Zhengze Zhang
2025
daDPO: Distribution-Aware DPO for Distilling Conversational Abilities
Zhengze Zhang
|
Shiqi Wang
|
Yiqun Shen
|
Simin Guo
|
Dahua Lin
|
Xiaoliang Wang
|
Nguyen Cam-Tu
|
Fei Tan
Findings of the Association for Computational Linguistics: ACL 2025
Large language models (LLMs) have demonstrated exceptional performance across various applications, but their conversational abilities decline sharply as model size decreases, presenting a barrier to their deployment in resource-constrained environments. Knowledge distillation (KD) with Direct Preference Optimization (DPO) has emerged as a promising approach to enhance the conversational abilities of smaller models using a larger teacher model. However, current methods primarily focus on “black-box” KD, which only uses the teacher’s responses, overlooking the rich distributional information within the teacher’s probability distribution. This paper addresses this gap by introducing daDPO (Distillation-Aware DPO), a novel framework that integrates the teacher’s distributional information into DPO distillation while preserving theoretical guarantees. Our framework offers a unified objective that enhances both preference optimization and distribution-based distillation. We provide rigorous theoretical analysis and empirical validation, showing that daDPO outperforms existing methods in restoring performance for pruned models and enhancing smaller models within the same LLM family. Notably, in in-domain evaluation, our method enables a 20% pruned Vicuna1.5-7B to achieve near-teacher performance (-7.3% preference rate), and allows Qwen2.5-1.5B to occasionally outperform its 7b teacher model (14.0% win rate).
2024
Reward Difference Optimization For Sample Reweighting In Offline RLHF
Shiqi Wang
|
Zhengze Zhang
|
Rui Zhao
|
Fei Tan
|
Nguyen Cam-Tu
Findings of the Association for Computational Linguistics: EMNLP 2024
With the wide deployment of Large Language Models (LLMs), aligning LLMs with human values becomes increasingly important. Although Reinforcement Learning with Human Feedback (RLHF) proves effective, it is complicated and highly resource-intensive. As such, offline RLHF has been introduced as an alternative solution, which directly optimizes LLMs with ranking losses on a fixed preference dataset. Current offline RLHF only captures the ordering relationship between responses, overlooking the crucial aspect of “how much” one is preferred over the others. To address this issue, we propose a simple yet effective solution based on reward difference prediction. Specifically, we introduce reward difference coefficients to reweigh sample pairs in offline RLHF. We then propose a difference model that considers rich interactions between a pair of responses for predicting these difference coefficients. Experiments with 7B LLMs on the HH and TL;DR dataset verify the effectiveness of our method in both automatic metrics and human evaluation, highlighting its potential for aligning LLMs with human values.