Large language models (LLMs) excel at downstream NLP tasks through in-context learning (ICL) with a few demonstrations of input–label pairs. However, the internal mechanisms behind ICL remain under-explored, particularly the mappings between inputs and labels. In this work, we reverse-engineer ICL by examining input-label mappings: what they are within LLMs, where they function, and how LLMs utilize them. (1) what: We discover input-label mappings stored within a few specific layers in the form of principal components (PCs), which capture human-interpretable and task-related words. (2) where: We propose a PC patching approach to identify the modules where input-label mappings function. Specifically, PC patching automatically crafts counterfactual representations using identified semantic PCs, rather than manually designing counterfactual text, to suppress the behavior related to LLM capability for ICL-related modules. Utilizing PC patching, we identify LLMs apply input-label mappings in a small fraction of attention heads. (3) how: We observe and verify that the identified key heads utilize input-label mappings from demonstrations to generate target labels for new queries. Based on these discoveries, we further show that precisely fine-tuning key ICL-related modules leads to significant improvements across diverse tasks.
Recent advancements in large language models (LLMs) have shown promising ability to perform commonsense reasoning, bringing machines closer to human-like understanding. However, deciphering the internal reasoning processes of LLMs remains challenging due to the complex interdependencies among generated tokens, especially in practical question-answering. In this study, we introduce a two-dimensional analysis framework—comprising token back-tracing and individual token decoding—to uncover how LLMs conduct factual knowledge recall. Through explanatory analysis of three typical reasoning datasets, we identify a consistent three-phase pattern: Subject Augmentation and Broadcasting, Object Retrieval and Reranking, and Conclusion Fusion and Generation. Our findings reveal that LLMs do not lack relevant knowledge but struggle to select the most accurate information based on context during the retrieval and rerank phase. Leveraging these findings, we apply representation engineering and selective fine-tuning to target specific modules responsible for retrieval and rerank errors. Experimental results show large improvements in response accuracy for both in-domain and out-of-domain settings, validating the rationality of the interpreting result.
Continual Named Entity Recognition (CNER) is a burgeoning area, which involves updating an existing model by incorporating new entity types sequentially. Nevertheless, continual learning approaches are often severely afflicted by catastrophic forgetting. This issue is intensified in CNER due to the consolidation of old entity types from previous steps into the non-entity type at each step, leading to what is known as the semantic shift problem of the non-entity type. In this paper, we introduce a pooled feature distillation loss that skillfully navigates the trade-off between retaining knowledge of old entity types and acquiring new ones, thereby more effectively mitigating the problem of catastrophic forgetting. Additionally, we develop a confidence-based pseudo-labeling for the non-entity type, i.e., predicting entity types using the old model to handle the semantic shift of the non-entity type. Following the pseudo-labeling process, we suggest an adaptive re-weighting type-balanced learning strategy to handle the issue of biased type distribution. We carried out comprehensive experiments on ten CNER settings using three different datasets. The results illustrate that our method significantly outperforms prior state-of-the-art approaches, registering an average improvement of 6.3% and 8.0% in Micro and Macro F1 scores, respectively.