Yongjin Yang


2025

pdf bib
Code-Switching Red-Teaming: LLM Evaluation for Safety and Multilingual Understanding
Haneul Yoo | Yongjin Yang | Hwaran Lee
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) have advanced rapidly, concerns regarding their safety have become prominent. In this paper, we discover that code-switching in red-teaming queries can effectively elicit undesirable behaviors of LLMs, which are common practices in natural language. We introduce a simple yet effective framework, CSRT, to synthesize code-switching red-teaming queries and investigate the safety and multilingual understanding of LLMs comprehensively. Through extensive experiments with ten state-of-the-art LLMs and code-switching queries combining up to 10 languages, we demonstrate that the CSRT significantly outperforms existing multilingual red-teaming techniques, achieving 46.7% more attacks than standard attacks in English and being effective in conventional safety domains. We also examine the multilingual ability of those LLMs to generate and understand code-switching texts. Additionally, we validate the extensibility of the CSRT by generating code-switching attack prompts with monolingual data. We finally conduct detailed ablation studies exploring code-switching and propound unintended correlation between resource availability of languages and safety alignment in existing multilingual LLMs.

pdf bib
MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty
Yongjin Yang | Haneul Yoo | Hwaran Lee
Findings of the Association for Computational Linguistics: NAACL 2025

Despite the massive advancements in large language models (LLMs), they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on single-labeled questions, which removes data uncertainty—the irreducible randomness often present in user queries, which can arise from factors like multiple possible answers. This limitation may cause uncertainty quantification results to be unreliable in practical settings. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, **MAQA**, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that previous methods relatively struggle compared to single-answer settings, though this varies depending on the task. Moreover, we observe that entropy- and consistency-based methods effectively estimate model uncertainty, even in the presence of data uncertainty.

pdf bib
Self-Training Elicits Concise Reasoning in Large Language Models
Tergel Munkhbat | Namgyu Ho | Seo Hyun Kim | Yongjin Yang | Yujin Kim | Se-Young Yun
Findings of the Association for Computational Linguistics: ACL 2025

Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training.

2024

pdf bib
Towards Difficulty-Agnostic Efficient Transfer Learning for Vision-Language Models
Yongjin Yang | Jongwoo Ko | Se-Young Yun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Vision-language models (VLMs) like CLIP have demonstrated remarkable applicability across a variety of downstream tasks, including zero-shot image classification. Recently, the use of prompts or adapters for efficient transfer learning (ETL) has gained significant attention for effectively adapting to downstream tasks. However, previous studies have overlooked the challenge of varying transfer difficulty of downstream tasks. In this paper, we empirically analyze how each ETL method behaves with respect to transfer difficulty. Our observations indicate that utilizing vision prompts and text adapters is crucial for adaptability and generalizability in domains with high difficulty. Also, by applying an adaptive ensemble approach that integrates task-adapted VLMs with pre-trained VLMs and strategically leverages more general knowledge in low-difficulty and less in high-difficulty domains, we consistently enhance performance across both types of domains. Based on these observations, we propose an adaptive ensemble method that combines visual prompts and text adapters with pre-trained VLMs, tailored by transfer difficulty, to achieve optimal performance for any target domain. Upon experimenting with extensive benchmarks, our method consistently outperforms all baselines, particularly on unseen tasks, demonstrating its effectiveness.

2023

pdf bib
HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning
Yongjin Yang | Joonkee Kim | Yujin Kim | Namgyu Ho | James Thorne | Se-Young Yun
Findings of the Association for Computational Linguistics: EMNLP 2023

With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, **HARE**, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.