Yifan Luo


2025

pdf bib
RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
Kunlun Zhu | Yifan Luo | Dingling Xu | Yukun Yan | Zhenghao Liu | Shi Yu | Ruobing Wang | Shuo Wang | Yishan Li | Nan Zhang | Xu Han | Zhiyuan Liu | Maosong Sun
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) is a powerful approach that enables large language models (LLMs) to incorporate external knowledge. However, evaluating the effectiveness of RAG systems in specialized scenarios remains challenging due to the high costs of data construction and the lack of suitable evaluation metrics. This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios by generating high-quality documents, questions, answers, and references through a schema-based pipeline. With a focus on factual accuracy, we propose three novel metrics—Completeness, Hallucination, and Irrelevance—to evaluate LLM-generated responses rigorously. Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples. Furthermore, the use of LLMs for scoring the proposed metrics demonstrates a high level of consistency with human evaluations. RAGEval establishes a new paradigm for evaluating RAG systems in real-world applications. The code and dataset are released at https://github.com/OpenBMB/RAGEval.

pdf bib
Autonomous Data Selection with Zero-shot Generative Classifiers for Mathematical Texts
Yifan Zhang | Yifan Luo | Yang Yuan | Andrew C Yao
Findings of the Association for Computational Linguistics: ACL 2025

We present Autonomous Data Selection (AutoDS), a method that leverages base language models as zero-shot “generative classifiers” to automatically curate high-quality mathematical texts. Unlike prior approaches that require human annotations or training a dedicated data filter, AutoDS relies solely on a model’s logits to determine whether a given passage is mathematically informative and educational. By integrating AutoDS into a continual pretraining pipeline, we substantially boost downstream performance on challenging math benchmarks (MATH, GSM8K, and BBH) while using far fewer tokens than previous methods. Empirically, our approach achieves roughly a twofold improvement in pretraining token efficiency over strong baselines, underscoring the potential of self-directed data selection in enhancing mathematical reasoning. We will release our curated dataset to facilitate future research in automated domain-specific data curation.

2023

pdf bib
Won’t Get Fooled Again: Answering Questions with False Premises
Shengding Hu | Yifan Luo | Huadong Wang | Xingyi Cheng | Zhiyuan Liu | Maosong Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained language models (PLMs) have shown unprecedented potential in various fields, especially as the backbones for question-answering (QA) systems. However, they tend to be easily deceived by tricky questions such as “How many eyes does the sun have?”. Such frailties of PLMs often allude to the lack of knowledge within them. In this paper, we find that the PLMs already possess the knowledge required to rebut such questions, and the key is how to activate the knowledge. To systematize this observation, we investigate the PLMs’ responses to one kind of tricky questions, i.e., the false premises questions (FPQs). We annotate a FalseQA dataset containing 2365 human-written FPQs, with the corresponding explanations for the false premises and the revised true premise questions. Using FalseQA, we discover that PLMs are capable of discriminating FPQs by fine-tuning on moderate numbers (e.g., 256) of examples. PLMs also generate reasonable explanations for the false premise, which serve as rebuttals. Further replaying a few general questions during training allows PLMs to excel on FPQs and general questions simultaneously. Our work suggests that once the rebuttal ability is stimulated, knowledge inside the PLMs can be effectively utilized to handle FPQs, which incentivizes the research on PLM-based QA systems. The FalseQA dataset and code are available at https://github.com/thunlp/FalseQA .