Zhaojian Yu


2025

pdf bib
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation Task
Zhaojian Yu | Yilun Zhao | Arman Cohan | Xiao-Ping Zhang
Findings of the Association for Computational Linguistics: ACL 2025

In this paper, we present HumanEval Pro and MBPP Pro, a series of benchmarks to evaluate LLMs on self-invoking code generation task. This task involves providing LLMs with a base problem alongside a related, more complex problem. The models must solve the base problem and leverage its solution to address the more complex one, thereby showcasing their capacity for progressive reasoning and problem-solving. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks. Second, from the analysis of experimental results over twenty large language models (LLM) on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in this area and provide a new prospective to future research.

2024

pdf bib
WaveCoder: Widespread And Versatile Enhancement For Code Large Language Models By Instruction Tuning
Zhaojian Yu | Xin Zhang | Ning Shang | Yangyu Huang | Can Xu | Yishujie Zhao | Wenxiang Hu | Qiufeng Yin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent work demonstrates that, after instruction tuning, Code Large Language Models (Code LLMs) can obtain impressive capabilities to address a wide range of code-related tasks. However, current instruction tuning methods for Code LLMs mainly focus on the traditional code generation task, resulting in poor performance in complex multi-task scenarios. In this paper, we concentrate on multiple code-related tasks and present WaveCoder, a series of Code LLMs trained with Widespread And Versatile Enhanced instruction data. To enable the models to tackle complex code-related tasks, we propose a method to stably generate diverse, high-quality instruction data from open source code dataset in multi-task scenarios and obtain CodeOcean, a dataset comprising 19,915 instruction instances across 4 code-related tasks, which is aimed at improving the generalization ability of Code LLM. Our experiments demonstrate that WaveCoder models significantly outperform other open-source models in terms of the generalization ability across different code-related tasks. Moreover, WaveCoder-Ultra-6.7B presents the state-of-the-art generalization abilities on a wide range of code-related tasks.