2025
pdf
bib
abs
Language Constrained Multimodal Hyper Adapter For Many-to-Many Multimodal Summarization
Nayu Liu
|
Fanglong Yao
|
Haoran Luo
|
Yong Yang
|
Chen Tang
|
Bo Lv
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multimodal summarization (MS) combines text and visuals to generate summaries. Recently, many-to-many multimodal summarization (M3S) garnered interest as it enables a unified model for multilingual and cross-lingual MS. Existing methods have made progress by facilitating the transfer of common multimodal summarization knowledge. While, prior M3S models that fully share parameters neglect the language-specific knowledge learning, where potential interference between languages may limit the flexible adaptation of MS modes across different language combinations and hinder further collaborative improvements in joint M3S training. Based on this observation, we propose Language Constrained Multimodal Hyper Adapter (LCMHA) for M3S. LCMHA integrates language-specific multimodal adapters into multilingual pre-trained backbones via a language constrained hypernetwork, enabling relaxed parameter sharing that enhances language-specific learning while preserving shared MS knowledge learning. In addition, a language-regularized hypernetwork is designed to balance intra- and inter-language learning, generating language-specific adaptation weights and enhancing the retention of distinct language features through the regularization of generated parameters. Experimental results on the M3Sum benchmark show LCMHA’s effectiveness and scalability across multiple multilingual pre-trained backbones.
pdf
bib
abs
SARA: Salience-Aware Reinforced Adaptive Decoding for Large Language Models in Abstractive Summarization
Nayu Liu
|
Junnan Zhu
|
Yiming Ma
|
Zhicong Lu
|
Wenlei Xu
|
Yong Yang
|
Jiang Zhong
|
Kaiwen Wei
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
LLMs have improved the fluency and informativeness of abstractive summarization but remain prone to hallucinations, where generated content deviates from the source document. Recent PMI decoding strategies mitigate over-reliance on prior knowledge by comparing output probabilities with and without source documents, effectively enhancing contextual utilization and improving faithfulness. However, existing strategies often neglect the explicit use of salient contextual information and rely on static hyperparameters to fix the balance between contextual and prior knowledge, limiting their flexibility. In this work, we propose Salience-Aware Reinforced Adaptive decoding (SARA), which incorporates salient information and allows the model to adaptively determine reliance on the source document’s context, salient context, and the model’s prior knowledge based on pointwise mutual information. Moreover, a tokenwise adaptive decoding mechanism via reinforcement learning is proposed in SARA to dynamically adjust the contributions of context and prior knowledge at each decoding timestep. Experiments on CNN/DM, WikiHow, and NYT50 datasets show that SARA consistently improves the quality and faithfulness of summaries across various LLM backbones without modifying their weights.
2022
pdf
bib
abs
TRAttack: Text Rewriting Attack Against Text Retrieval
Junshuai Song
|
Jiangshan Zhang
|
Jifeng Zhu
|
Mengyun Tang
|
Yong Yang
Proceedings of the 7th Workshop on Representation Learning for NLP
Text retrieval has been widely-used in many online applications to help users find relevant information from a text collection. In this paper, we study a new attack scenario against text retrieval to evaluate its robustness to adversarial attacks under the black-box setting, in which attackers want their own texts to always get high relevance scores with different users’ input queries and thus be retrieved frequently and can receive large amounts of impressions for profits. Considering that most current attack methods only simply follow certain fixed optimization rules, we propose a novel text rewriting attack (TRAttack) method with learning ability from the multi-armed bandit mechanism. Extensive experiments conducted on simulated victim environments demonstrate that TRAttack can yield texts that have higher relevance scores with different given users’ queries than those generated by current state-of-the-art attack methods. We also evaluate TRAttack on Tencent Cloud’s and Baidu Cloud’s commercially-available text retrieval APIs, and the rewritten adversarial texts successfully get high relevance scores with different user queries, which shows the practical potential of our method and the risk of text retrieval systems.