Yuanxing Zhang


2025

pdf bib
HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
Xiao Wang | Jingyun Hua | Weihong Lin | Yuanxing Zhang | Fuzheng Zhang | Jianlong Wu | Di Zhang | Liqiang Nie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. **HAICTrain** comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, **HAICBench** includes 412 manually annotated video-caption pairs and 2,000 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench will be made open-source to facilitate further research.

pdf bib
Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models
Xinlong Chen | Yuanxing Zhang | Qiang Liu | Junfei Wu | Fuzheng Zhang | Tieniu Tan
Findings of the Association for Computational Linguistics: ACL 2025

Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model’s attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model’s attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. Code is available at https://github.com/xlchen0205/MoD.

pdf bib
VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation
Xinlong Chen | Yuanxing Zhang | Chongling Rao | Yushuo Guan | Jiaheng Liu | Fuzheng Zhang | Chengru Song | Qiang Liu | Di Zhang | Tieniu Tan
Findings of the Association for Computational Linguistics: ACL 2025

The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.

pdf bib
Generative Frame Sampler for Long Video Understanding
Linli Yao | Haoning Wu | Kun Ouyang | Yuanxing Zhang | Caiming Xiong | Bei Chen | Xu Sun | Junnan Li
Findings of the Association for Computational Linguistics: ACL 2025

Despite recent advances in Video Large Language Models (VideoLLMs), effectively understanding long-form videos remains a significant challenge. Perceiving lengthy videos containing thousands of frames poses substantial computational burden. To mitigate this issue, this paper introduces Generative Frame Sampler (GenS), a plug-and-play module integrated with VideoLLMs to facilitate efficient lengthy video perception. Built upon a lightweight VideoLLM, GenS leverages its inherent vision-language capabilities to identify question-relevant frames. To facilitate effective retrieval, we construct GenS-Video-150K, a large-scale video instruction dataset with dense frame relevance annotations. Extensive experiments demonstrate that GenS consistently boosts the performance of various VideoLLMs, including open-source models (Qwen2-VL-7B, Aria-25B, LLaVA-Video-7B/72B) and proprietary assistants (GPT-4o, Gemini). When equipped with GenS, open-source VideoLLMs achieve impressive state-of-the-art results on long-form video benchmarks: LLaVA-Video-72B reaches 66.8 (+4.3) on LongVideoBench and 77.0 (+2.7) on MLVU, while Aria obtains 39.2 on HourVideo surpassing the Gemini-1.5-pro by 1.9 points.

2024

pdf bib
E2-LLM: Efficient and Extreme Length Extension of Large Language Models
Jiaheng Liu | ZhiqiBai ZhiqiBai | Yuanxing Zhang | Chenchen Zhang | YuangZh YuangZh | Ge Zhang | JiakaiWang JiakaiWang | Haoran Que | Yukang Chen | Wenbo Su | Tiezheng Ge | Jie Fu | Wenhu Chen | Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2024

Training Large Language Models (LLMs) to process extensive context lengths incurs prohibitive computational costs. Prevailing techniques for extending context capabilities in LLMs typically require not only additional training procedures but also access to datasets with long context (e.g., sequences of 32K tokens), presupposing substantial GPU expenditures. To address the aforementioned issues, we introduce a novel solution named Efficient and Extreme length extension for Large Language Models (E2-LLM). E2-LLM entails a singular training process over considerably short sequences (e.g., 4K tokens), which greatly mitigates the cost of continual-pretraining or fine-tuning. Within the training phase, we incorporate a dual augmentation strategy with Rotary Position Embeddings (RoPE) that adjusts the scale and position indices across distinct training samples. E 2 -LLM is meticulously designed to enhance the model’s robustness to diverse relative positions. The experimental results on multiple benchmark datasets demonstrate the superior performance of E 2 -LLM on demanding tasks of processing long contexts.

pdf bib
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
Yanan Wu | Jie Liu | Xingyuan Bu | Jiaheng Liu | Zhanhui Zhou | Yuanxing Zhang | Chenchen Zhang | ZhiqiBai ZhiqiBai | Haibin Chen | Tiezheng Ge | Wanli Ouyang | Wenbo Su | Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2024

This paper introduces ConceptMath, a bilingual (English and Chinese), fine-grained benchmark that evaluates concept-wise mathematical reasoning of Large Language Models (LLMs). Unlike traditional benchmarks that evaluate general mathematical reasoning with an average accuracy, ConceptMath systemically organizes math problems under a hierarchy of math concepts, so that mathematical reasoning can be evaluated at different granularity with concept-wise accuracies. Based on our ConcepthMath, we then evaluate a broad range of LLMs, and we observe existing LLMs, though achieving high average accuracies on traditional benchmarks, exhibit significant performance variations across different math concepts and may even fail catastrophically on the most basic ones. Besides, we also introduce an efficient fine-tuning strategy to enhance the weaknesses of existing LLMs. Finally, we hope ConceptMath could guide the developers to understand the fine-grained mathematical abilities of their models and facilitate the growth of foundation models. Code is available at https://github.com/conceptmath/conceptmath.