Zhengzhang Chen


2025

pdf bib
Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery
ChengAo Shen | Zhengzhang Chen | Dongsheng Luo | Dongkuan Xu | Haifeng Chen | Jingchao Ni
Findings of the Association for Computational Linguistics: ACL 2025

Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multi-modal data. To bridge the gap, we introduce MatMCD, a multi-agent system powered by tool-augmented LLMs. MatMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery.

pdf bib
MixLLM: Dynamic Routing in Mixed Large Language Models
Xinyuan Wang | Yanchi Liu | Wei Cheng | Xujiang Zhao | Zhengzhang Chen | Wenchao Yu | Yanjie Fu | Haifeng Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) exhibit potential artificial generic intelligence recently, however, their usage is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM routing aims to identify the most suitable model for each query in the stream to maximize response quality and minimize cost and latency. However, the challenges involve: (1) dynamic trade-offs among quality, cost, and latency; (2) enabling continual learning in deployed systems; and (3) navigating a varying (e.g., new LLM addition or old LLM removal) set of LLM candidates over time. To bridge these gaps, we develop MixLLM, a dynamic contextual-bandit-based routing system for query-LLM assignment. Specifically, we first leverage query tags to enhance query embeddings for the routing task. Next, we design lightweight prediction models to estimate the response qualities and costs of queries over LLMs. We then devise a meta-decision maker to choose the query-LLM assignments to best tradeoff response quality, cost, and latency. Finally, the system benefits from continual training, allowing it to adapt to evolving queries and user feedback over time. Our extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost, and latency (97.25% of GPT-4’s quality at 24.18% of the cost under the time constraint).