Yunjie Ji


2025

pdf bib
Memorizing is Not Enough: Deep Knowledge Injection Through Reasoning
Ruoxi Xu | Yunjie Ji | Boxi Cao | Yaojie Lu | Hongyu Lin | Xianpei Han | Ben He | Yingfei Sun | Xiangang Li | Le Sun
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although large language models (LLMs) excel in knowledge recall and reasoning, their static nature leads to outdated information as the real world evolves or when adapting to domain-specific knowledge, highlighting the need for effective knowledge injection. However, current research on knowledge injection remains superficial, mainly focusing on knowledge memorization and retrieval. This paper proposes a four-tier knowledge injection framework that systematically defines the levels of knowledge injection: memorization, retrieval, reasoning, and association. Based on this framework, we introduce DeepKnowledge, a synthetic experimental testbed designed for fine-grained evaluation of the depth of knowledge injection across three knowledge types (novel, incremental, and updated). We then explore various knowledge injection scenarios and evaluate the depth of knowledge injection for each scenario on the benchmark. Experimental results reveal key factors to reach each level of knowledge injection for LLMs and establish a mapping between the levels of knowledge injection and the corresponding suitable injection methods, aiming to provide a comprehensive approach for efficient knowledge injection across various levels. The code is available at [https://github.com/icip-cas/Knowledge-Learning-Toolkits](https://github.com/icip-cas/Knowledge-Learning-Toolkits).

2022

pdf bib
To Answer or Not To Answer? Improving Machine Reading Comprehension Model with Span-based Contrastive Learning
Yunjie Ji | Liangyu Chen | Chenxiao Dou | Baochang Ma | Xiangang Li
Findings of the Association for Computational Linguistics: NAACL 2022

Machine Reading Comprehension with Unanswerable Questions is a difficult NLP task, challenged by the questions which can not be answered from passages. It is observed that subtle literal changes often make an answerable question unanswerable, however, most MRC models fail to recognize such changes. To address this problem, in this paper, we propose a span-based method of Contrastive Learning (spanCL) which explicitly contrast answerable questions with their answerable and unanswerable counterparts at the answer span level. With spanCL, MRC models are forced to perceive crucial semantic changes from slight literal differences. Experiments on SQuAD 2.0 dataset show that spanCL can improve baselines significantly, yielding 0.86 2.14 absolute EM improvements. Additional experiments also show that spanCL is an effective way to utilize generated questions.

2020

pdf bib
Diversified Multiple Instance Learning for Document-Level Multi-Aspect Sentiment Classification
Yunjie Ji | Hao Liu | Bolei He | Xinyan Xiao | Hua Wu | Yanhua Yu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Neural Document-level Multi-aspect Sentiment Classification (DMSC) usually requires a lot of manual aspect-level sentiment annotations, which is time-consuming and laborious. As document-level sentiment labeled data are widely available from online service, it is valuable to perform DMSC with such free document-level annotations. To this end, we propose a novel Diversified Multiple Instance Learning Network (D-MILN), which is able to achieve aspect-level sentiment classification with only document-level weak supervision. Specifically, we connect aspect-level and document-level sentiment by formulating this problem as multiple instance learning, providing a way to learn aspect-level classifier from the back propagation of document-level supervision. Two diversified regularizations are further introduced in order to avoid the overfitting on document-level signals during training. Diversified textual regularization encourages the classifier to select aspect-relevant snippets, and diversified sentimental regularization prevents the aspect-level sentiments from being overly consistent with document-level sentiment. Experimental results on TripAdvisor and BeerAdvocate datasets show that D-MILN remarkably outperforms recent weakly-supervised baselines, and is also comparable to the supervised method.