Yipeng Zhang


2025

pdf bib
Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching
Xiaoying Zhang | Baolin Peng | Ye Tian | Jingyan Zhou | Yipeng Zhang | Haitao Mi | Helen M. Meng
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce Self-Tuning, a learning framework aimed at improving an LLM’s ability to effectively acquire new knowledge from unseen raw documents through self-teaching. Specifically, we develop a Self-Teaching strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. Additionally, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM’s knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on various models, e.g., Llama2-7B reveal that Self-Tuning consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.

2020

pdf bib
Towards A Friendly Online Community: An Unsupervised Style Transfer Framework for Profanity Redaction
Minh Tran | Yipeng Zhang | Mohammad Soleymani
Proceedings of the 28th International Conference on Computational Linguistics

Offensive and abusive language is a pressing problem on social media platforms. In this work, we propose a method for transforming offensive comments, statements containing profanity or offensive language, into non-offensive ones. We design a Retrieve, Generate and Edit unsupervised style transfer pipeline to redact the offensive comments in a word-restricted manner while maintaining a high level of fluency and preserving the content of the original text. We extensively evaluate our method’s performance and compare it to previous style transfer models using both automatic metrics and human evaluations. Experimental results show that our method outperforms other models on human evaluations and is the only approach that consistently performs well on all automatic evaluation metrics.