Zhengdong Yang


2025

pdf bib
When Large Language Models Meet Speech: A Survey on Integration Approaches
Zhengdong Yang | Shuichiro Shimizu | Yahan Yu | Chenhui Chu
Findings of the Association for Computational Linguistics: ACL 2025

Recent advancements in large language models (LLMs) have spurred interest in expanding their application beyond text-based tasks. A large number of studies have explored integrating other modalities with LLMs, notably speech modality, which is naturally related to text. This paper surveys the integration of speech with LLMs, categorizing the methodologies into three primary approaches: text-based, latent-representation-based, and audio-token-based integration. We also demonstrate how these methods are applied across various speech-related applications and highlight the challenges in this field to offer inspiration for future research.

pdf bib
Generative Error Correction for Emotion-aware Speech-to-text Translation
Zhengdong Yang | Sheng Li | Chenhui Chu
Findings of the Association for Computational Linguistics: ACL 2025

This paper explores emotion-aware speech-to-text translation (ST) using generative error correction (GER) by large language models (LLMs). Despite recent advancements in ST, the impact of the emotional content has been overlooked. First, we enhance the translation of emotional speech by adopting the GER paradigm: Finetuned an LLM to generate the translation based on the decoded N-best hypotheses. Moreover, we combine the emotion and sentiment labels into the LLM finetuning process to enable the model to consider the emotion content. In addition, we project the ST model’s latent representation into the LLM embedding space to further improve emotion recognition and translation. Experiments on an English-Chinese dataset show the effectiveness of the combination of GER, emotion and sentiment labels, and the projector for emotion-aware ST. Our code is available at https://github.com/N-Orien/EmoST.

2024

pdf bib
MELD-ST: An Emotion-aware Speech Translation Dataset
Sirou Chen | Sakiko Yahata | Shuichiro Shimizu | Zhengdong Yang | Yihang Li | Chenhui Chu | Sadao Kurohashi
Findings of the Association for Computational Linguistics: ACL 2024

Emotion plays a crucial role in human conversation. This paper underscores the significance of considering emotion in speech translation. We present the MELD-ST dataset for the emotion-aware speech translation task, comprising English-to-Japanese and English-to-German language pairs. Each language pair includes about 10,000 utterances annotated with emotion labels from the MELD dataset. Baseline experiments using the SeamlessM4T model on the dataset indicate that fine-tuning with emotion labels can enhance translation performance in some settings, highlighting the need for further research in emotion-aware speech translation systems.

2023

pdf bib
The Kyoto Speech-to-Speech Translation System for IWSLT 2023
Zhengdong Yang | Shuichiro Shimizu | Wangjin Zhou | Sheng Li | Chenhui Chu
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper describes the Kyoto speech-to-speech translation system for IWSLT 2023. Our system is a combination of speech-to-text translation and text-to-speech synthesis. For the speech-to-text translation model, we used the dual-decoderTransformer model. For text-to-speech synthesis model, we took a cascade approach of an acoustic model and a vocoder.