Yuanjian Xu


2025

pdf bib
FinRipple: Aligning Large Language Models with Financial Market for Event Ripple Effect Awareness
Yuanjian Xu | Jianing Hao | Kunsheng Tang | Jingnan Chen | Anxian Liu | Peng Liu | Guang Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Financial markets exhibit complex dynamics where localized events trigger ripple effects across entities. Previous event studies, constrained by static single-companies analyses and simplistic assumptions, fail to capture these ripple effects. While large language models (LLMs) offer emergent reasoning capabilities, their direct application falters due to structural market unawareness and limited capacity to analyze ripple effects. We propose FinRipple, an elegant framework that empowers LLMs with the ability to analyze ripple effects through financial theory-guided large-scale reinforcement learning. We begin by relaxing the assumptions of previous methods, incorporating a time-varying knowledge graph to accurately represent market structure. By seamlessly integrating classical asset pricing theory, we align the LLM with the market, enabling it to predict ripple effects. To the best of our knowledge, we are the first to provide a standardized definition of ripple effect prediction, a task that is extremely important yet unexplored in the financial domain. Extensive experiments demonstrate that FinRipple provides a promising solution to this task.

2023

pdf bib
Hard Sample Aware Prompt-Tuning
Yuanjian Xu | Qi An | Jiahuan Zhang | Peng Li | Zaiqing Nie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompt-tuning based few-shot learning has garnered increasing attention in recent years due to its efficiency and promising capability. To achieve the best performance for NLP tasks with just a few samples, it is vital to include as many informative samples as possible and to avoid misleading ones. However, there is no work in prompt-tuning literature addressing the problem of differentiating informative hard samples from misleading ones in model training, which is challenging due to the lack of supervision signals about the quality of the samples to train a well-performed model. We propose a Hard Sample Aware Prompt-Tuning framework (i.e. HardPT) to solve the non-differentiable problem in hard sample identification with reinforcement learning, and to strengthen the discrimination of the feature space without changing the original data distribution via an adaptive contrastive learning method. An extensive empirical study on a series of NLP tasks demonstrates the capability of HardPT in few-shot scenarios. HardPT obtains new SOTA results on all evaluated NLP tasks, including pushing the SST-5 accuracy to 49.5% (1.1% point absolute improvement), QNLI accuracy to 74.6% (1.9% absolute improvement), NMLI accuracy to 71.5 (0.7% absolute improvement), TACREV F1-score to 28.2 (1.0 absolute improvement), and i2b2/VA F1-score to 41.2 (1.3 absolute improvement).