Yiming Ai


2025

pdf bib
Debt Collection Negotiations with Large Language Models: An Evaluation System and Optimizing Decision Making with Multi-Agent
Xiaofeng Wang | Zhixin Zhang | Jin Guang Zheng | Yiming Ai | Rui Wang
Findings of the Association for Computational Linguistics: ACL 2025

Debt collection negotiations (DCN) are vital for managing non-performing loans (NPLs) and reducing creditor losses. Traditional methods are labor-intensive, while large language models (LLMs) offer promising automation potential. However, prior systems lacked dynamic negotiation and real-time decision-making capabilities. This paper explores LLMs in automating DCN and proposes a novel evaluation framework with 13 metrics across 4 aspects. Our experiments reveal that LLMs tend to over-concede compared to human negotiators. To address this, we propose the Multi-Agent Debt Negotiation (MADeN) framework, incorporating planning and judging modules to improve decision rationality. We also apply post-training techniques, including DPO with rejection sampling, to optimize performance. Our studies provide valuable insights for practitioners and researchers seeking to enhance efficiency and outcomes in this domain.

2023

pdf bib
TeCS: A Dataset and Benchmark for Tense Consistency of Machine Translation
Yiming Ai | Zhiwei He | Kai Yu | Rui Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Tense inconsistency frequently occurs in machine translation. However, there are few criteria to assess the model’s mastery of tense prediction from a linguistic perspective. In this paper, we present a parallel tense test set, containing French-English 552 utterances. We also introduce a corresponding benchmark, tense prediction accuracy. With the tense test set and the benchmark, researchers are able to measure the tense consistency performance of machine translation systems for the first time.