, benchmark, and checkpoints at https://agentgym.github.io/.

pdf bib
Multi-Programming Language Sandbox for LLMs
Shihan Dou | Jiazheng Zhang | Jianxiang Zang | Yunbo Tao | Weikang Zhou | Haoxiang Jia | Shichun Liu | Yuming Yang | Shenxi Wu | Zhiheng Xi | Muling Wu | Rui Zheng | Changze Lv | Limao Xiong | Shaoqing Zhang | Lin Zhang | Wenyu Zhan | Rongxiang Weng | Jingang Wang | Xunliang Cai | Yueming Wu | Ming Wen | Yixin Cao | Tao Gui | Xipeng Qiu | Qi Zhang | Xuanjing Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We introduce MPLSandbox, an out-of-the-box multi-programming language sandbox designed to provide unified and comprehensive feedback from compiler and analysis tools for Large Language Models (LLMs). It can automatically identify the programming language of the code, compiling and executing it within an isolated sub-sandbox to ensure safety and stability. In addition, MPLSandbox integrates both traditional and LLM-based code analysis tools, providing a comprehensive analysis of generated code. It also can be effortlessly integrated into the training and deployment of LLMs to improve the quality and correctness of generated code. It also helps researchers streamline their workflows for various LLM-based code-related tasks, reducing the development cost. To validate the effectiveness of MPLSandbox, we conduct extensive experiments by integrating it into several training and deployment scenarios, and employing it to optimize workflows for a wide range of downstream code tasks. Our goal is to enhance researcher productivity on LLM-based code tasks by simplifying and automating workflows through delegation to MPLSandbox.

pdf bib
PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Ming Zhang | Yuhui Wang | Yujiong Shen | Tingyi Yang | Changhao Jiang | Yilong Wu | Shihan Dou | Qinhao Chen | Zhiheng Xi | Zhihao Zhang | Yi Dong | Zhen Wang | Zhihui Fei | Mingyang Wan | Tao Liang | Guojun Ma | Qi Zhang | Tao Gui | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2025

Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct **P**rocess **F**low **Dial**ogue (**PFDial**) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models’ performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.

pdf bib
Better Process Supervision with Bi-directional Rewarding Signals
Wenxiang Chen | Wei He | Zhiheng Xi | Honglin Guo | Boyang Hong | Jiazheng Zhang | Nijun Li | Tao Gui | Yun Li | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2025

Process supervision, i.e., evaluating each step, is critical for complex large language model (LLM) reasoning and test-time searching with increased inference compute. Existing approaches, represented by process reward models (PRMs), primarily focus on rewarding signals up to the current step, exhibiting a one-directional nature and lacking a mechanism to model the distance to the final target. To address this problem, we draw inspiration from the A* algorithm, which states that an effective supervisory signal should simultaneously consider the incurred cost and the estimated cost for reaching the target. Building on this key insight, we introduce BiRM, a novel process supervision model that not only evaluates the correctness of previous steps but also models the probability of future success. We conduct extensive experiments on mathematical reasoning tasks and demonstrate that BiRM provides more precise evaluations of LLM reasoning steps, achieving an improvement of 3.1% on Gaokao2023 over PRM under the Best-of-N sampling method. Besides, in search-based strategies, BiRM provides more comprehensive guidance and outperforms ORM by 5.0% and PRM by 3.8% respectively on MATH-500.

pdf bib
Are LLMs Rational Investors? A Study on the Financial Bias in LLMs
Yuhang Zhou | Yuchen Ni | Zhiheng Xi | Zhangyue Yin | Yu He | Gan Yunhui | Xiang Liu | Zhang Jian | Sen Liu | Xipeng Qiu | Yixin Cao | Guangnan Ye | Hongfeng Chai
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) excel in natural language generation but also exhibit biases, particularly in gender, race, and religion, which can be amplified with widespread use. However, research on biases in specific domains, such as finance, remains limited. To address this gap, we conducted a comprehensive evaluation of 23 leading LLMs and found varying degrees of financial bias, including more pronounced biases in financial-specific LLMs (FinLLMs). In response, we propose the Financial Bias Indicators (FBI) framework, which includes components like the Bias Unveiler, Bias Detective, Bias Tracker, and Bias Antidote, designed to identify, detect, analyze, and mitigate financial biases. Our analysis explores the root causes of these biases and introduces a debiasing method based on financial causal knowledge, alongside three other debiasing techniques. For the most biased model, we successfully reduced bias by 68% according to key metrics. This study advances our understanding of LLM biases in finance and highlights the need for greater scrutiny in their application within this critical domain.

pdf bib
Mitigating Tail Narrowing in LLM Self-Improvement via Socratic-Guided Sampling
Yiwen Ding | Zhiheng Xi | Wei He | Lizhuoyuan Lizhuoyuan | Yitao Zhai | Shi Xiaowei | Xunliang Cai | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Self-improvement methods enable large language models (LLMs) to generate solutions themselves and iteratively train on filtered, high-quality rationales. This process proves effective and reduces the reliance on human supervision in LLMs’ reasoning, but the performance soon plateaus. We delve into the process and find that models tend to over-sample on easy queries and under-sample on queries they have yet to master. As iterations proceed, this imbalance in sampling is exacerbated, leading to a long-tail distribution where solutions to difficult queries almost diminish. This phenomenon limits the performance gain of self-improving models. A straightforward solution is brute-force sampling to balance the distribution, which significantly raises computational costs. In this paper, we introduce Guided Self-Improvement (GSI), a strategy aimed at improving the efficiency of sampling challenging heavy-tailed data. It leverages Socratic-style guidance signals to help LLM reasoning with complex queries, reducing the exploration effort and minimizing computational overhead. Experiments on four models across diverse mathematical tasks show that GSI strikes a balance between performance and efficiency, while also being effective on held-out tasks.

2024

pdf bib
LoRAMoE: Alleviating World Knowledge Forgetting in Large Language Models via MoE-Style Plugin
Shihan Dou | Enyu Zhou | Yan Liu | Songyang Gao | Wei Shen | Limao Xiong | Yuhao Zhou | Xiao Wang | Zhiheng Xi | Xiaoran Fan | Shiliang Pu | Jiang Zhu | Rui Zheng | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Supervised fine-tuning (SFT) is a crucial step for large language models (LLMs), enabling them to align with human instructions and enhance their capabilities in downstream tasks. Substantially increasing instruction data is a direct solution to align the model with a broader range of downstream tasks or notably improve its performance on a specific task. However, we find that large-scale increases in instruction data can damage the world knowledge previously stored in LLMs. To address this challenge, we propose LoRAMoE, a novelty framework that introduces several low-rank adapters (LoRA) and integrates them by using a router network, like a plugin version of Mixture of Experts (MoE). It freezes the backbone model and forces a portion of LoRAs to focus on leveraging world knowledge to solve downstream tasks, to alleviate world knowledge forgetting. Experimental results show that, as the instruction data increases, LoRAMoE can significantly improve the ability to process downstream tasks, while maintaining the world knowledge stored in the LLM. Our code is available at https://github.com/Ablustrund/LoRAMoE.

pdf bib
StepCoder: Improving Code Generation with Reinforcement Learning from Compiler Feedback
Shihan Dou | Yan Liu | Haoxiang Jia | Enyu Zhou | Limao Xiong | Junjie Shan | Caishuang Huang | Xiao Wang | Xiaoran Fan | Zhiheng Xi | Yuhao Zhou | Tao Ji | Rui Zheng | Qi Zhang | Tao Gui | Xuanjing Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The advancement of large language models (LLMs) has significantly propelled the field of code generation. Previous work integrated reinforcement learning (RL) with compiler feedback for exploring the output space of LLMs to enhance code generation quality. However, the lengthy code generated by LLMs in response to complex human requirements makes RL exploration a challenge. Also, since the unit tests may not cover the complicated code, optimizing LLMs by using these unexecuted code snippets is ineffective. To tackle these challenges, we introduce StepCoder, a novel RL framework for code generation, consisting of two main components: CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks, while FGO only optimizes the model by masking the unexecuted code segments to provide Fine-Grained Optimization. In addition, we furthermore construct the APPS+ dataset for RL training, which is manually verified to ensure the correctness of unit tests. Experimental results show that our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks. The code and dataset will be made available upon publication.

pdf bib
Improving Discriminative Capability of Reward Models in RLHF Using Contrastive Learning
Lu Chen | Rui Zheng | Binghai Wang | Senjie Jin | Caishuang Huang | Junjie Ye | Zhihao Zhang | Yuhao Zhou | Zhiheng Xi | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Reinforcement Learning from Human Feedback (RLHF) is a crucial approach to aligning language models with human values and intentions. A fundamental challenge in this method lies in ensuring that the reward model accurately understands and evaluates human preferences. Current methods rely on ranking losses to teach the reward model to assess preferences, but they are susceptible to noise and ambiguous data, often failing to deeply understand human intentions. To address this issue, we introduce contrastive learning into the reward modeling process. In addition to supervised ranking loss, we introduce an unsupervised contrastive loss to enable the reward model to fully capture the distinctions in contrastive data. Experimental results demonstrate that the proposed contrastive learning-based reward modeling method effectively enhances the generalization of the reward model, stabilizes the reinforcement learning training process, and improves the final alignment with human preferences.

pdf bib
Self-Demos: Eliciting Out-of-Demonstration Generalizability in Large Language Models
Wei He | Shichun Liu | Jun Zhao | Yiwen Ding | Yi Lu | Zhiheng Xi | Tao Gui | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models (LLMs) have shown promising abilities of in-context learning (ICL), adapting swiftly to new tasks with only few-shot demonstrations. However, current few-shot methods heavily depend on high-quality, query-specific demos, which are often lacking. When faced with out-of-demonstration (OOD) queries, methods that rely on hand-crafted demos or external retrievers might fail. To bridge the gap between limited demos and OOD queries, we propose Self-Demos, a novel prompting method that elicits the inherent generalizability in LLMs by query-aware demo generation. The generated demos strategically interpolate between existing demos and the given query, transforming the query from OOD to ID. To evaluate the effectiveness of our approach, we manually constructed OOD-Toolset, a dataset in the tool-using scenario with over 300 real-world APIs and 1000 instances, each consisting of three tool-use cases as demos and an OOD query. Thorough experiments on our dataset and two public math benchmarks have shown that our method can outperform state-of-the-art baselines in the OOD setting. Moreover, we conduct a range of analyses to validate Self-Demos’s generalization and provide more insights.

pdf bib
Reward Modeling Requires Automatic Adjustment Based on Data Quality
Binghai Wang | Rui Zheng | Lu Chen | Zhiheng Xi | Wei Shen | Yuhao Zhou | Dong Yan | Tao Gui | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2024

In Reinforcement Learning from Human Feedback (RLHF), the reward model plays a crucial role in aligning language model outputs with human values. The human preference data used to train the reward model consists of a prompt and a response pair, with humans annotating which response better aligns with human value preferences. Due to the complexity and subjectivity of the annotation task, multiple organizations including OpenAI and Anthropic report significant noise in the human preference datasets, leading to instability and deviation in reward model training from human values. We discover that the difference in scores assigned to response pairs by the reward model effectively indicates the quality of data, and data of varying qualities show significant distinctions in reward model training. We introduce a method that automatically adjusts reward modeling based on data quality, reducing the impact of noise and making full use of dataset. Experiments on multiple human preference datasets demonstrate that our method stabilizes reward model training and significantly enhances the alignment performance of RLHF.

pdf bib
Inverse-Q*: Token Level Reinforcement Learning for Aligning Large Language Models Without Preference Data
Han Xia | Songyang Gao | Qiming Ge | Zhiheng Xi | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2024

Reinforcement Learning from Human Feedback (RLHF) has proven effective in aligning large language models with human intentions, yet it often relies on complex methodologies like Proximal Policy Optimization (PPO) that require extensive hyper-parameter tuning and present challenges in sample efficiency and stability. In this paper, we introduce Inverse-Q*, an innovative framework that transcends traditional RL methods by optimizing token-level reinforcement learning without the need for additional reward or value models. Inverse-Q* leverages direct preference optimization techniques but extends them by estimating the conditionally optimal policy directly from the model’s responses, facilitating more granular and flexible policy shaping. Our approach reduces reliance on human annotation and external supervision, making it especially suitable for low-resource settings. We present extensive experimental results demonstrating that Inverse-Q* not only matches but potentially exceeds the effectiveness of PPO in terms of convergence speed and the alignment of model responses with human preferences. Our findings suggest that Inverse-Q* offers a practical and robust alternative to conventional RLHF approaches, paving the way for more efficient and adaptable model training approaches.

pdf bib
ORTicket: Let One Robust BERT Ticket Transfer across Different Tasks
Yuhao Zhou | Wenxiang Chen | Rui Zheng | Zhiheng Xi | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Pretrained language models can be applied for various downstream tasks but are susceptible to subtle perturbations. Most adversarial defense methods often introduce adversarial training during the fine-tuning phase to enhance empirical robustness. However, the repeated execution of adversarial training hinders training efficiency when transitioning to different tasks. In this paper, we explore the transferability of robustness within subnetworks and leverage this insight to introduce a novel adversarial defense method ORTicket, eliminating the need for separate adversarial training across diverse downstream tasks. Specifically, (i) pruning the full model using the MLM task (the same task employed for BERT pretraining) yields a task-agnostic robust subnetwork(i.e., winning ticket in Lottery Ticket Hypothesis); and (ii) fine-tuning this subnetwork for downstream tasks. Extensive experiments demonstrate that our approach achieves comparable robustness to other defense methods while retaining the efficiency of traditional fine-tuning.This also confirms the significance of selecting MLM task for identifying the transferable robust subnetwork. Furthermore, our method is orthogonal to other adversarial training approaches, indicating the potential for further enhancement of model robustness.

pdf bib
RoCoIns: Enhancing Robustness of Large Language Models through Code-Style Instructions
Yuansen Zhang | Xiao Wang | Zhiheng Xi | Han Xia | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs for natural language understanding (NLU) tasks when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language, for example, with gpt-3.5-turbo on average, our method achieves an improvement of 5.68% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).

pdf bib
Subspace Defense: Discarding Adversarial Perturbations by Learning a Subspace for Clean Signals
Rui Zheng | Yuhao Zhou | Zhiheng Xi | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Deep neural networks (DNNs) are notoriously vulnerable to adversarial attacks that place carefully crafted perturbations on normal examples to fool DNNs. To better understand such attacks, a characterization of the features carried by adversarial examples is needed. In this paper, we tackle this challenge by inspecting the subspaces of sample features through spectral analysis. We first empirically show that the features of either clean signals or adversarial perturbations are redundant and span in low-dimensional linear subspaces respectively with minimal overlap, and the classical low-dimensional subspace projection can suppress perturbation features out of the subspace of clean signals. This makes it possible for DNNs to learn a subspace where only features of clean signals exist while those of perturbations are discarded, which can facilitate the distinction of adversarial examples. To prevent the residual perturbations that is inevitable in subspace learning, we propose an independence criterion to disentangle clean signals from perturbations. Experimental results show that the proposed strategy enables the model to inherently suppress adversaries, which not only boosts model robustness but also motivates new directions of effective adversarial defense.

2023

pdf bib
Characterizing the Impacts of Instances on Robustness
Rui Zheng | Zhiheng Xi | Qin Liu | Wenbin Lai | Tao Gui | Qi Zhang | Xuanjing Huang | Jin Ma | Ying Shan | Weifeng Ge
Findings of the Association for Computational Linguistics: ACL 2023

Building robust deep neural networks (DNNs) against adversarial attacks is an important but challenging task. Previous defense approaches mainly focus on developing new model structures or training algorithms, but they do little to tap the potential of training instances, especially instances with robust patterns carring innate robustness. In this paper, we show that robust and non-robust instances in the training dataset, though are both important for test performance, have contrary impacts on robustness, which makes it possible to build a highly robust model by leveraging the training dataset in a more effective way. We propose a new method that can distinguish between robust instances from non-robust ones according to the model’s sensitivity to perturbations on individual instances during training. Surprisingly, we find that the model under standard training easily overfits the robust instances by relying on their simple patterns before the model completely learns their robust features. Finally, we propose a new mitigation algorithm to further release the potential of robust instances. Experimental results show that proper use of robust instances in the original dataset is a new line to achieve highly robust models.

pdf bib
Connectivity Patterns are Task Embeddings
Zhiheng Xi | Rui Zheng | Yuansen Zhang | Xuanjing Huang | Zhongyu Wei | Minlong Peng | Mingming Sun | Qi Zhang | Tao Gui
Findings of the Association for Computational Linguistics: ACL 2023

Task embeddings are task-specific vectors designed to construct a semantic space of tasks, which can be used to predict the most transferable source task for a given target task via the similarity between task embeddings. However, existing methods use optimized parameters and representations as task embeddings, resulting in substantial computational complexity and storage requirements. In this work, we draw inspiration from the operating mechanism of deep neural networks (DNNs) and biological brains, where neuronal activations are sparse and task-specific, and we use the connectivity patterns of neurons as a unique identifier associated with the task. The proposed method learns to assign importance masks for sub-structures of DNNs, and accordingly indicate the task-specific connectivity patterns. In addition to the storage advantages brought by the binary masking mechanism and structured sparsity, the early-bird nature of the sparse optimization process can deliver an efficient computation advantage. Experiments show that our method consistently outperforms other baselines in predicting inter-task transferability across data regimes and transfer settings, while keeping high efficiency in computation and storage.

pdf bib
RealBehavior: A Framework for Faithfully Characterizing Foundation Models’ Human-like Behavior Mechanisms
Enyu Zhou | Rui Zheng | Zhiheng Xi | Songyang Gao | Xiaoran Fan | Zichu Fei | Jingting Ye | Tao Gui | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2023

Reports of human-like behaviors in foundation models are growing, with psychological theories providing enduring tools to investigate these behaviors. However, current research tends to directly apply these human-oriented tools without verifying the faithfulness of their outcomes. In this paper, we introduce a framework, RealBehavior, which is designed to characterize the humanoid behaviors of models faithfully. Beyond simply measuring behaviors, our framework assesses the faithfulness of results based on reproducibility, internal and external consistency, and generalizability. Our findings suggest that a simple application of psychological tools cannot faithfully characterize all human-like behaviors. Moreover, we discuss the impacts of aligning models with human and social values, arguing for the necessity of diversifying alignment objectives to prevent the creation of models with restricted characteristics.

pdf bib
Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement
Zhiheng Xi | Senjie Jin | Yuhao Zhou | Rui Zheng | Songyang Gao | Jia Liu | Tao Gui | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2023

To enhance the multi-step reasoning capabilities of large language models, researchers have extensively explored prompting methods, notably the Chain-of-Thought (CoT) method which explicitly elicits human-like rationales. However, they have inadvertently overlooked the potential of enhancing model reasoning performance by formulating higher-quality problems. In this work, we start from the problem side and propose Self-Polish (SP), a novel method that facilitates the model’s reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable. We also explore several automatic prompting varients and propose the Self-Polish prompt bank for the community. SP is orthogonal to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement. Thorough experiments show that the proposed method attains notable and consistent effectiveness on five reasoning benchmarks across different models. Furthermore, our method also showcases impressive performance on robustness evaluation. Codes and prompts are available at https://github.com/WooooDyy/Self-Polish.

2022

pdf bib
Efficient Adversarial Training with Robust Early-Bird Tickets
Zhiheng Xi | Rui Zheng | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Adversarial training is one of the most powerful methods to improve the robustness of pre-trained language models (PLMs). However, this approach is typically more expensive than traditional fine-tuning because of the necessity to generate adversarial examples via gradient descent. Delving into the optimization process of adversarial training, we find that robust connectivity patterns emerge in the early training phase (typically 0.15~0.3 epochs), far before parameters converge. Inspired by this finding, we dig out robust early-bird tickets (i.e., subnetworks) to develop an efficient adversarial training method: (1) searching for robust tickets with structured sparsity in the early stage; (2) fine-tuning robust tickets in the remaining time. To extract the robust tickets as early as possible, we design a ticket convergence metric to automatically terminate the searching process. Experiments show that the proposed efficient adversarial training method can achieve up to 7× ∼ 13 × training speedups while maintaining comparable or even better robustness compared to the most competitive state-of-the-art adversarial training methods.
Search
Co-authors
Venues
Fix author