Yinpeng Dong


2025

pdf bib
AutoBreach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization via Multi-LLMs
Jiawei Chen | Xiao Yang | Zhengwei Fang | Yu Tian | Yinpeng Dong | Zhaoxia Yin | Hang Su
Findings of the Association for Computational Linguistics: NAACL 2025

Recent studies show that large language models (LLMs) are vulnerable to jailbreak attacks, which can bypass their defense mechanisms. However, existing jailbreak research often exhibits limitations in universality, validity, and efficiency. Therefore, we rethink jailbreaking LLMs and define three key properties to guide the design of effective jailbreak methods. We introduce AutoBreach, a novel black-box approach that uses wordplay-guided mapping rule sampling to create universal adversarial prompts. By leveraging LLMs’ summarization and reasoning abilities, AutoBreach minimizes manual effort. To boost jailbreak success rates, we further suggest sentence compression and chain-of-thought-based mapping rules to correct errors and wordplay misinterpretations in target LLMs. Also, we propose a two-stage mapping rule optimization that initially optimizes mapping rules before querying target LLMs to enhance efficiency. Experimental results indicate AutoBreach efficiently identifies security vulnerabilities across various LLMs (Claude-3, GPT-4, etc.), achieving an average success rate of over 80% with fewer than 10 queries. Notably, the adversarial prompts generated by AutoBreach for GPT-4 can directly bypass the defenses of the advanced commercial LLM GPT o1-preview, demonstrating strong transferability and universality.

pdf bib
Breaking the Ceiling: Exploring the Potential of Jailbreak Attacks through Expanding Strategy Space
Yao Huang | Yitong Sun | Shouwei Ruan | Yichi Zhang | Yinpeng Dong | Xingxing Wei
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs), despite advanced general capabilities, still suffer from numerous safety risks, especially jailbreak attacks that bypass safety protocols. Understanding these vulnerabilities through black-box jailbreak attacks, which better reflect real-world scenarios, offers critical insights into model robustness. While existing methods have shown improvements through various prompt engineering techniques, their success remains limited against safety-aligned models, overlooking a more fundamental problem: the effectiveness is inherently bounded by the predefined strategy spaces. However, expanding this space presents significant challenges in both systematically capturing essential attack patterns and efficiently navigating the increased complexity. To better explore the potential of expanding the strategy space, we address these challenges through a novel framework that decomposes jailbreak strategies into essential components based on the Elaboration Likelihood Model (ELM) theory and develops genetic-based optimization with intention evaluation mechanisms. To be striking, our experiments reveal unprecedented jailbreak capabilities by expanding the strategy space: we achieve over 90% success rate on Claude-3.5 where prior methods completely fail, while demonstrating strong cross-model transferability and surpassing specialized safeguard models in evaluation accuracy. The code is open-sourced at: https://github.com/Aries-iai/CL-GSO.

pdf bib
Libra-Leaderboard: Towards Responsible AI through a Balanced Leaderboard of Safety and Capability
Haonan Li | Xudong Han | Zenan Zhai | Honglin Mu | Hao Wang | Zhenxuan Zhang | Yilin Geng | Shom Lin | Renxi Wang | Artem Shelmanov | Xiangyu Qi | Yuxia Wang | Donghai Hong | Youliang Yuan | Meng Chen | Haoqin Tu | Fajri Koto | Cong Zeng | Tatsuki Kuribayashi | Rishabh Bhardwaj | Bingchen Zhao | Yawen Duan | Yi Liu | Emad A. Alghamdi | Yaodong Yang | Yinpeng Dong | Soujanya Poria | Pengfei Liu | Zhengzhong Liu | Hector Xuguang Ren | Eduard Hovy | Iryna Gurevych | Preslav Nakov | Monojit Choudhury | Timothy Baldwin
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

As large language models (LLMs) continue to evolve, leaderboards play a significant role in steering their development. Existing leaderboards often prioritize model capabilities while overlooking safety concerns, leaving a significant gap in responsible AI development. To address this gap, we introduce Libra-Leaderboard, a comprehensive framework designed to rank LLMs through a balanced evaluation of performance and safety. Combining a dynamic leaderboard with an interactive LLM arena, Libra-Leaderboard encourages the joint optimization of capability and safety. Unlike traditional approaches that average performance and safety metrics, Libra-Leaderboard uses a distance-to-optimal-score method to calculate the overall rankings. This approach incentivizes models to achieve a balance rather than excelling in one dimension at the expense of some other ones. In the first release, Libra-Leaderboard evaluates 26 mainstream LLMs from 14 leading organizations, identifying critical safety challenges even in state-of-the-art models.