Yudong Wang


2025

pdf bib
Confidence v.s. Critique: A Decomposition of Self-Correction Capability for LLMs
Zhe Yang | Yichang Zhang | Yudong Wang | Ziyao Xu | Junyang Lin | Zhifang Sui
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) can correct their self-generated responses, but a decline in accuracy after self-correction is also witnessed. To have a deeper understanding of self-correction, we endeavor to decompose, evaluate, and analyze the self-correction behaviors of LLMs. By enumerating and analyzing answer correctness before and after self-correction, we decompose the self-correction capability into confidence (being confident to correct answers) and critique (turning wrong answers to correct) capabilities, and propose two metrics from a probabilistic perspective to measure these 2 capabilities, along with another metric for overall self-correction capability evaluation. Based on our decomposition and evaluation metrics, we conduct extensive experiments and draw some empirical conclusions. For example, we find different models can exhibit distinct behaviors: some models are confident while others are more critical. We also find the trade-off between the two capabilities (i.e. improving one can lead to a decline in the other) when manipulating model self-correction behavior by prompts or in-context learning. Further, we find a simple yet efficient strategy to improve self-correction capability by transforming Supervision Fine-Tuning (SFT) data format, and our strategy outperforms vanilla SFT in both capabilities and achieves much higher accuracy after self-correction.

pdf bib
Revisiting Scaling Laws for Language Models: The Role of Data Quality and Training Strategies
Zhengyu Chen | Siqi Wang | Teng Xiao | Yudong Wang | Shiqi Chen | Xunliang Cai | Junxian He | Jingang Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Traditional scaling laws in natural language processing suggest that increasing model size and training data enhances performance. However, recent studies reveal deviations, particularly in large language models, where performance improvements decelerate—a phenomenon known as sub-scaling. This paper revisits these scaling laws by examining the impact of data quality and training strategies on model performance. Through extensive empirical analysis of over 400 models, we identify high data density and non-optimal resource allocation as key factors contributing to sub-scaling. High data density leads to diminishing returns due to redundant information, while optimal resource allocation is crucial for sustained performance improvements. We propose a sub-optimal scaling law that better predicts performance in sub-scaling regimes, highlighting the importance of data quality and diversity.

2024

pdf bib
Achilles-Bench: A Challenging Benchmark for Low-Resource Evaluation
Yudong Wang | Chang Ma | Qingxiu Dong | Zhifang Sui | Lingpeng Kong | Jingjing Xu
Findings of the Association for Computational Linguistics: ACL 2024

With promising yet saturated results in high-resource settings, low-resource datasets have gradually become crucial benchmarks (e.g., BigBench Hard, superGLUE) for evaluating the learning ability of advanced neural networks. In this work, we find that there exists a set of “hard examples” in low-resource settings that challenge neural networks but are not well evaluated, which causes over-estimated performance. We first give a theoretical analysis on which factors bring the difficulty of low-resource learning. It then motivates us to propose a challenging benchmark Achilles-Bench to better evaluate the learning ability, which covers 11 datasets, including 8 natural language process (NLP) datasets and 3 computer vision (CV) datasets. Experiments on a wide range of models show that neural networks, even pre-trained language models, have sharp performance drops on our benchmark, demonstrating the effectiveness of evaluating the weaknesses of neural networks. On NLP tasks, we surprisingly find that despite better results on traditional low-resource benchmarks, pre-trained networks, does not show performance improvements on our benchmarks. there is still a large robustness gap between existing models and human-level performance, highlighting the need for robust low-resource learning models.

pdf bib
Code Needs Comments: Enhancing Code LLMs with Comment Augmentation
Demin Song | Honglin Guo | Yunhua Zhou | Shuhao Xing | Yudong Wang | Zifan Song | Wenwei Zhang | Qipeng Guo | Hang Yan | Xipeng Qiu | Dahua Lin
Findings of the Association for Computational Linguistics: ACL 2024

The programming skill is one crucial ability for Large Language Models (LLMs), necessitating a deep understanding of programming languages (PLs) and their correlation with natural languages (NLs). We examine the impact of pre-training data on code-focused LLMs’ performance by assessing the comment density as a measure of PL-NL alignment. Given the scarcity of code-comment aligned data in pre-training corpora, we introduce a novel data augmentation method that generates comments for existing code, coupled with a data filtering strategy that filters out code data poorly correlated with natural language. We conducted experiments on three code-focused LLMs and observed consistent improvements in performance on two widely-used programming skill benchmarks. Notably, the model trained on the augmented data outperformed both the model used for generating comments and the model further trained on the data without augmentation.