Yun Shen
2025
When GPT Spills the Tea: Comprehensive Assessment of Knowledge File Leakage in GPTs
Xinyue Shen
|
Yun Shen
|
Michael Backes
|
Yang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Knowledge files have been widely used in large language model (LLM)-powered agents, such as GPTs, to improve response quality. However, concerns over the potential leakage of knowledge files have grown significantly. Existing studies demonstrate that adversarial prompts can induce GPTs to leak knowledge file content. Yet, it remains uncertain whether additional leakage vectors exist, particularly given the complex data flows across clients, servers, and databases in GPTs. In this paper, we present a comprehensive risk assessment of knowledge file leakage, leveraging a novel workflow inspired by Data Security Posture Management (DSPM). Through the analysis of 651,022 GPT metadata, 11,820 flows, and 1,466 responses, we identify five leakage vectors: metadata, GPT initialization, retrieval, sandboxed execution environments, and prompts. These vectors enable adversaries to extract sensitive knowledge file data such as titles, content, types, and sizes. Notably, the activation of the built-in tool Code Interpreter leads to a privilege escalation vulnerability, enabling adversaries to directly download original knowledge files with a 95.95% success rate. Further analysis reveals that 28.80% of leaked files are copyrighted, including digital copies from major publishers and internal materials from a listed company. In the end, we provide actionable solutions for GPT builders and platform providers to secure the GPT data supply chain.
2024
Composite Backdoor Attacks Against Large Language Models
Hai Huang
|
Zhengyu Zhao
|
Michael Backes
|
Yun Shen
|
Yang Zhang
Findings of the Association for Computational Linguistics: NAACL 2024
Large language models (LLMs) have demonstrated superior performance compared to previous methods on various tasks, and often serve as the foundation models for many researches and services. However, the untrustworthy third-party LLMs may covertly introduce vulnerabilities for downstream tasks. In this paper, we explore the vulnerability of LLMs through the lens of backdoor attacks. Different from existing backdoor attacks against LLMs, ours scatters multiple trigger keys in different prompt components. Such a Composite Backdoor Attack (CBA) is shown to be stealthier than implanting the same multiple trigger keys in only a single component. CBA ensures that the backdoor is activated only when all trigger keys appear. Our experiments demonstrate that CBA is effective in both natural language processing (NLP) and multimodal tasks. For instance, with 3% poisoning samples against the LLaMA-7B model on the Emotion dataset, our attack achieves a 100% Attack Success Rate (ASR) with a False Triggered Rate (FTR) below 2.06% and negligible model accuracy degradation. Our work highlights the necessity of increased security research on the trustworthiness of foundation LLMs.