Yunhong Wang


2025

pdf bib
GODBench: A Benchmark for Multimodal Large Language Models in Video Comment Art
Yiming Lei | Chenkai Zhang | Zeming Liu | Haitao Leng | ShaoGuo Liu | Tingting Gao | Qingjie Liu | Yunhong Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

***Video Comment Art*** enhances user engagement by providing creative content that conveys humor, satire, or emotional resonance, requiring a nuanced and comprehensive grasp of cultural and contextual subtleties. Although Multimodal Large Language Models (MLLMs) and Chain-of-Thought (CoT) have demonstrated strong reasoning abilities in STEM tasks (e.g. mathematics and coding), they still struggle to generate creative expressions such as resonant jokes and insightful satire. Moreover, existing benchmarks are constrained by their limited modalities and insufficient categories, hindering the exploration of comprehensive creativity in video-based Comment Art creation. To address these limitations, we introduce **GODBench**, a novel benchmark that integrates video and text modalities to systematically evaluate MLLMs’ abilities to compose Comment Art. Furthermore, inspired by the propagation patterns of waves in physics, we propose **Ripple of Thought (RoT)**, a multi-step reasoning framework designed to enhance the creativity of MLLMs. Extensive experiments on GODBench reveal that existing MLLMs and CoT methods still face significant challenges in understanding and generating creative video comments. In contrast, RoT provides an effective approach to improving creative composing, highlighting its potential to drive meaningful advancements in MLLM-based creativity.

pdf bib
KwaiChat: A Large-Scale Video-Driven Multilingual Mixed-Type Dialogue Corpus
Xiaoming Shi | Zeming Liu | Yiming Lei | Chenkai Zhang | Haitao Leng | Chuan Wang | Qingjie Liu | Wanxiang Che | Yunhong Wang
Findings of the Association for Computational Linguistics: NAACL 2025

Video-based dialogue systems have compelling application value, such as education assistants, thereby garnering growing interest. However, the current video-based dialogue systems are limited by their reliance on a single dialogue type, which hinders their versatility in practical applications across a range of scenarios, including question-answering and emotionally dialog, etc. In this paper, we identify this challenge as how to generate video-driven multilingual mixed-type dialogues. To mitigate this challenge, we propose a novel task and create a human-to-human video-driven multilingual mixed-type dialogue corpus, termed KwaiChat, containing a total of 93,209 videos and 246,080 dialogues, across 4 dialogue types, 30 domains, 4 languages, and 13 topics. Additionally, we establish baseline models on KwaiChat. An extensive analysis of 7 distinct LLMs on KwaiChat reveals that GPT-4o achieves the best performance but still cannot perform well in this situation even with the help of in-context learning and fine-tuning, which indicates that the task is not trivial and needs further research.

pdf bib
TransBench: Breaking Barriers for Transferable Graphical User Interface Agents in Dynamic Digital Environments
Yuheng Lu | Qian Yu | Hongru Wang | Zeming Liu | Wei Su | Yanping Liu | Yuhang Guo | Maocheng Liang | Yunhong Wang | Haifeng Wang
Findings of the Association for Computational Linguistics: ACL 2025

Graphical User Interface (GUI) agents, which autonomously operate on digital interfaces through natural language instructions, hold transformative potential for accessibility, automation, and user experience. A critical aspect of their functionality is grounding — the ability to map linguistic intents to visual and structural interface elements. However, existing GUI agents often struggle to adapt to the dynamic and interconnected nature of real-world digital environments, where tasks frequently span multiple platforms and applications while also being impacted by version updates. To address this, we introduce TransBench, the first benchmark designed to systematically evaluate and enhance the transferability of GUI agents across three key dimensions: cross-version transferability (adapting to version updates), cross-platform transferability (generalizing across platforms like iOS, Android, and Web), and cross-application transferability (handling tasks spanning functionally distinct apps). TransBench includes 15 app categories with diverse functionalities, capturing essential pages across versions and platforms to enable robust evaluation. Our experiments demonstrate significant improvements in grounding accuracy, showcasing the practical utility of GUI agents in dynamic, real-world environments. Our code and data will be publicly available at GitHub.

pdf bib
ToolSpectrum: Towards Personalized Tool Utilization for Large Language Models
Zihao Cheng | Hongru Wang | Zeming Liu | Yuhang Guo | Yuanfang Guo | Yunhong Wang | Haifeng Wang
Findings of the Association for Computational Linguistics: ACL 2025

While integrating external tools into large language models (LLMs) enhances their ability to access real-time information and domain-specific services, existing approaches focus narrowly on functional tool selection following user instructions while overlooking the critical role of context-aware personalization in tool selection. This oversight leads to suboptimal user satisfaction and inefficient tool utilization, particularly when overlapping toolsets require nuanced selection based on contextual factors. To bridge this gap, we introduce ToolSpectrum, a benchmark designed to evaluate LLMs’ capabilities in personalized tool utilization. Specifically, we formalize two key dimensions of personalization, user profile and environmental factors, and analyze their individual and synergistic impacts on tool selection. Through extensive experiments on ToolSpectrum, we demonstrate that personalized tool selection significantly improves user experience across diverse scenarios. However, even state-of-the-art LLMs exhibit the limited ability to reason jointly about user profiles and environmental factors, often prioritizing one dimension at the expense of the other. Our findings underscore the necessity of context-aware personalization in tool-augmented LLMs and reveal critical limitations for current models. Our data and code will be released soon.