2025
pdf
bib
abs
TC–RAG: Turing–Complete RAG’s Case study on Medical LLM Systems
Xinke Jiang
|
Yue Fang
|
Rihong Qiu
|
Haoyu Zhang
|
Yongxin Xu
|
Hao Chen
|
Wentao Zhang
|
Ruizhe Zhang
|
Yuchen Fang
|
Xinyu Ma
|
Xu Chu
|
Junfeng Zhao
|
Yasha Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In the pursuit of enhancing domain-specific Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) emerges as a promising solution to mitigate issues such as hallucinations, outdated knowledge, and limited expertise in highly specialized queries. However, existing approaches to RAG fall short by neglecting system state variables, which are crucial for ensuring adaptive control, retrieval halting, and system convergence. In this paper, we introduce the Turing-Complete-RAG (TC-RAG) through rigorous proof, a novel framework that addresses these challenges by incorporating a Turing Complete System to manage state variables, thereby enabling more efficient and accurate knowledge retrieval. By leveraging a memory stack system with adaptive retrieval, reasoning, and planning capabilities, TC-RAG not only ensures the controlled halting of retrieval processes but also mitigates the accumulation of erroneous knowledge via Push and Pop actions. In the case study of the medical and general domain, our extensive experiments on seven real-world healthcare and general-domain datasets demonstrate the superiority of TC-RAG over existing methods in accuracy by over 7.20%. Our code, datasets and RAG resources have been available at https://github.com/Artessay/TC-RAG.
pdf
bib
abs
Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning
Yongxin Xu
|
Ruizhe Zhang
|
Xinke Jiang
|
Yujie Feng
|
Yuzhen Xiao
|
Xinyu Ma
|
Runchuan Zhu
|
Xu Chu
|
Junfeng Zhao
|
Yasha Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method. Our code is available at https://github.com/Nostradamus4869/Parenting.
pdf
bib
abs
HyKGE: A Hypothesis Knowledge Graph Enhanced RAG Framework for Accurate and Reliable Medical LLMs Responses
Xinke Jiang
|
Ruizhe Zhang
|
Yongxin Xu
|
Rihong Qiu
|
Yue Fang
|
Zhiyuan Wang
|
Jinyi Tang
|
Hongxin Ding
|
Xu Chu
|
Junfeng Zhao
|
Yasha Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we investigate the retrieval-augmented generation (RAG) based on Knowledge Graphs (KGs) to improve the accuracy and reliability of Large Language Models (LLMs). Recent approaches suffer from insufficient and repetitive knowledge retrieval, tedious and time-consuming query parsing, and monotonous knowledge utilization. To this end, we develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework, which leverages LLMs’ powerful reasoning capacity to compensate for the incompleteness of user queries, optimizes the interaction process with LLMs, and provides diverse retrieved knowledge. Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs, as well as the carefully curated prompt to enhance the density and efficiency of LLMs’ responses. Furthermore, we introduce the HO Fragment Granularity-aware Rerank Module to filter out noise while ensuring the balance between diversity and relevance in retrieved knowledge. Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability. Code is available at https://github.com/Artessay/HyKGE.
pdf
bib
abs
Recurrent Knowledge Identification and Fusion for Language Model Continual Learning
Yujie Feng
|
Xujia Wang
|
Zexin Lu
|
Shenghong Fu
|
Guangyuan Shi
|
Yongxin Xu
|
Yasha Wang
|
Philip S. Yu
|
Xu Chu
|
Xiao-Ming Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Continual learning (CL) is crucial for deploying large language models (LLMs) in dynamic real-world environments without costly retraining. While recent model ensemble and model merging methods guided by parameter importance have gained popularity, they often struggle to balance knowledge transfer and forgetting, mainly due to the reliance on static importance estimates during sequential training. In this paper, we present Recurrent-KIF, a novel CL framework for Recurrent Knowledge Identification and Fusion, which enables dynamic estimation of parameter importance distributions to enhance knowledge transfer. Inspired by human continual learning, Recurrent-KIF employs an inner loop that rapidly adapts to new tasks while identifying important parameters, coupled with an outer loop that globally manages the fusion of new and historical knowledge through redundant knowledge pruning and key knowledge merging. These inner-outer loops iteratively perform multiple rounds of fusion, allowing Recurrent-KIF to leverage intermediate training information and adaptively adjust fusion strategies based on evolving importance distributions. Extensive experiments on two CL benchmarks with various model sizes (from 770M to 13B) demonstrate that Recurrent-KIF effectively mitigates catastrophic forgetting and enhances knowledge transfer.
2024
pdf
bib
abs
TaSL: Continual Dialog State Tracking via Task Skill Localization and Consolidation
Yujie Feng
|
Xu Chu
|
Yongxin Xu
|
Guangyuan Shi
|
Bo Liu
|
Xiao-Ming Wu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
A practical dialogue system requires the capacity for ongoing skill acquisition and adaptability to new tasks while preserving prior knowledge. However, current methods for Continual Dialogue State Tracking (DST), a crucial function of dialogue systems, struggle with the catastrophic forgetting issue and knowledge transfer between tasks. We present TaSL, a novel framework for task skill localization and consolidation that enables effective knowledge transfer without relying on memory replay. TaSL uses a novel group-wise technique to pinpoint task-specific and task-shared areas. Additionally, a fine-grained skill consolidation strategy protects task-specific knowledge from being forgotten while updating shared knowledge for bi-directional knowledge transfer. As a result, TaSL strikes a balance between preserving previous knowledge and excelling at new tasks. Comprehensive experiments on various backbones highlight the significant performance improvements of TaSL, with a 7.6% absolute increase in Avg. JGA and an 11% absolute rise in BWT metrics over existing state-of-the-art methods. The source code is provided for reproducibility.
pdf
bib
abs
ITAKE: Interactive Unstructured Text Annotation and Knowledge Extraction System with LLMs and ModelOps
Jiahe Song
|
Hongxin Ding
|
Zhiyuan Wang
|
Yongxin Xu
|
Yasha Wang
|
Junfeng Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
Extracting structured knowledge from unstructured text data has a wide range of application prospects, and a pervasive trend is to develop text annotation tools to help extraction. However, they often encounter issues such as single scenario usage, lack of effective human-machine collaboration, insufficient model supervision, and suboptimal utilization of Large Language Models (LLMs). We introduces an interactive unstructured text annotation and knowledge extraction system that synergistically integrates LLMs and ModelOps to alleviate these issues. The system leverages LLMs for enhanced performance in low-resource contexts, employs a ModelOps platform to monitor models throughout their lifecycle, and amalgamates interactive annotation methods with online machine learning and active learning. The demo video and website are now publicly available.