Zekun Moore Wang


2025

pdf bib
M2RC-EVAL: Massively Multilingual Repository-level Code Completion Evaluation
Jiaheng Liu | Ken Deng | Congnan Liu | Jian Yang | Shukai Liu | He Zhu | Peng Zhao | Linzheng Chai | Yanan Wu | JinKe JinKe | Ge Zhang | Zekun Moore Wang | Guoan Zhang | Yingshui Tan | Bangyu Xiang | Zhaoxiang Zhang | Wenbo Su | Bo Zheng
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Repository-level code completion has drawn great attention in software engineering, and several benchmarks have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC-INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.

pdf bib
PopAlign: Diversifying Contrasting Patterns for a More Comprehensive Alignment
Zekun Moore Wang | Shenzhi Wang | King Zhu | Jiaheng Liu | Ke Xu | Jie Fu | Wangchunshu Zhou | Wenhao Huang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Alignment of large language models (LLMs) involves training models on preference-contrastive output pairs to adjust their responses according to human preferences. To obtain such contrastive pairs, traditional methods like RLHF and RLAIF rely on limited contrasting patterns, such as varying model variants or decoding temperatures. This singularity leads to two issues: (1) alignment is not comprehensive; and thereby (2) models are susceptible to harmful response tendencies. To address these issues, we investigate how to construct more comprehensive and diversified contrasting patterns to enhance preference data (RQ1) and verify the impact of the diversification of contrasting patterns on model alignment (RQ2). For RQ1, we propose PopAlign, a framework that integrates diversified contrasting patterns across the prompt, model, and pipeline levels, introducing six contrasting strategies that do not require additional feedback labeling procedures. Regarding RQ2, we conduct thorough experiments demonstrating that PopAlign significantly outperforms existing methods, leading to more comprehensive alignment.

pdf bib
COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning
Yuelin Bai | Xeron Du | Yiming Liang | Leo Jin | Junting Zhou | Ziqiang Liu | Feiteng Fang | Mingshan Chang | Tianyu Zheng | Xincheng Zhang | Nuo Ma | Zekun Moore Wang | Ruibin Yuan | Haihong Wu | Hongquan Lin | Wenhao Huang | Jiajun Zhang | Chenghua Lin | Jie Fu | Min Yang | Shiwen Ni | Ge Zhang
Findings of the Association for Computational Linguistics: NAACL 2025

Remarkable progress on large language models (LLMs), particularly in English, has facilitated impressive capabilities in following human instructions. However, there remains a noticeable gap in instruction fine-tuning for Chinese, where the complex linguistic features pose significant challenges. Existing datasets, generally distilled from English-centric LLMs, are not well-aligned with Chinese users’ interaction patterns. To bridge this gap, we introduce COIG-CQIA, a new Chinese instruction tuning dataset derived from various real-world data resources and undergoing comprehensive human verification. We conduct extensive experiments on COIG-CQIA, and compare them with strong baseline models and datasets. The experimental results show that models trained on COIG-CQIA achieve highly competitive performance in diverse benchmarks. Additionally, our findings offer several insights for designing effective Chinese instruction-tuning datasets and data mixing strategies. Our dataset are available at https://huggingface.co/datasets/m-a-p/COIG-CQIA.