Zecheng Zhang


2025

pdf bib
CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents
Tianqi Xu | Linyao Chen | Dai-Jie Wu | Yanjun Chen | Zecheng Zhang | Xiang Yao | Zhiqiang Xie | Yongchao Chen | Shilong Liu | Bochen Qian | Anjie Yang | Zhaoxuan Jin | Jianbo Deng | Philip Torr | Bernard Ghanem | Guohao Li
Findings of the Association for Computational Linguistics: ACL 2025

The development of autonomous agents increasingly relies on Multimodal Language Models (MLMs) to perform tasks described in natural language with GUI environments, such as websites, desktop computers, or mobile phones. Existing benchmarks for MLM agents in interactive environments are limited by their focus on a single environment, lack of detailed and generalized evaluation methods, and thecomplexities of constructing tasks and evaluators. To overcome these limitations, we introduce CRAB, the first cross-environment agent benchmark framework, incorporating a graph-based fine-grained evaluation method and an efficient task generation method. Our framework supports multiple devices and can be easily extended to any environment with a Python interface. Leveraging CRAB, we develope CRAB Benchmark-v0 comprising 120 tasks in computer desktop and mobile phone environments. We evaluated 6 advanced MLMs using different single and multi-agent system configurations on this benchmark. The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 38.01%.

2022

pdf bib
SAIS: Supervising and Augmenting Intermediate Steps for Document-Level Relation Extraction
Yuxin Xiao | Zecheng Zhang | Yuning Mao | Carl Yang | Jiawei Han
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Stepping from sentence-level to document-level, the research on relation extraction (RE) confronts increasing text length and more complicated entity interactions. Consequently, it is more challenging to encode the key information sources—relevant contexts and entity types. However, existing methods only implicitly learn to model these critical information sources while being trained for RE. As a result, they suffer the problems of ineffective supervision and uninterpretable model predictions. In contrast, we propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for RE. Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately so as to enhance interpretability. By assessing model uncertainty, SAIS further boosts the performance via evidence-based data augmentation and ensemble inference while reducing the computational cost. Eventually, SAIS delivers state-of-the-art RE results on three benchmarks (DocRED, CDR, and GDA) and outperforms the runner-up by 5.04% relatively in F1 score in evidence retrieval on DocRED.