Yexing Du


2025

pdf bib
GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement
Yifan Yang | Zheshu Song | Jianheng Zhuo | Mingyu Cui | Jinpeng Li | Bo Yang | Yexing Du | Ziyang Ma | Xunying Liu | Ziyuan Wang | Ke Li | Shuai Fan | Kai Yu | Wei-Qiang Zhang | Guoguo Chen | Xie Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline involves Whisper for initial transcription, MMS for forced alignment, and multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thereby enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus’s high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to Whisper large-v3, with merely 10% model parameters. Furthermore, our ASR models trained on GigaSpeech 2 yield superior performance compared to commercial services. We hope that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.

pdf bib
Making LLMs Better Many-to-Many Speech-to-Text Translators with Curriculum Learning
Yexing Du | Youcheng Pan | Ziyang Ma | Bo Yang | Yifan Yang | Keqi Deng | Xie Chen | Yang Xiang | Ming Liu | Bing Qin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Large Language Models (MLLMs) have achieved significant success in Speech-to-Text Translation (S2TT) tasks. While most existing research has focused on English-centric translation directions, the exploration of many-to-many translation is still limited by the scarcity of parallel data. To address this, we propose a three-stage curriculum learning strategy that leverages the machine translation capabilities of large language models and adapts them to S2TT tasks, enabling effective learning in low-resource settings. We trained MLLMs with varying parameter sizes (3B, 7B, and 32B) and evaluated the proposed strategy using the FLEURS and CoVoST-2 datasets. Experimental results show that the proposed strategy achieves state-of-the-art average performance in 15×14 language pairs, requiring fewer than 10 hours of speech data per language to achieve competitive results. The source code and models are released at https://github.com/yxduir/LLM-SRT.

pdf bib
ProjectEval: A Benchmark for Programming Agents Automated Evaluation on Project-Level Code Generation
Kaiyuan Liu | Youcheng Pan | Yang Xiang | Daojing He | Jing Li | Yexing Du | Tianrun Gao
Findings of the Association for Computational Linguistics: ACL 2025

Recently, LLM agents have made rapid progress in improving their programming capabilities. However, existing benchmarks lack the ability to automatically evaluate from users’ perspective, and also lack the explainability of the results of LLM agents’ code generation capabilities. Thus, we introduce ProjectEval, a new benchmark for LLM agents project-level code generation’s automated evaluation by simulating user interaction. ProjectEval is constructed by LLM with human reviewing. It has three different level inputs of natural languages or code skeletons. ProjectEval can evaluate the generated projects by user interaction simulation for execution, and by code similarity through existing objective indicators. Through ProjectEval, we find that systematic engineering project code, overall understanding of the project and comprehensive analysis capability are the keys for LLM agents to achieve practical projects. Our findings and benchmark provide valuable insights for developing more effective programming agents that can be deployed in future real-world production.

2023

pdf bib
Distantly Supervised Course Concept Extraction in MOOCs with Academic Discipline
Mengying Lu | Yuquan Wang | Jifan Yu | Yexing Du | Lei Hou | Juanzi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the rapid growth of Massive Open Online Courses (MOOCs), it is expensive and time-consuming to extract high-quality knowledgeable concepts taught in the course by human effort to help learners grasp the essence of the course. In this paper, we propose to automatically extract course concepts using distant supervision to eliminate the heavy work of human annotations, which generates labels by matching them with an easily accessed dictionary. However, this matching process suffers from severe noisy and incomplete annotations because of the limited dictionary and diverse MOOCs. To tackle these challenges, we present a novel three-stage framework DS-MOCE, which leverages the power of pre-trained language models explicitly and implicitly and employs discipline-embedding models with a self-train strategy based on label generation refinement across different domains. We also provide an expert-labeled dataset spanning 20 academic disciplines. Experimental results demonstrate the superiority of DS-MOCE over the state-of-the-art distantly supervised methods (with 7% absolute F1 score improvement). Code and data are now available at https://github.com/THU-KEG/MOOC-NER.